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Abstract

This paper concerns the global well-posedness of classical solutions to the
Cauchy problem of the Navier-Stokes equations for viscous compressible barotropic
flows in three spatial dimensions with periodic initial data with density allowed to
vanish initially. We introduce the so-called the effective viscous flux which is the
key for time-uniform upper bound of density. Based on these key ingredients, we
are able to obtain the global solvability of classical solutions in three spatial di-
mensions, provided the smooth initial data are of small total energy. These results
generalize previous results on classical solutions for initial densities being strictly
away from vacuum.

1 Introduction

The time evolution of the density and the velocity of a general viscous isentropic
compressible fluid occupying a domain Ω ⊂ R3 is governed by the compressible Navier-
Stokes equations:{

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)− µ∆u− (µ+ λ)∇(divu) +∇P (ρ) = 0,
(1.1)

where ρ ≥ 0, u = (u1, u2, u3) and P = aργ(a > 0, γ > 1) are the fluid density,
velocity and pressure, respectively. The constant viscosity coefficients µ and λ satisfy
the physical restrictions:

µ > 0, µ+
3

2
λ ≥ 0. (1.2)

Let Ω = R3/Z3 = T3 , we look for the solutions (ρ(x, t), u(x, t)) to the Cauchy problem
for (1.1) with initial data,

(ρ, u)|t=0 = (ρ0, u0), x ∈ Ω. (1.3)

There are extensive studies concerning on the existence and large time behavior of
solutions to (1.1). There are huge literatures on the one-dimensional problem, see
[13, 23, 33, 34] and the references therein. For the multi-dimensional case, the local
well-posedness of classical solutions are demonstrated in [31, 35], where they required
initial densities is strictly away from vacuum. Matsumura-Nishida [30] first proved
the global classical solutions, Where the initial data have small oscillations from a
uniform non-vacuum state. Later, Hoff [14, 15] studied the existence of solutions with
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discontinuous initial data. Huang-Xu-Yuan [22] obtained that the planar rarefaction
waves are asymptotically stable under periodic perturbations. Shlapunov-Tarkhanov
[36] established the existence theorems for the incompressible Navier-Stokes equations
in T3.

For the case that the initial density is allowed to vanish, the existence and unique-
ness of local strong and classical solutions were obtained by [3–5, 32]. Lions [26]
and Feireisl [11] first obtained global existence of finite energy weak solutions. The
regularity and uniqueness of weak solutions and the global well-posedness of classi-
cal solution [11, 16, 26] remain completely open in the presence of vacuum. Wang-
Ye [37]obtained the global existence for the incompressible Navier-Stokes equations.
Xin [38]showed that any smooth solution to the Cauchy problem of compressible Navier-
Stokes blows up in finite time under the assumption that initial density has compact
support.However, for the case that the initial density is allowed to vanish and even
has compact support, Huang-Li-Xin [20] and Li-Xin [29] established the quite surpris-
ing global existence and uniqueness of classical solutions with vacuum to the Cauchy
problem in 3D and 2D space with smooth initial data which are of small total energy
but possibly large oscillations. Choi-Jung [8]presented the singularity formation for the
compressible Vlasov/NavierCStokes equations with degenerate viscosities. Duan-Xin-
Zhu [9]showed that there is no global regular solutions for the 3-D full compressible
NavierCStokes equations with degenerate viscosities. Cao-Li-Zhu [7]derived that the
spherically symmetric smooth solutions to degenerate compressible Navier-Stokes equa-
tions are global well-posed. Cai and Li [6] derived global existence of both the weak
and classical solutions to the initial-boundary-value problem with small initial energy.
Then a natural question arises whether the theory of [6,20] remains valid for the case of
T3. A positive answer would yield immediately the regularity and uniqueness of weak
solutions of Lions-Feireisl provided the initial energy is suitably small, whose existence
has been proved for all γ > 1, as discussed in [11].

The main aim of this paper is to study the global well-posedness of classical solutions
for the isentropic compressible Navier-Stokes equations (1.1) in T3 with density allowed
to vanish initially. Before stating the main results, we introduce the notations and
conventions in this paper. Let ∫

fdx ,
∫

Ω
fdx,

and

f̄ ,
1

|Ω|

∫
Ω
fdx,

which is the average of a function f over Ω. Integrating (1.1)1 over Ω× (0, T ), one has

ρ̄ =
1

|Ω|

∫
ρ(x, t)dx ≡ 1

|Ω|

∫
ρ0dx = ρ̄0,

∫
ρ0dx = 1. (1.4)

For 1 ≤ r ≤ ∞ and β > 0, the standard homogeneous and inhomogeneous Sobolev
spaces are denoted as follows:
Lr = Lr(T3), Dk,r =

{
u ∈ L1

loc(T3)
∣∣ ‖∇ku‖Lr <∞} , ‖u‖Dk,r , ‖∇ku‖Lr ,

Hk = W k,2, Dk = Dk,2, D1 =
{
u ∈ L6

∣∣ ‖∇u‖L2 <∞
}

Ḣβ =

{
f : T3 → R

∣∣∣∣‖f‖2Ḣβ =

∫ ∫
|f(x)− f(y)|2

|x− y|3+2β
dxdy <∞

}
,
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The initial energy is defined as:

C0 =

∫ (
1

2
ρ0|u0|2 +G(ρ0)

)
dx, (1.5)

where G denotes the potential energy density given by G(ρ) , ρ
∫ ρ
ρ̄
P (s)−P (ρ̄)

s2
ds.

It is clear that
c(ρ̄, ρ̂)(ρ− ρ̄)2 ≤ G(ρ), 0 ≤ ρ ≤ ρ̂, (1.6)

and

‖P − P̄‖2L2 ≤ C‖P − P (ρ̄)‖2L2 ≤ C
∫
G(ρ)dx. (1.7)

Then the main results in this paper can be stated as follows:

Theorem 1.1 Assume that (1.2) holds. For given numbers M > 0 (not necessarily
small), β ∈ (1/2, 1], suppose that the initial data (ρ0, u0) satisfy

ρ0|u0|2 +G(ρ0) + P (ρ0) ∈ L1, u0 ∈ Ḣβ ∩D1 ∩D3, (ρ0, P (ρ0)) ∈ H3, (1.8)

0 ≤ inf ρ0 ≤ sup ρ0 ≤ ρ̂, ‖u0‖Ḣβ ≤M, (1.9)

and the compatibility condition

−µ4u0 − (µ+ λ)∇divu0 +∇P (ρ0) = ρ0g, (1.10)

for some g ∈ D1 with ρ
1/2
0 g ∈ L2. Then there exists a positive constant ε depending on

