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Abstract This paper is mainly concerned with the existence of solutions for
a class of Hadamard type fractional differential systems on benzene graphs,
and the Hyers-Ulam stability of the systems is also proved. Furthermore, an
example is presented on a formic acid graph to demonstrate the applicability of
the conclusions obtained. The interesting of this paper lies in the integration
of fractional differential equations with graph theory, utilizing the formic acid
graph as a specific case for numerical simulation, and providing an approximate
solution graph after iterations.
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1. Introduction

The fractional differential equation is a generalization of an integer-order dif-
ferential equation, allowing for a more accurate description of complex phenomena
in nature and engineering. For instance, fractional differential equations provide
a more appropriate model for describing diffusion processes, wave phenomena and
memory effects [1-5], and possess a diverse array of applications across numer-
ous fields, encompassing stochastic equations, fluid flow, dynamical systems theory,
physics, biology, and other domains [6-10].

Star graph G = (V, E) consists of a finite set of nodes or vertices V(G) =
{vo, v1, ..., v} and a set of edges E(G) = {e; = V108, €2 = VaU8, ey €y = m}
connecting these nodes, where vy is the joint point and e; is the length of I; the
edge connecting the nodes v; and vy, i.e. [; = |m|

Graph theory is a mathematical discipline that investigates graphs and networks.
A network is a graph, such as computer network extensions, transportation route
maps, molecules in medicine and biology, and so on [11,12]. Graph theory has
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become widely applied in sociology, traffic management, telecommunications and
other fields [13,14].

As is well known, differential equations on star graphs can be applied to different
fields, such as chemistry, bioengineering and so on [15,16]. Mchandiratta et al [17]
explored the fractional differential system on star graphs with n 4+ 1 nodes and n
edges

“Dg yui(z) = fi(a:,ui,cDg’mui(z)),O <z <lyi=1,2,..k,
w(0) = 0,4 = 1,2, .., k,

ui(li) = u](l])7l7j = 1727"',k7i #]a

k
S =0i=1,2,..k,
=1

where CDS‘@, CDO’BJ are the Caputo fractional derivative operator, 1 < a < 2,
0< B8 <a-1,fi,i=12..,k are continuous functions on C([0,1] x R x R).
By a transformation, the equivalent fractional differential system defined on [0, 1]
is obtained. The author studied a nonlinear Caputo fractional boundary value
problem on star graphs and established the existence and uniqueness results by
fixed point theory.

Zhang et al [18] discussed the fractional boundary value problem on star graphs,
and obtained the existence and uniqueness results of solutions by fixed point theory.
In addition, Wang et al [19] discussed the existence and stability of a fractional
differential equation with Hadamard derivative. For more papers on the existence
of solutions to fractional differential equations on graphs, refer to [20-23]. By
numerically simulating the solution of fractional differential systems, scholars can
solve problems more clearly and accurately. However, numerical simulation has
been rarely used to describe the solutions of fractional differential systems on graphs
[24,25].

Here, we introduce a novel modeling of fractional boundary value problems
on the benzene graph (Figurel). The molecular structure of the benzene is as
ring containing six carbon atoms and six hydrogen atoms. Benzene stands as a
pivotal raw material in the petrochemical industry, encompassing a diverse array
of applications. Therefore, a thorough understanding of its properties is of utmost
importance.
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Figure 1. Molecular structure of benzene.

By this structure, we consider atoms of carbons and hydrogens as vertices of the
graph and also the existing chemical bonds between atoms are considered as edges
of the graph. To investigate the existence of solutions for our fractional boundary
value problems in the sequel, we label vertices of the benzene graph in the form of
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labeled vertices by two values 0 or 1 and and the length of each edge is fixed at e
(|ef] = e, i = 1,2,...,12) (Figure2). In this case, we construct a local coordinate
system on the benzene graph and the orientation of each vertex is determined by
the orientation of its corresponding edge. The labels of the beginning and ending
vertices are taken into account as values 0 and 1, respectively, as we move along
any edge.
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Figure 2. Benzene graphs with vertices 0 or 1.