µ, λ, a, γ, ρ̂, β and M such that if
C0 ≤ ε, (1.11)

the initial-boundary-value problem (1.1)-(1.3) has a unique global classical solution
(ρ, u) in T3 × (0,∞) satisfying for any 0 < τ < T <∞,

0 ≤ ρ(x, t) ≤ 2ρ̂, x ∈ T3, t ≥ 0, (1.12)
(ρ, P (ρ)) ∈ C([0, T ];H3),

u ∈ C([0, T ];D1 ∩D3) ∩ L2(0, T ;D4) ∩ L∞(τ, T ;D4),

ut ∈ L∞(0, T ;D1) ∩ L2(0, T ;D2) ∩ L∞(τ, T ;D2) ∩H1(τ, T ;D1),
√
ρut ∈ L∞(0, T ;L2),

(1.13)

and the following large-time behavior:

lim
t→∞

∫
(|ρ− ρ̄0|q + |∇u|2)(x, t)dx = 0, q ∈ [1,∞). (1.14)

A few remarks are in order:

Remark 1.1 It follows from Sobolev’s inequality and (1.13)1 that

ρ,∇ρ ∈ C(Ω̄× [0, T ]). (1.15)

Moreover, it also follows from (1.13)2 and (1.13)3 that

u,∇u,∇2u, ut ∈ C(Ω̄× [τ, T ]), (1.16)
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due to the following simple fact that

L2(τ, T ;H1) ∩H1(τ, T ;H−1) ↪→ C([τ, T ];L2).

Finally, by (1.1)1, we have

ρt = −u · ∇ρ− ρdivu ∈ C(Ω̄× [τ, T ]),

which together with (1.15) and (1.16) shows that the solution obtained by Theorem 1.1
is a classical one.

Similar to previous studies on the Stokes approximation equations in [28], we can
obtain from (1.14) the following large time behavior of the gradient of the density when
vacuum states appear initially , which is completely in contrast to the classical theory
( [17,30]).

Theorem 1.2 In addition to the conditions of Theorem 1.1, assume further that there
exists some point x0 ∈ T3 such that ρ0(x0) = 0. Then the unique global classical solution
(ρ, u) to the Cauchy problem (1.1)-(1.3) obtained in Theorem 1.1 has to blow up as
t→∞, in the sense that for any r > 3,

lim
t→∞
‖∇ρ(·, t)‖Lr =∞. (1.17)

We now outline the main idea to the proof. Based on the local arguments [4] of
solutions to (1.1)-(1.3), we need priori estimates to obtain the global solution. Similarly
to [20], the key point is to derive both the time-independent upper bound for the density
and the time-depending higher norm estimates of the solution (ρ, u), so some basic ideas
used in [20] will be adapted here, yet new difficulties arises in case of T3. To overcome
these difficulties, we introduce the effective viscous flux F playing an important role
in our following analysis. The new estimates of F along with Zlotnik’s inequality (see
Lemma 2.5)show the time-uniform upper bound for density, which is essential to obtain
the global solutions. Then we can estimate the gradients of the density and the velocity
as in [18,19]. Finally, with the bounds of the gradients of the density and the velocity
at hand, we can use the same arguments in [21] to obtain the estimates of the higher
order derivatives.

2 Preliminaries

There are some elementary inequalities and known facts used frequently later.

We begin with the local well-posedness of classical solutions with the non-negative
initial density .

Lemma 2.1 ( [4]) Assume that the initial data (ρ0 ≥ 0, u0) satisfy (1.8)-(1.10) except
u0 ∈ Ḣβ. then there exist a small time T∗ > 0 and a unique classical solution (ρ, u) to
the problem (1.1)-(1.3) on T3 × (0, T∗] such that

(ρ, P (ρ)) ∈ C([0, T∗];H
3),

u ∈ C([0, T∗];D
1 ∩D3) ∩ L2(0, T∗;D

4),

ut ∈ L∞(0, T∗;D
1) ∩ L2(0, T∗;D

2),
√
ρut ∈ L∞(0, T∗;L

2),
√
ρutt ∈ L2(0, T∗;L

2), t1/2u ∈ L∞(0, T∗;D
4),

t1/2
√
ρutt ∈ L∞(0, T∗;L

2), tut ∈ L∞(0, T∗;D
3),

tutt ∈ L∞(0, T∗;D
1) ∩ L2(0, T∗;D

2).

(2.1)
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Next, the following well-known Gagliardo-Nirenberg inequality will be used later
frequently (see [27]).

Lemma 2.2 (Gagliardo-Nirenberg) For p ∈ [2, 6], q ∈ (1,∞), and r ∈ (3,∞), there
exists some generic constant C > 0 which may depend on q, r such that for f ∈ H1(T3)
and g ∈ Lq(T3) ∩D1,r(T3), we have

‖f‖pLp ≤ C‖f‖
(6−p)/2
L2 ‖∇f‖(3p−6)/2

L2 + C1‖f‖pL2 , (2.2)

‖g‖
C(T3) ≤ ‖g‖

q(r−3)/(3r+q(r−3))
Lq

(
C‖∇g‖3r/(3r+q(r−3))

Lr + C2‖g‖3r/(3r+q(r−3))
Lr

)
(2.3)

Moreover, if either f |∂Ω = 0 or f̄ = 0, we can choose C1 = 0. Similarly, the constant
C2 = 0 provided g|∂Ω = 0 or ḡ = 0

We now state some elementary estimates which follow from (2.2) and the standard
Lp-estimate for the following elliptic system derived from the momentum equations in
(1.1):

4F = div(ρu̇), µ4ω = ∇× (ρu̇), (2.4)

where
ḟ , ft + u · ∇f, F , (2µ+ λ)divu− (P − P̄ ), ω , ∇× u, (2.5)

are the material derivative of f, the effective viscous flux and the vorticity respectively.

Lemma 2.3 Let (ρ, u) be a smooth solution of (1.1)-(1.3). Then there exists a generic
positive constant C depending only on µ and λ such that for any p ∈ [2, 6]

‖∇F‖Lp + ‖∇ω‖Lp ≤ C‖ρu̇‖Lp , (2.6)

‖F‖Lp + ‖ω‖Lp

. ‖ρu̇‖(3p−6)/(2p)
L2

(
‖∇u‖L2 + ‖P − P̄‖L2

)(6−p)/(2p)
, (2.7)

‖∇u‖Lp ≤ C (‖F‖Lp + ‖ω‖Lp) + C‖P − P̄‖Lp , (2.8)

‖∇u‖Lp

. ‖∇u‖(6−p)/(2p)
L2

(
‖ρu̇‖L2 + ‖P − P̄‖L6

)(3p−6)/(2p)
. (2.9)

Proof. The standard Lp-estimate for the elliptic system (2.4) yields directly (2.6),
which, together with (2.2) and (2.5), gives (2.7).

Note that −∆u = −∇divu+∇× ω, which implies that

∇u = −∇(−∆)−1∇divu+∇(−∆)−1∇× ω.

Thus the standard Lp estimate shows that

‖∇u‖Lp ≤ C(‖divu‖Lp + ‖ω‖Lp), for p ∈ [2, 6],

which, together with (2.5), gives (2.8). Now (2.9) follows from (2.2), (2.8) and (2.6).

The following Poincaré type inequality can be found in [10, Lemma 3.2].
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Lemma 2.4 Let v ∈ H1(T3), and let ρ be a non-negative function such that

0 < M1 ≤
∫
T3

ρdx,

∫
T3

ργdx ≤M2,

with γ > 1. Then there is a constant C depending solely on M1,M2 such that

‖v‖2L2(T3) ≤ C
∫
T3

ρv2dx+ C‖∇v‖2L2(T3). (2.10)

Next, the following Zlotnik inequality will be used to get the uniform (in time) upper
bound of the density ρ.

Lemma 2.5 ( [39]) Let the function y satisfy

y′(t) = g(y) + b′(t) on [0, T ], y(0) = y0,

with g ∈ C(R) and y, b ∈W 1,1(0, T ). If g(∞) = −∞ and

b(t2)− b(t1) ≤ N0 +N1(t2 − t1) (2.11)

for all 0 ≤ t1 < t2 ≤ T with some N0 ≥ 0 and N1 ≥ 0, then

y(t) ≤ max
{
y0, ζ

}
+N0 <∞ on [0, T ],

where ζ is a constant such that

g(ζ) ≤ −N1 for ζ ≥ ζ. (2.12)

Finally, we state the following Beal-Kato-Majda type inequality which was proved
in [1] when divu ≡ 0 and will be used later to estimate ‖∇u‖L∞ and ‖∇ρ‖L2∩L6 .

Lemma 2.6 ( [1]) For 3 < q < ∞, there is a constant C(q) such that the following
estimate holds for all ∇u ∈ L2(T3) ∩D1,q(T3),

‖∇u‖L∞(T3) ≤ C
(
‖divu‖L∞(T3) + ‖ω‖L∞(T3)

)
log(e+ ‖∇2u‖Lq(T3))

+ C‖∇u‖L2(T3) + C.
(2.13)

3 The priori estimates

let T > 0 be a fixed time and (ρ, u) be the smooth solution to (1.1)-(1.3) on T3×(0, T ]
in the class (2.1) with smooth initial data (ρ0, u0) satisfying (1.8)-(1.10). To extend
the local classical solution guaranteed by Lemma 2.1, some necessary a priori bounds
will be established in this section. Let σ(t) , min{1, t} and define

A1(T ) , sup
t∈[0,T ]

(
σ‖∇u‖2L2

)
+

∫ T

0

∫
σρ|u̇|2dxdt, (3.1)

A2(T ) , sup
t∈[0,T ]

σ3

∫
ρ|u̇|2dx+

∫ T

0

∫
σ3|∇u̇|2dxdt, (3.2)

and

A3(T ) , sup
0≤t≤T

∫
ρ|u|3(x, t)dx.

The key priori estimates on (ρ, u) as follows:
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Proposition 3.1 Under the conditions of Theorem 1.1, for

δ0 , (2β − 1)/(4β) ∈ (0, 1/4], (3.3)

there exists some positive constant ε depending on µ, λ, a, γ, ρ̂, β and M such that if
(ρ, u) is a smooth solution of (1.1)-(1.3) on T3 × (0, T ] satisfying

sup
T3×[0,T ]

ρ ≤ 2ρ̂, A1(T ) +A2(T ) ≤ 2C
1/2
0 , A3(σ(T )) ≤ 2Cδ00 , (3.4)

the following estimates hold

sup
T3×[0,T ]

ρ ≤ 7ρ̂/4, A1(T ) +A2(T ) ≤ C1/2
0 , A3(σ(T )) ≤ Cδ00 , (3.5)

provided C0 ≤ ε.

Proof. The proof of proposition 3.1 is completed after the following Lemmas 3.3, 3.4
and 3.5 below.

In the following, we will use the convention that C denotes a generic positive constant
depending on µ, λ, a, γ, ρ̂, β and M , and we write C(α) to emphasize that C depends
on α.

We begin with the standard energy estimate for (ρ, u) and preliminary L2 bounds
for ∇u and ρu̇.

Lemma 3.1 Let (ρ, u) be a smooth solution of (1.1)-(1.3) on T3 × (0, T ] with 0 ≤
ρ(x, t) ≤ 2ρ̂. Then there is a positive constant C = C(ρ̂) such that

sup
0≤t≤T

∫ (
1

2
ρ|u|2 +G(ρ)

)
dx+

∫ T

0

∫ (
µ|∇u|2 + (λ+ µ)(divu)2

)
dxdt ≤ C0 (3.6)

A1(T ) ≤ CC0 + C

∫ T

0

∫
σ|∇u|3dxdt, (3.7)

and

A2(T ) ≤ CC0 + CA1(T ) + C

∫ T

0

∫
σ3|∇u|4dxdt. (3.8)

Proof. Multiplying the first equation in (1.1) by G′(ρ) and the second by uj and
integrating, one shows easily the energy inequality (3.6).

The proof of (3.7) and (3.8) is due to Hoff [14]. For m ≥ 0, multiplying (1.1)2 by
σmu̇ and then integrating the resulting equality over T3 lead to∫

σmρ|u̇|2dx =

∫
(−σmu̇ · ∇P + µσm4u · u̇+ (λ+ µ)σm∇divu · u̇)dx

,
3∑
i=1

Mi.