Motivated by the above work and relevant literatures [17-25], we study a bound-
ary value problem consisting of nonlinear fractional differential equations defined
on|ef|=e i=1,2,---,12 by

D8 ui(t) = A fi (s, ui(s), " DY ui(s)), t € [1,e],
and the boundary conditions defined at boundary nodes e, e, -+ ,e12, and

ui(1) = 0,u;(e) = uj (e), i,j =1,2,---,12, i # j,

together with conditions of conjunctions at 0 or 1 with
k
> oA tuie) =0, i=1,2,---,12.
i=1

Overall, we consider the existence and stability of solutions to the following
nonlinear boundary value problem on benzene graphs

HD¢ ui(t) = )\?fi(s,ui(s),HDf+ui(s)), telel,
ul(l)zov 121727 a12a
Ui(e) = uj(e)a Za.] = 1a2a"' 7127 ’L#ja (11)

k
> oA tule) =0, i=1,2,---,12,
i=1

where D, H D’f . represents the the Hadamard fractional derivative, o € (2,3], 8 €
(1,2], fi € C([l,e] x R x R) and A;,i =1,2,---,12 is real constant. The existence
and Hyers-Ulam stability of the solutions to the system (1.1) are discussed. More-
over, the approximate graphs of the solution are obtained.

It is also noteworthy that solutions obtained from the problem (1.1) can be
depicted in various rational applications of organic chemistry. More precisely, any
solution on an arbitrary edge can be described as the amount of bond polarity,
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bond power, bond energy etc. The interesting of this paper lies in the integration of
fractional differential equations with graph theory, utilizing the formic acid graph
as a specific case for numerical simulation, and providing an approximate solution
graph after iterations.

2. Preliminaries

In this section, for conveniently researching the problem, several properties and
lemmas of fractional calculus are given, forming the indispensable premises for ob-
taining the main conclusions.

Definition 2.1. [2,22] The Hadamard fractional integral of order «, for a function
g € LP[a,b], 0 < a <t <b< oo, is defined as

o = i [ (10s8) s

Definition 2.2. [2,22] Let [a,b] C R, § = t4 and AC}[a,b] = {g : [a,b] = R :
§"~1(g(t)) € AC[a,b]}. The Hadamard derivative of fractional order « for a function
g € AC}la,b] is defined as

_ 1 dyn [ t\n—a—19(s)

H na n(H m—a -

a+g(t) 6 ( at )(t) F(TL . Oé) (tdt) /a ( 0og S) S d37
where n—1 < @ < n, n = [a]+1 and [a] denotes the integer part of the real number
a and log(+) = log.(+).

Lemma 2.1. [22] Fory € AC}[a,b], the following result hold
n—1 ¢ k
M (DR = () - e (1on )
k=0
where c; € R, 1 =0,1,--- ;n—1.

Lemma 2.2. (Scheafer’s fived point theorem ) [16] Let X be a Banach space and
let F: X — X be a completely continuous operator (i.e., an operator that restricted
to any bounded set in X is compact). Then either

(i) The set {x € X : x = uFz for some p € (0,1)} is unbounded, or
(ii) F has at least one fixed point in X.

Lemma 2.3. Let h;(t) € AC([1,€],R), i = 1,2,---,12, then the solution of the
fractional differential equations

AD u;(t) = hi(t), t € (1€,
ui(1)=0,i=1,2,---,12,
Ui(e) :uj(e)a Zv] = 1727"' 712> Z#]v

k
S oA Tu(e) =0, i=1,2,---,12,
=1

(2.1)
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s given by

ui(t) = ﬁ /j (log é)ailhiis)ds

( = ) / <>ﬁ

logt[

Proof. By Lemma 2.1, we have
ui(t) = "1 hi () — Y — P logt, i =1,2,-- 12,
n _

where c(l)7 cl(- ) are constants. The boundary condition u;(1) = 0, gives ¢;”’ =
0, fori=1,2,---,12.
Hence,

wi(t) = 7 I hi(t) — 052) logt

1 t t\e—1h
:—/ (logf) hls) g Plogt, i=1,2,---,12.  (2.3)
o) Jy S S

IN())
Also . )
, 1 / 1 t\e—2h(s 1 (2)
t) = —— ~( log — — .
wi(?) MNa-1) t ( & s) s ds = P
Now, the boundary conditions u;(e) = u;(e) and Z A = 0 implies that c( ) must
satisfy
1L [Cr eyalh(s) @ _ 1 / e\ 1hy;(s) o
log = ds —c;” = log - d 24
F(a)/l ( 8 s) s oG (o) /4 ( 8 s) s 0T (24)
3 A; ! /e (10 E)aiz}ll‘i(s)ds e =) (2.5)
Pt T(a—1) 85 s N '

On solving above equations 2.4 and 2.5, we have

2. <F(a1— ) /1 (1o Z)Miljs(S)dS) A
k e a1 (s e a1l )
:Z)\jllr(la)/l <log§) hjé)ds_l“(la)/l (log;) h()d +c ()
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Hence, we get

k:1 Aijlj e e\ a—1 (s) — hi(s
e () (] (o) (M) o
J#i

Hence, inserting the values of cgz), we get the solution (2.2). This completes the
proof. O

3. Main results

In this section, the existence and uniqueness to solutions of system (1.1) are
discussed.
We define the space X = {u: u € C([l,e],R),HDeru € C([1,¢],R)} with the
norm
Jullx = llull + || DY,

= sup |u(t)| + sup Hpﬁu(t)\.

te(l,e] te(l,e]

Then, (X, ||.||x) is a Banach space and accordingly, the product space (X* = X; x

Xy-+- x Xi2, ||.|x+) is a Banach space with norm
k
”uHXk = ||(U1,U2,"' ’U’l?)HX = Z ||UzHX7 (u17u2a"' ’uk') e x*.
i=1

In view of Lemma 2.3, we define the operator T': X* — X* by
T(U,17U2,"' ,Uk;)(t) = (Tl(U,17U/2,"' ,Uk)(t),"' ,Tk(U17U2,"' ,Uk)(t)),

where

_|_
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2 (s,ui(s), 7D} u;
Let (s, uis) S () = gi(37ui($)aHDf+ui(5))v then

Ti(uy,ug, - -+, ug)(t)

= 2 [ (108 )" sl P D)) s

logt b At o [€ e\ a—2 p
F<a—1>z< o Ajfl (1o82)" gy (s,us(s). " Df s () ds

logt Z( )\;1 ) /e e\ a—1 Hp
- — | A{ (log 7) gi(s,ui(s), " D], ui(s))ds.  (3.1)
k 1 i ) ) 1+ %
I'(a) ijl A; 1 s
Assume that the following conditions hold:
(H1) g; : [1,e] x Rx R — R4 = 1,2,--- ,12 be continuous functions and there

exists nonnegative functions /;(¢) € C[1, e] such that

|9t 2, y) — gi(t wr, y1)| < Li(8) (| — 21| + |y — ),
where t € [156}7 (x,y), (xlayl) € R2;

(H2) w; = sup |Li()], i=1,2,---,12;
te(l,e]

(Hs) There exists A; > 0, such that
‘gl(t?l‘?y)‘ S Aia te [176]7 (m7y) eR x R? 1= 1727' te a12

For computational convenience, we also set the following quantities

e e |1 2 1 1 1
Bi= (WA lf(a) "Ta+1) Ta-p+1) T@l2-p) @ Tatle- 5)]
te zk:(x? ) S ! . (3.2)
2 ) T e T T@T@ ) | Tlat DIE-5) |’ '
J#i
Ci=exe| oy 2 4 ! + ! + !
=N ) Tt ) T Ta—prD)  T@TE-f) | Tat DI p)
+e§k)a LR S — ! (3.3)
~ IT(a) " T(a+1)  T(@T2-8) T(a+1)I2-8)]| '
J#i

Theorem 3.1. Assume that (H1) and (H2) hold, then the fractional differential
system (1.1) has a unique solution on [1, e] if

() ()

where B;, i =1,2,---,12 are given by equation (3.2).
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Proof. Let u = (uj,us, -+ ,u12), v = (v1,v, -+ ,v12) € X* t € [l,¢], we have
|Tiu(t) — Tiv(t)]
A& t tya—1
3 1 _
ey J, (o)
k -1
logt /\j e e\ a—2
2\ loo £ ‘ . (&) HDP .
+I‘(a —1) Z (Z?— 1) /1 ( 08 5) 95 (s, u5(s), " DYy u;(s))