(3.9)
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Using (1.1)1 and integrating by parts give

M1 =−
∫
σmu̇ · ∇Pdx

=

∫
σmP divut dx−

∫
σmu · ∇u · ∇Pdx

=

(∫
σmPdivudx

)
t

−mσm−1σ′
∫
Pdivu dx+

∫
σmP∇u : ∇udx

+ (γ − 1)

∫
σmP (divu)2dx

≤
(∫

σmPdivudx

)
t

+ C‖∇u‖2L2 + Cm2σ2(m−1)σ′‖P − P (ρ̄)‖2L2 ,

(3.10)

Integration by parts implies

M2 =

∫
µσm4u · u̇dx

= −µ
2

(
σm‖∇u‖2L2

)
t
+
µm

2
σm−1σ′‖∇u‖2L2 − µσm

∫
∂iu

j∂i(u
k∂ku

j)dx

≤ −µ
2

(
σm‖∇u‖2L2

)
t
+ Cmσm−1‖∇u‖2L2 + C

∫
σm|∇u|3dx,

(3.11)

and similarly,

M3 = −λ+ µ

2

(
σm‖divu‖2L2

)
t
+
m(λ+ µ)

2
σm−1‖divu‖2L2

− (λ+ µ)σm
∫

divudiv(u · ∇u)dx

≤ −λ+ µ

2

(
σm‖divu‖2L2

)
t
+ Cmσm−1‖∇u‖2L2 + C

∫
σm|∇u|3dx.

(3.12)

Combining (3.9)-(3.12) leads to

1

2

d

dt

∫
σm
(
µ|∇u|2 + (µ+ λ(ρ))| div u|2

)
dx+ σm

∫
ρ|u̇|2dx

≤ Cσ2(m−1)σ′C0 + C
(
mσm−1 + 1

)
‖∇u‖2L2 + Cσm‖∇u‖3L3 +

d

dt

∫
σmP (ρ)(div u)dx,

(3.13)

The last term on the right-hand side of (3.13) can be easily bounded as follows:∣∣∣∣∫ σmP (ρ)(div u)dx

∣∣∣∣ ≤ Cσm‖∇u‖L2‖P − P (ρ̄)‖L2 ≤
µ

4
σm‖∇u‖2L2 + CσmC0

Integrating (3.13) over (0, T ), choosing m = 1, and using (3.6), one gets (3.7).

Next, for m ≥ 0, operating σmu̇j [∂/∂t+ div(u·)] to (1.1)j2, summing with respect to
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j, and integrating the resulting equation over T3, one obtains after integration by parts(
σm

2

∫
ρ|u̇|2dx

)
t

− m

2
σm−1σ′

∫
ρ|u̇|2dx

= −
∫
σmu̇j [∂jPt + div(∂jPu)]dx+ µ

∫
σmu̇j [4ujt + div(u4uj)]dx

+ (λ+ µ)

∫
σmu̇j [∂t∂jdivu+ div(u∂jdivu)]dx

,
3∑
i=1

Ni.

(3.14)

It follows from integration by parts and using the equation (1.1)1 that

N1 = −
∫
σmu̇j [∂jPt + div(∂jPu)]dx

=

∫
σm[−P ′ρdivu∂j u̇

j + ∂k(∂j u̇
juk)P − P∂j(∂ku̇juk)]dx

≤ C(ρ̂)σm‖∇u‖L2‖∇u̇‖L2

≤ δσm‖∇u̇‖2L2 + C(ρ̂, δ)σm‖∇u‖2L2 .

(3.15)

Integration by parts leads to

N2 = µ

∫
σmu̇j [4ujt + div(u4uj)]dx

= −µ
∫
σm[|∇u̇|2 + ∂iu̇

j∂ku
k∂iu

j − ∂iu̇j∂iuk∂kuj − ∂iuj∂iuk∂ku̇j ]dx

≤ −3µ

4

∫
σm|∇u̇|2dx+ C

∫
σm|∇u|4dx.

(3.16)

Similarly,

N3 ≤ −
µ+ λ

2

∫
σm(divu̇)2dx+ C

∫
σm|∇u|4dx. (3.17)

Substituting (3.15)-(3.17) into (3.14) shows that for δ suitably small, it holds that(
σm
∫
ρ|u̇|2dx

)
t

+ µ

∫
σm|∇u̇|2dx+ (µ+ λ)

∫
σm(divu̇)2dx

≤ mσm−1σ′
∫
ρ|u̇|2dx+ Cσm‖∇u‖4L4 + C(ρ̂)σm‖∇u‖2L2 .

(3.18)

Taking m = 3 in (3.18) and noticing that

3

∫ T

0
σ2σ′

∫
ρ|u̇|2dxdt ≤ CA1(T ),

we immediately obtain (3.8) after integrating (3.18) over (0, T ). The proof of Lemma
3.1 is completed.

Next, the following lemma is important of the estimates on both Ai(σ(T )) (i = 1, 3)
and the uniform upper bound of the density .
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Lemma 3.2 Let (ρ, u) be a smooth solution of (1.1)-(1.3) on T3 × (0, T ] satisfying
(3.4). Then there exist positive constants K and ε0 both depending only on µ, λ, a, γ,
ρ̂, β and M such that

sup
0≤t≤σ(T )

t1−β‖∇u‖2L2 +

∫ σ(T )

0
t1−β

∫
ρ|u̇|2dxdt ≤ K(ρ̂,M), (3.19)

sup
0≤t≤σ(T )

t2−β
∫
ρ|u̇|2dx+

∫ σ(T )

0
t2−β

∫
|∇u̇|2dxdt ≤ K(ρ̂,M), (3.20)

provided C0 ≤ ε0.

Proof. We define w1 and w2 to be the solution to:

Lw1 = 0, w1(x, 0) = w10(x), (3.21)

and
Lw2 = −∇P (ρ), w2(x, 0) = 0, (3.22)

respectively, with L being the linear differential operator defined by

(Lw)j , ρwjt + ρu · ∇wj − (µ∆wj + (µ+ λ)divwxj )

= ρẇj − (µ∆wj + (µ+ λ)divwxj ), j = 1, 2, 3.

Straightforward energy estimates show that:

sup
0≤t≤σ(T )

∫
ρ|w1|2dx+

∫ σ(T )

0

∫
|∇w1|2dxdt ≤ C(ρ̂)

∫
|w10|2dx, (3.23)

and

sup
0≤t≤σ(T )

∫
ρ|w2|2dx+

∫ σ(T )

0

∫
|∇w2|2dxdt ≤ C(ρ̂)C0. (3.24)

It follows from (3.21) and standard L2-estimate for elliptic system that

‖∇w1‖L6 ≤ C‖∇2w1‖L2 ≤ C‖ρẇ1‖L2 . (3.25)

Multiplying (3.21) by w1t and integrating the resulting equality over T3, we get by
(3.25) and (3.4)3 that

1

2

(
µ‖∇w1‖2L2 + (µ+ λ)‖divw1‖2L2

)
t
+

∫
ρ|ẇ1|2dx

=

∫
ρẇ1(u · ∇w1)dx

≤ C(ρ̄)

(∫
ρ|ẇ1|2dx

)1/2(∫
ρ|u|3dx

)1/3

‖∇w1‖L6

≤ C(ρ̄)C
δ0/3
0

∫
ρ|ẇ1|2dx,

which, together with Gronwall’s inequality and (3.23), gives

sup
0≤t≤σ(T )

‖∇w1‖2L2 +

∫ σ(T )

0

∫
ρ|ẇ1|2dxdt ≤ C‖∇w10‖2L2 , (3.26)
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and

sup
0≤t≤σ(T )

t‖∇w1‖2L2 +

∫ σ(T )

0
t

∫
ρ|ẇ1|2dxdt ≤ C‖w10‖2L2 , (3.27)

provided C0 ≤ ε01 , (2C(ρ̂))−3/δ0 .

Since the solution operator w10 7→ w1(·, t) is linear, by the standard Stein-Weiss
interpolation argument [2], one can deduce from (3.26) and (3.27) that for any θ ∈ [β, 1],

sup
0≤t≤σ(T )

t1−θ‖∇w1‖2L2 +

∫ σ(T )

0
t1−θ

∫
ρ|ẇ1|2dxdt ≤ C‖w10‖2Ḣθ , (3.28)

with a uniform constant C independent of θ.

Next, we estimate w2. It follows from a similar way to (2.6) and (2.8) that{
‖∇((2µ+ λ)divw2 − (P − P̄ ))‖L2 ≤ C‖ρẇ2‖L2 ,

‖∇w2‖L6 ≤ C(‖ρẇ2‖L2 + ‖P − P̄‖L6).
(3.29)

Multiplying (3.22) by w2t, integrating the resultant equation over T3 and using (3.29),
one has

1

2

(
µ‖∇w2‖2L2 + (µ+ λ)‖divw2‖2L2 − 2

∫
(P − P (ρ̄))divw2dx

)
t

+

∫
ρ|ẇ2|2dx

=

∫
ρẇ2(u · ∇w2)dx−

∫
Ptdivw2dx

≤ C(ρ̄)

(∫
ρ|ẇ2|2dx

)1/2(∫
ρ|u|3dx

)1/3

‖∇w2‖L6

+

∫
divw2div((P − P̄ )u)dx+

∫
((γ − 1)P + P̄ )divudivw2dx

≤ C(ρ̄)C
δ0/3
0

(∫
ρ|ẇ2|2dx

)1/2 (
‖ρ1/2ẇ2‖L2 + ‖P − P̄‖L6

)
−
∫

(P − P̄ )u · ∇
(

divw2 −
P − P̄
2µ+ λ

)
dx

+
1

2(2µ+ λ)

∫
(P − P̄ )2divudx+ C‖∇u‖2L2 + C‖∇w2‖2L2

≤ C(ρ̄)C
δ0/3
0

∫
ρ|ẇ2|2dx+ CC

1/3
0 + C‖P − P̄‖L3‖u‖L6‖ρ1/2ẇ2‖L2

+ C‖P − P̄‖4L4 + C‖∇u‖2L2 + C‖∇w2‖2L2

≤ C(ρ̄)C
δ0/3
0

∫
ρ|ẇ2|2dx+ CC

1/3
0 + C‖∇u‖2L2 + C‖∇w2‖2L2 ,

which, together with (3.24) and Gronwall’s inequality, gives

sup
0≤t≤σ(T )

‖∇w2‖2L2 +

∫ σ(T )

0

∫
ρ|ẇ2|2dxdt ≤ CC1/3

0 , (3.30)

provided C0 ≤ ε02 , (2C(ρ̂))−3/δ0 . Taking w10 = u0 so that w1 + w2 = u, we then
conclude from (3.28) and (3.30) that for any θ ∈ [β, 1],

sup
0≤t≤σ(T )

t1−θ‖∇u‖2L2 +

∫ σ(T )

0
t1−θ

∫
ρ|u̇|2dxdt ≤ C‖u0‖2Ḣθ + CC

1/3
0 , (3.31)
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provided C0 ≤ ε0 , min{ε01, ε02}. Thus, (3.19) follows from (3.31) directly.

To prove (3.20), we take m = 2− β in (3.18) to obtain, after integrating (3.18) over
(0, σ(T )) and using (3.31) and (2.9), that

sup
0≤t≤σ(T )

t2−β
∫
ρ|u̇|2dx+

∫ σ(T )

0
t2−β

∫
|∇u̇|2dxdt

≤ C
∫ σ(T )

0
t2−β‖∇u‖4L4dt+ C(ρ̂,M)

≤ C
∫ σ(T )

0
t2−β‖∇u‖L2

(
‖ρu̇‖3L2 + ‖P − P̄‖3L6

)
dt+ C(ρ̂,M)

≤ C
∫ σ(T )

0
t(2β−1)/2

(
t1−β‖∇u‖2L2

)1/2
(t2−β‖ρ1/2u̇‖2L2)1/2(t1−β‖ρ1/2u̇‖2L2)dt

+ C(ρ̂,M)

≤ C(ρ̂,M)

(
sup

0≤t≤σ(T )
t2−β

∫
ρ|u̇|2dx

)1/2

+ C(ρ̂,M),

which implies (3.20). Thus, we finish the proof of Lemma 3.2.

The following Lemma 3.3 will give an estimate on A3(σ(T )).

Lemma 3.3 If (ρ, u) is a smooth solution of (1.1)-(1.3) on T3× (0, T ] satisfying (3.4),
there exists a positive constant ε1 depending on µ, λ, a, γ, ρ̂, β and M such that the
following estimate holds for δ0 defined by (3.3):

sup
0≤t≤σ(T )

∫
ρ|u|3(x, t)dx ≤ Cδ00 , (3.32)

provided C0 ≤ ε1.