IN

9i(5,ui(s), DL wi(s) = gi(5.v:(5), " D vi(s)) | s

95 (s, u;(s), " DY uy(s))

gi (s,ui(s),HDf+uz(s))

Using (H1) and (H2), ¢t € [1,¢e] and </\37> <1for j=1,2,--- k, we obtain

exs exy
L 7 1 — Ui ! D 7 D 7
— F(Oé + 1)w ||U/ v || + F( + 1) 1+u 1+U
: )‘? >\J H B
+ez F(Q)WjHUJ vl + () TN Wi H D1+U’] D1+Uj
j=1

J#i
e MW+(X:U #D i = "D
< ERRi e ot otl)
ey S (o=t [ Dl 0l

)

PRI
+€Z 1{‘(0[ +31 <||uj U]||+HHD1+uJ D1+UJ
=1
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o)

k
1 1 « a—p . oy H B X H
+e(r(a) + F(a 4 1)) Z()‘j Jr)‘j )w] (HUJ ”U]H + H D1+U’J D1+'U] )

= e(r(la) + T(a2+ 3 )(X" + A0 B)%(Hm — | + HHD i — HDf+

Hence,

ITou(t) - Tw(®)]
1 2 a—p H
< & , _
< (5 * Fa ) O+ X Do (s = ol + | = DL
1

) (3.4)

o)

k
+€(I‘(a) + F(a1+ 1)) ;(/\;1 + )‘?_ﬂ)wj (HUJ — ;|| + HHDf+uj — HD{Z

J#i

By the formula in reference [4]

00 () - R ()

we have

|HDf+Tiu(t) - HDﬁTw(tﬂ

< /1 (g )"

(a(IO(?t o Z:( A )A?/16(10g2>a2“gj<s’uj() DV uy(s))

Jlj

gi(5,ui(s), " DY ui(s)) = gi (s5,0i(5), " D, vi(9)) | s

—g;(s,v;(s), "D} v;(s)) ‘ dS]

(logt)lfﬁ - )\;1 o © e\ya—1
+F(a)F(2—ﬁ)Z<Z’?A.1>Aﬂ'/1 (IOg;> “gj(s’ug'(s),HDﬁuj(s))

j=1
G

_gj(s’vj(s)vHDf+Uj(3))‘ds]

M - L a ¢ o E a—1

+F(a)1"(2—,6);<zk_ )\.1>/\i/1 (lgs) l
i

—gi(S,Uz( ) D1+U,( )) ’ dS] .

9i(s,ui(s), " DY ui(s))

-1

,3\7/\_) < 1forj=12,---,k, we

j=17"7j

Using (H1) and (H2), [(2 — §) < 1 and (
obtain

"D}, Tult) — " DY T (1)
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ey e’
e —willui — vl + ;| T DY u; — DY, v,
N ﬂ+1)w s = will + I(a 5+1) 1+ Wi = Pyl
k o 5
A A g
3 i D )
2 (F( =gl vl sgre =g | P
k pY: )\oc—,B p 5
H H
+e; <F(aj_~_1)wa||ua vl + m wj H Dl uj — DijH)
J#i
PN M H DB s -
Tla+rE2—g) " "I Tarnre—g il T+

e(\¥ + A?“’)

)

IN

H
1
(||uz vl + H DP u; — D1+111

I'(a —/3+1)
a +)\a
+€Z T'(a )wa (Hug vl + HHD1+“J Dfﬂ’jH)
Xl o .
+@Z 04+ ﬂ) (H“J UJ||+H D1+“J D1+UJH)

e(/\? +207)
T(a+1DI'(2-3)

w; <||Uz' — || + HHDlﬁ#Li - HDer

).