Proof. Multiplying (1.1)2 by 3|u|u, and integrating the resulting equation over T3,
we obtain by (2.9) that

d

dt

∫
ρ|u|3dx

≤ C
∫
|u||∇u|2dx+ C

∫
|P − P (ρ̄)||u||∇u|dx

≤ C‖u‖L6‖∇u‖3/2
L2 ‖∇u‖

1/2
L6 + C‖P − P (ρ̄)‖L3‖u‖L6‖∇u‖L2

≤ C(‖∇u‖5/2
L2 + C0‖∇u‖3/2L2 ) (‖ρu̇‖L2 + ‖P − P (ρ̄)‖L6)1/2 + CC

1/6
0 ‖∇u‖

2
L2 + CC

5/6
0 ‖∇u‖L2

≤ C(‖∇u‖5/2
L2 + C0‖∇u‖3/2L2 )

(
‖ρu̇‖L2 + C

1/6
0

)1/2
+ CC

1/6
0 ‖∇u‖

2
L2 + CC

5/6
0 ‖∇u‖L2

≤ Ct(2δ0−3/2)(1−β)(t1−β‖∇u‖2L2)−2δ0+5/4(t1−β‖ρ1/2u̇‖2L2)1/4‖∇u‖4δ0
L2

+ ≤ Ct(2δ0−1)(1−β)(t1−β‖∇u‖2L2)−2δ0+3/4(t1−β‖ρ1/2u̇‖2L2)1/4‖∇u‖4δ0
L2

+ CC
1/12
0 t−3(1−β)/4(t1−β‖∇u‖2L2)3/4‖∇u‖L2

+ CC
1+1/12
0 t−(1−β)/4(t1−β‖∇u‖2L2)1/4‖∇u‖L2 + CC

1/6
0 ‖∇u‖

2
L2

+ CC
5/6
0 t−(1−β)(−p+1/2)

(
t1−β‖∇u‖2L2

)−p+1/2 (
∇u‖2L2

)p
, 0 < p <

1

2
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which together with (3.19) and (3.6) gives

sup
0≤t≤σ(T )

∫
ρ|u|3dx

≤ C(ρ̂,M)

(∫ σ(T )

0
t
− 2(3−4δ0)(1−β)

3−8δ0 dt

)(3−8δ0)/4(∫ σ(T )

0
‖∇u‖2L2dt

)2δ0

+ C(ρ̂,M)

(∫ σ(T )

0
t
− 2(2−4δ0)(1−β)

3−8δ0 dt

)(3−8δ0)/4(∫ σ(T )

0
‖∇u‖2L2dt

)2δ0

+ C(ρ̂,M)C
1/12
0

(∫ σ(T )

0
t−3(1−β)/2dt

)1/2(∫ σ(T )

0
‖∇u‖2L2dt

)1/2

+ C(ρ̂,M)C
1+1/12
0

(∫ σ(T )

0
t−(1−β)/2dt

)1/2(∫ σ(T )

0
‖∇u‖2L2dt

)1/2

+ CC
5/6
0 C(ρ̂,M)

(∫ σ(T )

0
t
− (1/2−p)(1−β)

1−p dt

)1−p(∫ σ(T )

0
‖∇u‖2L2dt

)p
+

∫
ρ0|u0|3dx+ CC0

≤ C(ρ̂,M)C2δ0
0 ,

(3.33)

provided C0 ≤ ε0, where in the last inequality we have used the following simple facts:∫
ρ0|u0|3dx ≤ C

(∫
ρ0|u0|2dx

)3(2β−1)/(4β)

‖u0‖3/(2β)

Ḣβ

≤ C(ρ̂,M)C2δ0
0 ,

(3.34)

and

2(3− 4δ0)(1− β)

3− 8δ0
= 1− β(2β − 1)

2− β
< 1

due to (3.3) and β ∈ (1/2, 1]. Thus, it follows from (3.33) that (3.32) holds provided
C0 ≤ ε1, where

ε1 , min
{
ε0, (C(ρ̂,M))−1/δ0

}
= min

{
ε0, (C(ρ̂,M))−4β/(2β−1)

}
.

The proof of Lemma 3.3 is completed.

Lemma 3.4 There exists a positive constant ε2(µ, λ, a, γ, ρ̂, β,M) ≤ ε1 such that, if
(ρ, u) is a smooth solution of (1.1)-(1.3) on T3 × (0, T ] satisfying (3.4), then

A1(T ) +A2(T ) ≤ C1/2
0 , (3.35)

provided C0 ≤ ε2.

Proof. Lemma 3.1 shows that

A1(T ) +A2(T ) ≤ C(ρ̂)C0 + C(ρ̂)

∫ T

0
σ3‖∇u‖4L4ds+ C(ρ̂)

∫ T

0
σ‖∇u‖3L3ds. (3.36)
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Due to (2.8),∫ T

0
σ3‖∇u‖4L4ds ≤ C

∫ T

0
σ3
(
‖F‖4L4 + ‖ω‖4L4

)
ds+ C

∫ T

0
σ3‖P − P̄‖4L4ds. (3.37)

It follows from (2.7) that∫ T

0
σ3
(
‖F‖4L4 + ‖ω‖4L4

)
ds

≤ C
∫ T

0
σ3
(
‖∇u‖L2 + ‖P − P̄‖L2

)
‖ρu̇‖3L2ds

≤ C(ρ̂) sup
t∈(0,T ]

(
σ3/2‖√ρu̇‖L2

(
σ1/2‖∇u‖L2 + C

1/2
0

))∫ T

0

∫
σρ|u̇|2dxds

≤ C(ρ̂)
(
A

1/2
1 (T ) + C

1/2
0

)
A

1/2
2 (T )A1(T )

≤ C(ρ̂)C0.

(3.38)

To estimate the second term on the right hand side of (3.37), one deduces from (1.1)1

that P satisfies
Pt + u · ∇P + γPdivu = 0. (3.39)

which gives
P̄t + (γ − 1)Pdivu = 0, (3.40)

(P − P̄ )t + u · ∇(P − P̄ ) + γ(P − P̄ )divu+ γP̄divu− (γ − 1)Pdivu = 0. (3.41)

Multiplying (3.41) by 3(P − P̄ )2 and integrating the resulting equality over T3, one
gets after using divu = 1

2µ+λ(F + P − P̄ ) that

3γ − 1

2µ+ λ
‖P − P̄‖4L4

= −
(∫

(P − P̄ )3dx

)
t

− 3γ − 1

2µ+ λ

∫
(P − P̄ )3Fdx

−3γP̄

∫
(P − P̄ )2divudx+

∫
3(γ − 1)(P − P̄ )2Pdivudx

≤ −
(∫

(P − P̄ )3dx

)
t

+ η‖P − P̄‖4L4 + Cη‖F‖4L4 + Cη‖∇u‖2L2 . (3.42)

Multiplying (3.42) by σ3, integrating the resulting inequality over (0, T ), and choosing
η suitably small, one may arrive at∫ T

0
σ3‖P − P̄‖4L4dt

≤ C sup
0≤t≤T

‖P − P̄‖3L3 + C

∫ σ(T )

0
‖P − P̄‖3L3dt

+ C(ρ̂)