Hence,

|7 D2, Tu(t) - "D, Ty (1)

1 1 1
< (fa=psm * Tere—p " rarore=H)
x (A8 + A7 (s = will + [ ¥ DF wi = ¥ D wi]|)

(S + 277

M=

1 1
(Fare=p * Ferore—p)

LS.
Yl
S

xwj (g = vyl + | DFwy = 7 DF, 05 ))
From (3.4) and (3.5), we have

ITsu(t) = Tow(®)|| + | DY, Teu(t) = # DY, Tow(v)|

1 1

)

+

1 2 1
< it " oD =D T F@re=5 * farore=5)

X (AT + AT ﬁ)“@(”“t — vl + HHDHUZ - D1+Uz

M»

1 1 1
(@) * Mo+ D) " T@re=p) * Faror )

LS.
*
S

XWj (Huj — || + H D1+uj 1+UJH)

+A270)
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Hence,

[Tiu(t) = Tiv ()|l x

) R R 1 1

= ¢ (F(a) TlatD) Ta-fg+1)  T(@l@2_5) +F(a+1)r(2—5))
o a— 1 1 1 1

(AT A ﬁ“ﬁ(r(aﬁr(a“)* T(a)T <2—5>+r<a+1>r<2—6>>

k k
Z >‘a Ay B ] (ZW2> <||UJ — il + HHD1+“J 1+”JH>
=1

j=
J#i

_ Bi(Zwi>u—v|Xk, (3.6)

where B;, i =1,2,--- , k are given by (3.2).
From the above equation (3.6), it follows that
k

1T = T)llxe = S 1 Tou — Toolx

i=1

() (5o e
(£)(E)

we obtain that 7" is a contraction map. According to Banach’s contraction principle,
the original system (1.1) has a unique solution on [1, €]. O

Theorem 3.2. Assume that (H1) and (H2) hold, then system (2.1) has at least
one solution on [1, €].

Since

Proof. We demonstrate that the operator 7' : X* — X is completely continuous.

In view of continuity of the functions f;,7 =1,2,--- | k, we obtain that the operator
T is continuous.

Let Q be any bounded subset of X*, for u = (u1,us, - ,ux) € Q, t € [1,¢], we
can get

a—1

o) < 5 [ (1og

)
+F(:g_tl) zk: (Z’:\jl _1))\? /1e (log S)(X—z ‘gj(sauj(s)vHDfﬂj(S))

gi(s, ui(s), " DY wi(9)) | ds

ds

iy
L%

<SS
Ml
LR

_|_
=
L%

Mw

gi (s, u;(s), HD’eruz(s)) ‘ ds.

<SS,
ol
LN
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Using (H3), we can write

k
2e A; \&
T,
|1“(>|—r +1+Zr ZI‘a—i—l

qAM?(r(a)* a+1)+62A (a F(a1+1)>'
J;ﬁz

Thus,

||Tiu||§eAi)\?<F1 T )+62Aj)\?(rl P ) 67

On the other hand,

‘H ij,-u(t)‘

)\;X t t a—pB—1
<t ) (o)

e S (e s [ () oo 0

A
(logt)'=# )\;1 o (€ ey a—1
+1“(01)F(2—ﬂ)zz<zéc1/\J1>AJ/1 (IOg;) ‘gj(svuj(s)vHDf+uj(5))

[ (o)

-1
By (H3), (logt)'~# < 1 and (ﬁ) <lforj=1,2,---,k, we get
j=1"3

logt) =8 &
a7 22 g5 s), " D ()| .

D, Tou(t)|
. N k Na k )\
r(aeAiﬂAz% D T +eﬁi?é2 B " ; F(OS?E; BN JZ:; Ha jf)j?é 7
J#i
= oA (52 —1,8 m 1) - r(@riz —5) " Tla+ 1>1F<2 “5)
+eZA ( r(2 3) I(a+ 1)1r(2 - 6))'
1751
Hence
| D T < eanne (r(a —15 T r(a)ré =B) " Ta+ 1>1F(2 - 5>)
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13

).

- a 1 1
+G;AjAj <F(Oé)F(Q ~5) " TarDr2-5)
i

From (3.7) and (3.8), we have

Tl + | D, Tou

o/ 1 2 1 1 1
< A (o) oD e 57D T@rE= 3t fa T OrE =)
A 1 1 1
“;AW (F(a) TTa+1) T@re-p5 Ta+re- B))
i
< lore( 1 2 1 1 1
< | N (i@ forn e D e Te e )
k o 1 1 1 k N
2 (e T * rare-5 * tarore-a) || 5
i

(%)

where C;, i =1,2,--- , k are given by (3.3). Hence,

k

k
[Tullxr = Z | Tiul|x < (ZQ‘) (ZA]) < 00, (3.9)
i=1 i=1 j=1
so it follows that T is uniformly bounded.
Now we will prove that T is equi-continuous. For uw = (uy,ue, - ,ux) €
Q, t1,t2 € [1,€] with t; < g, we can get
Aot toy a1 £\ a—1
< F(;)/l <(10g;) —(10g—1> ) i (s,u;(s), Df+ui(s))’ds
)\29‘ t2 to a—1
+I‘(a) /t1 (log ;) gi(s,ui(s), Df+ui(s))’ds
k -1
(logt; —logts) A o [€ e\ a—2
T(a—1) 2 S ] i N (logg) 9; (5,15 (5), " DY us(s)) | ds
Jj=1 j=1""J
k -1
(logta —logty) A o [© eya—1
(o) Z ij e Aj : (log;) gj(s,uj(s)7HDf+uj(s))‘ds
i=1 =1
A
k -1
(logty — logts) S o [€ eya—1
M (s )4 ) (s ) (oot "Dl () .
j=1 \ 22j=17
J#i
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Using (H3), we get
Tiu(tz) — Tiu(t)]

eA N eAi\§
————((logt2)* — (logt1)") + =———~(logt; — logt
S Ta +1)((0g 2)® — (logt1) )+F(a+ )(og 1 —logty)

+eZF

(63

AN
—logts) +€ZF )(logtg logtq)

j?ﬁz
= eA; )\ (F(a) + ot 1))(10gt1 —logts) + m((logtg) (logt1)™)
k
1 1
AN 1 —1 . 1
+e; ]A](F(a)+r(a+l)>(ogtg ogt1) (3.10)
J#i

In addition,

‘HD1ﬁ+Tiu(t2) - HDf+Tiu(t1)‘

& t1 o\ a—B-1 t\a—B—1
< —r 1 —(1oe 2
_I‘(a—ﬁ)/l <<°g ) (Ogs) )
A¥ t2 ty\a—B-1
M log 22
*r(a—m/tl (102)
(logti_’@—logté_ﬁ) )\j_l a/e ey _ Hos
Moo 2 5% ), (e5) e w. "Dl

(logt,™” —logt; ")

gi (s ui(s), "DV ui(s ))‘ds

M=

1

.
Il

M-

I'(a)T(2-75) = Py
J#i
(logti ™" —logt™?) k At o [© eya—1 o
He >F(2—/3> 25 50 [ (108 0)" foormto), "D

oL,
W
Lo

By (H3), we get

" DY, Tyu(ts) = " DY, Thu(ty)|

= mff?inmog £2)°7 — (log 1))
+r(a +€114)iFA€ - B)((logtl)l’ﬁ ~ (logt2)' ")
A (0%
+ez ‘ 5)((10gt1)1_’3 — (logt2)' ")
AJ)\JO‘ 1—
+€Zp AT 5)((logt2) ? — (logt:)' ")

J#z

(z’?j;?)A? [ (06)" fas (5.9, 7D ) s

(5)) ‘ ds

(s)) ’ ds.
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eAi/\? a— a—
= a5 (llste) P — (logt1)*~")
+ed (rra—p * terra—g) et~ et )

1 1 1-8 1-8
AN 1 —1 3.11
+eZ ( I‘(2—ﬁ)+F(a+1)F(2—ﬁ))(Ogt2 ogt; "X3.11)
J;ﬁz
Hence, from (3.10) and (3.11), we obtain

| Tiu(te) — Tiu(t] x

eAl')\? a— a—
s m((logb) #— (logt1)*~7)
+e Z AjA ( F(a1+ 1)>(log to —logty)
J#Z
o 1
FeA; NS (F(a)F(Q—B)+F(a+1)I‘(2—6))(IOgt —logts™?)
1 1
+€ZA ( T2—5)  Tla+nre— 5))(1°gt ~logt; ™)
J#Z

o 1 1 GAZ‘)\? - o
+€Al)\1 (F(a) + F(a n 1>)(10gt1 — logt2) + m((logtg) — (logtl) ),

which implies | Tju(ts) — Tyu(tr)||x — 0 as to — ¢1 and so | Tu(ts) — T (t1)]| x» — 0
as tg — t1. Therefore, the operator T is equi-continuous on X* and it follows from
the Arzela-Ascoli theorem that T' is completely continuous.