∫ T

0
σ3‖F‖4L4ds+ C(ρ̂)C0

≤ C(ρ̂)C0,

(3.43)
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where (3.38) has been used. Therefore, collecting (3.37), (3.38) and (3.43) shows that∫ T

0
σ3
(
‖∇u‖4L4 + ‖P − P̄‖4L4

)
ds ≤ C(ρ̂)C0. (3.44)

Finally, we estimate the last term on the right hand side of (3.36). First, (3.44)
implies that ∫ T

σ(T )

∫
σ|∇u|3dxds ≤

∫ T

σ(T )

∫
(|∇u|4 + |∇u|2)dxds ≤ CC0. (3.45)

Next, one deduces from (2.9), (3.19) and (3.4) that∫ σ(T )

0
σ‖∇u‖3L3dt

≤ C(ρ̂)

∫ σ(T )

0
t‖∇u‖3/2

L2

(
‖ρu̇‖3/2

L2 + C
1/4
0

)
dt

≤ C(ρ̂)

∫ σ(T )

0

(
t(1−β)/2‖∇u‖L2

)
‖∇u‖1/2

L2

(
t

∫
ρ|u̇|2dx

)3/4

dt+ C(ρ̂)C0

≤ C(ρ̂) sup
t∈(0,σ(T )]

(
t(1−β)/2‖∇u‖L2

)∫ σ(T )

0
‖∇u‖1/2

L2

(
t

∫
ρ|u̇|2dx

)3/4

dt

+ C(ρ̂)C0

≤ C(ρ̂,M)A
3/4
1 C

1/4
0 + C(ρ̂)C0

≤ C(ρ̂,M)C
5/8
0 ,

(3.46)

provided C0 ≤ ε1. It thus follows from (3.36) and (3.44)-(3.46) that the left hand side
of (3.35) is bounded by

C(ρ̂,M)C
5/8
0 ≤ C1/2

0

provided

C0 ≤ ε2 , min
{
ε1, (C(ρ̂,M))−8

}
.

The proof of Lemma 3.4 is completed.

Now we are in a position to obtain the uniform upper bound for the density, which is
essential to derive all the higher order estimates and thus to extend the classical solution
globally. We motivated by the research on the two-dimensional Stokes approximation
equations [28].

Lemma 3.5 There exists a positive constant ε = ε(ρ̂,M) as described in Theorem 1.1
such that, if (ρ, u) is a smooth solution of (1.1)-(1.3) on T3 × (0, T ] satisfying (3.4),
then

sup
0≤t≤T

‖ρ(t)‖L∞ ≤
7ρ̂

4
,

provided C0 ≤ ε.
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Proof. Rewrite the equation of the mass conservation (1.1)1 as

Dtρ = g(ρ) + b′(t),

where

Dtρ , ρt + u · ∇ρ, g(ρ) , −ρP − P̄
2µ+ λ

, b(t) , − 1

2µ+ λ

∫ t

0
ρFdt.

For t ∈ [0, σ(T )], one deduces from Lemma 2.2, (2.6), (3.35), (3.19), (3.20) and (2.3)
that for δ0 as in (3.3) and for all 0 ≤ t1 < t2 ≤ σ(T ),

|b(t2)− b(t1)|

≤ C
∫ σ(T )

0
‖(ρF )(·, t)‖L∞dt

≤ C(ρ̂)

∫ σ(T )

0
‖F (·, t)‖1/2

L6 ‖∇F (·, t)‖1/2
L6 dt

≤ C(ρ̂)

∫ σ(T )

0
‖ρ1/2u̇‖1/2

L2 (‖∇u̇‖1/2
L2 + ‖ρ1/2u̇‖1/2

L2 )dt

≤ C(ρ̂)

∫ σ(T )

0
t−(2−β)/4‖ρu̇‖1/2

L2

(
t2−β‖∇u̇‖2L2

)1/4
dt

+ C(ρ̂)

∫ σ(T )

0
t−(2−β)(−q+1/2)−q

(
t2−β‖ρ1/2u̇‖2L2

)−q+1/2 (
t‖ρ1/2u̇‖2L2

)q
dt

≤ C(ρ̂,M)

(∫ σ(T )

0
t−(2−β)/3‖ρu̇‖2/3

L2 dt

)3/4

+ C(ρ̄,M)(A1(σ(T )))q

= C(ρ̂,M)

(∫ σ(T )

0
t−[(2−β)(−δ0+2/3)+δ0]

(
t2−β‖ρ1/2u̇‖2L2

)−δ0+1/3 (
t‖ρ1/2u̇‖2L2

)δ0
dt

)3/4

+ C
q/2
0


≤ C(ρ̂,M)(A1(σ(T )))3δ0/4 + C(ρ̄,M)C

q/2
0

≤ C(ρ̂,M)C
3δ0/8
0 , 0 < q <

1

2
.

provided C0 ≤ ε2. Therefore, for t ∈ [0, σ(T )], one can choose N0 and N1 in (2.11) as
follows:

N1 = 0, N0 = C(ρ̂,M)C
3δ0/8
0 ,

and ζ̄ = ρ̂ in (2.12). Lemma 2.5 thus yields that

sup
t∈[0,σ(T )]

‖ρ‖L∞ ≤ ρ̂+N0 ≤ ρ̂+ C(ρ̂,M)C
3δ0/8
0 ≤ 3ρ̂

2
, (3.47)

provided

C0 ≤ min{ε2, ε3}, for ε3 ,

(
ρ̂

2C(ρ̂,M)

)8/(3δ0)

=

(
ρ̂

2C(ρ̂,M)

)32β/(3(2β−1))

.
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On the other hand, for t ∈ [σ(T ), T ], one deduces from Lemma 2.2, (3.35), (3.6), and
(2.6) that for all σ(T ) ≤ t1 ≤ t2 ≤ T,

|b(t2)− b(t1)| ≤ C(ρ̂)

∫ t2

t1

‖F (·, t)‖L∞dt

≤ aρ̂γ+1

2(λ+ 2µ)
(t2 − t1) + C(ρ̂)

∫ T

σ(T )
‖F (·, t)‖8/3L∞dt

≤ aρ̂γ+1

2(λ+ 2µ)
(t2 − t1) + C(ρ̂)

∫ T

σ(T )
‖F (·, t)‖2/3

L2 ‖∇F (·, t)‖2L6dt

≤ aρ̂γ+1

2(λ+ 2µ)
(t2 − t1) + C(ρ̂)C

1/6
0

∫ T

σ(T )
(‖∇u̇(·, t)‖2L2 + ‖ρ1/2u̇‖2L2)dt

≤ aρ̂γ+1

2(λ+ 2µ)
(t2 − t1) + C(ρ̂)C

2/3
0 ,

provided C0 ≤ ε2. Therefore, one can choose N1 and N0 in (2.11) as:

N1 =
aρ̂γ+1

2(λ+ 2µ)
, N0 = C(ρ̂)C

2/3
0 .

Note that

g(ζ) = −ζ(aζγ − P̄ )

λ+ 2µ
≤ − aρ̂γ+1

2(λ+ 2µ)
= −N1.

So one can set ζ̄ = 3ρ̂
2 in (2.12). Lemma 2.5 and (3.47) thus yield that

sup
t∈[σ(T ),T ]

‖ρ‖L∞ ≤
3ρ̂

2
+N0 ≤

3ρ̂

2
+ C(ρ̂)C

2/3
0 ≤ 7ρ̂

4
, (3.48)

provided

C0 ≤ ε , min{ε2, ε3, ε4}, for ε4 ,

(
ρ̂

4C(ρ̂)

)3/2

. (3.49)

The combination of (3.47) with (3.48) completes the proof of Lemma 3.5.

4 Proof of Theorem 1.1 and Theorem 1.2

In the following, we will prove the main results of this paper. From now on, we will
always assume that the initial energy C0 satisfies (3.49) and the positive constant C
may depend on

T, ‖ρ1/2
0 g‖L2 , ‖∇g‖L2 , ‖∇u0‖H2 , ‖ρ0‖H3 , ‖P (ρ0)‖H3 ,

besides µ, λ, a, γ, ρ̄, β and M, where g is as in (1.10).

The higher-order estimates are similar to [20], we omit the details here for brevity.
Consequently, combining Proposition 3.1 with the above higher-order estimates as well
as the local existence obtained in [4], we can prove the global well-posedness of Theorem
1.1. Finally, to finish the proof of Theorem 1.1, it remains to prove (1.14).
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Multiplying (3.41) by 4(P − P̄ )3 and integrating the resulting equality over T3, one
has (

‖P − P̄‖4L4

)′
(t)

= −(4γ − 1)

∫
(P − P̄ )4divudx− 4γ

∫
P̄ (P − P̄ )3divudx

+ 4(γ − 1)

∫
Pdivudx

∫
(P − P̄ )3dx,

which yields that∫ ∞
1

∣∣∣(‖P − P̄‖4L4

)′
(t)
∣∣∣ dt ≤ C ∫ ∞

1

(
‖P − P̄‖4L4 + ‖∇u‖4L4

)
dt ≤ C, (4.1)

due to (3.44). Combining (3.44) with (4.1) leads to

lim
t→∞
‖P − P̄‖L4 = 0, (4.2)

(3.40) gives that ∫ ∞
1

∣∣∣∣ d

dt
P̄

∣∣∣∣ dt ≤ C ∫ ∞
1

∣∣∣∣∫ (P − P̄ ) div udx

∣∣∣∣ dt
≤ C

∫ ∞
1

(
‖P − P̄‖2L2 + ‖∇u‖2L2

)
dt

≤ C
∫ ∞

1

(
‖∇F‖2L2 + ‖∇u‖2L2

)
dt ≤ C

Hence, there exists some positive constant ρs such that

lim
t→∞

P̄ (t) = ργs

due to 0 < ρ̄γ0 ≤ P̄ ≤ C. This combined with (4.2) and(1.4) shows

lim
t→∞
‖ρ− ρ̄0‖Lq (t) = 0

for any q ∈ [1,∞).

Thus(1.14) follows provided that

lim
t→∞
‖∇u‖L2 = 0. (4.3)

Setting

I(t) ,
µ

2
‖∇u‖2L2 +

λ+ µ

2
‖divu‖2L2 ,

choosing m = 0 in (3.9), and using (3.11) and (3.12), one has

|I ′(t)| ≤ C
∫
ρ|u̇|2dx+ C‖∇u‖3L3 + CC

1/2
0 ‖∇u̇‖L2 , (4.4)

where one has used the following simple estimate:

|M1| =
∣∣∣∣∫ u̇ · ∇Pdx

∣∣∣∣
=

∣∣∣∣∫ (P − P̄ )divu̇dx

∣∣∣∣
≤ CC1/2

0 ‖∇u̇‖L2 .
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We thus deduce from (4.4), (3.35), and (3.44) that∫ ∞
1
|I ′(t)|2dt ≤ C

∫ ∞
1

(
‖ρ1/2u̇‖4L2 + ‖∇u‖2L2‖∇u‖4L4 + ‖∇u̇‖2L2

)
dt

≤ C
∫ ∞

1

(
‖ρ1/2u̇‖2L2 + ‖∇u‖4L4 + ‖∇u̇‖2L2

)
dt

≤ C,

which, together with ∫ ∞
1
|I(t)|2dt ≤ C

∫ ∞
1
‖∇u‖2L2dt ≤ C,

implies (4.3). The proof of Theorem 1.1 is finished.

Proof of Theorem 1.2. Otherwise, there exist some constant C1 > 0 and a sub-
sequence

{
tnj
}∞
j=1

, tnj → ∞ such that
∥∥∇ρ (·, tnj)∥∥Lr ≤ C1. Hence, the Gagliardo-

Nirenberg inequality (2.3) yields that there exists some positive constant C independent
of tnj such that for a = r/(2r − 3) ∈ (0, 1),∥∥ρ(x, tnj )− ρ̄

∥∥
C(T3)

≤ C
∥∥∇ρ(x, tnj )

∥∥a
Lr

∥∥ρ(x, tnj )− ρ̄
∥∥1−a
L3

≤ CCa1
∥∥ρ(x, tnj )− ρ̄

∥∥1−a
L3 . (4.5)

Due to (1.14), the right hand side of (4.5) goes to 0 as tnj →∞. Hence,∥∥ρ(x, tnj )− ρ̄
∥∥
C(T3)

→ 0 as tnj →∞. (4.6)

On the other hand, since (ρ, u) is a classical solution satisfying (1.13), there exists a
unique particle path x0(t) with x0(0) = x0 such that

ρ(x0(t), t) ≡ 0 for all t ≥ 0.

So, we conclude from this identity that∥∥ρ(x, tnj )− ρ̄
∥∥
C(T3)

≥
∣∣ρ(x0(tnj ), tnj )− ρ̄

∣∣ ≡ ρ̄ > 0,

which contradicts (4.6). This completes the proof of Theorem 1.2.
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