Define Q = {(uy,us, - ,ux) € X*: (uy,uo, -+ ,up) = pT(uy,uz, - ,ug), k =
1,2,-+-,12, 0 < p < 1} isbounded. Let (uy,us, -+ ,ur) € Q, then (uy,ug, -+ ,ug) =
uT (ug,ug, -+ ,ug) and for each ¢ € [1,e], we have u;(t) = uT;(u1,ug, -+ ,u;), @ =
1,2,--- k. Hence, from (H3), we get

[ 2e A \& k BAqu k eAj)\Q‘
S < i J Ny
i)l = 1| T ; T(a) +;F(a—|—1)
i i
[ 1 9 1
— uledne A\ .
N Z/\l(r(a)+ra+1>+ez ( I‘(a+1)>
) J#z
Thus,
1 2 1
| < A\ .
luill < e Aids <F(a) ENCESY )+62A ( (@) F(a+1)) (3.12)
J#Z
and

‘H Df+Tiu(t)‘
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eA N eA NS ELedNe k eA;XG
Ma-p71) Tt MG T & T@rE-7 ' 2= et IrE—F)
J#i
. 1 1 1
= e (s =57 1) @5 T T DI )

1
*eZA H(rare—p * e
3751

which gives

1" DY, s < g

edii (p(a B+ T(@I@-p) Tlatnre- ﬁ)>

1
+€ZA (o= * s 1>F<2/3>)1' (19

1751

From (3.12) and (3.13), we obtain

Jull + || Dy

<l 2 1 1 1
= H A (F(a) "Tern ' Ta—p+) " Tore—5 "TariT2=-9)
N 1 1
+e; A [F(a) "Tar) "T@re—p5 Tarre_5) (;AJ)
i ”
k

= uC; <2Aj>, (3.14)
where C;,i=1,2,---  k are given by (3.3). Hence,

k k k
l[ull xr = Z uill x < M(ZQ) <ZA]‘> < 0. (3.15)

This indicates that the set @) is bounded. Thus, by Lemma 2.2, the operator T has
at least one fixed point, which denotes that the original system (1.1) has at least
one solution on [1,e]. O

4. Hyers-Ulam Stability
Let &; > 0. Consider the following inequality
|HD?+ui(t) - )\f‘fi(t,ul( ), D1+ul ))| <eg, telel (4.1)

Definition 4.1. [18] The fractional differential system (1.1) is called Ulam-Hyers
stable, if there is a constant ¢y, r, .. . > 0such that for each ¢ = e(eq,¢€2,...,65) >0
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and for each solution u = (u1,ug, ...,ux) € X" of the inequality (4.1), there exists a
solution @ = (@1, Uy, ..., ux) € X* of (1.1) with

lu—allx < Cfrfarfi€ L E [1,e].

Definition 4.2. [18] The fractional differential system (1.1) is called generalized
Ulam-Hyers stable, if there exists function ¢y, 1, . r, € C(RT,R") with ¢z, 7, .7, (0) =
0 such that for each e = (g1, €9, ..., &) > 0 and for each solution v = (uy, ug, ..., ux) €
X* of the inequality (4.1), there exists a solution @ = (1, U, ..., ux) € X* of (1.1)
with

||'LL - a”X < 1/Jf17f2 oo fE (5)7 le [176]'
Remark 4.1. Let function u = (uy,us, -+ ,ug) € Xk k=1,2,---,12, be the
solution of system (4.1). If there are functions ¢; : [1,e] — R dependent on u;
respectively, then

(i) lei()| <eitele],i=1,2,---,12;
(i) ZD¢ui(t) = A fi (t,ui(8), T DY s (1)) + pit),t € [1,e],i = 1,2, 12,

Lemma 4.1. Suppose u = (uy,us, ...,ux) € X* is the solution of inequality (4.1).
Then, the following inequality holds:

. 1 2 o 1
fus()) — i (O] < gie(r(a) T+ 1)) +5je; (I‘(a) T+ 1))’
J#i

where

[
Yl
S

el oy
L2

<L
Sl

+
=1}
2=

]~

/-~ /

i |'”§>~‘
S =

L
~—
N

a®
—~
5}
o
I
—
Q
|
—_
bl\z
—
»
S—
QL
o

S
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log ¢)1—5 k ,\j—1 e oy a2
_F(Oz(gl)tI)‘(Qg)Z(Z/?_ )\f1>/1 (IOg;) zj(s)ds

(1ogt)1*5 - )\;1 ¢ e\a—1
+P( )2 - ﬁ)%(zfl)\j1>/l (k’g;) z;(s)ds
JFi
(log)' = & A! €/ eya-l
_F(a)F(Z - B) j; (Zf—l )\j_l> /1 (log ;) zi(s)ds,
J#i
and here
zi(s) = hiis)’ hi(s) = A2 fi(s,ui(s), HDHul( N im0

Proof. From Remark 4.1, we have

HD?+ul<t) = )‘?fi(sauz( ) D1+ul( )) + @z(t)7 te [176]3
u;(1)=0,i=1,2,---,12

’LLZ(G) :uj(e)v 7’7]: 1727"‘ a12a 17&‘7»
Z/\ )=0,i=1,2,---,12.

By Lemma 2.3, the solution of (4.2) can be given in the following form

ui(t) = ﬁ /j (log é)ail (z,(s) + %ES)> ds

+
pelicy
L%

M;r

[N
E

ol

=
L%
]~
N /N
<
7>
— |
>/ —-
—
N——— N———
»—\m
N
5}
0]
|
N—
o
I
-
A/~
&
—
V3
S~—
+
5
VPN
=
~
Q
V3

7
and
it e [ty (0 582)
(logt)=# k )\_1 ¢ e\ a2
(a_fi I'2-B) ;(27—1)‘]1>/1 (log;) (ZJ(S)-F
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oo )-8 k /\j_l e e a—1 (s
_F((;)ig 5 ]; <Zk )\,—1> /1 (log ;) (ZZ(S) + ‘pi )) ds.

=1 j=17"3
JjAi

Then, we deduce that

2e
i) —ui () S eim——
fus(t) — i (t)| €r<a+1+§?fr +§j]F
J#z

- 5ie<r(1a) * F(a2+ 1) ) * Ejez ( a1+ 1))

J#z

and

‘HD1+UZ( ) — D1+U )

= Sip CREED +€j1“(a+1)1“(2—ﬂ)

+5]ZF +€ZZF +1) (2 ﬁ)

Jsﬁz
L 1 1
- sjej:1 (F(a)F(Q 5 "Tarire= 3))
i
1 1 1
(a5 * Mare—5 T M=)

O

Theorem 4.1. Assume that Theorem 3.1 hold, then the fractional differential sys-
tem (1.1) is Ulam-Hyers stable if the eigenvalues of matriz A are in the open unit
disc. There exists |A\| < 1, for A € C with det(A\ — A) = 0, where
0105 + A7) 0208 + A5 )la -+ B2 (A + ATy Dl
L |0+ AT 018 + AT - 02(A + ATy Do
BN + AT ) 0N + A5 D)o - 01 (NS + AT Dle

Proof. Let u = (u1,us,...,u12) € X* k =1,2,---12, be the solution of the
inequality given by

’HD?Jrui(t) — )\?fi(t,ul( ), DHul ))’ <eg, telle,
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and @ = (1, Uz, ..., U12) € X* be the solution of the following system

Do () = A fi(s, @i(s), DY, wi(s)), t € [1,¢],
u;(1)=0,i=1,2,---,12,

Uz(e):a](e)ﬂ t,j=1,2,---,12, 7’7&]7 (43)
k
>N taie) =0, i=1,2,---,12
=1
By Lemma 2.3, the solution of (4.3) can be given in the following form
u;(t)
AZa ¢ t a—1 _ HAB -
= F(a)/l ( g;) g,»(s,ul(s)7 D1+ui(s))ds
k -1
logt A /6 eye—2 - HpB -
— A log - g;(s,u;(s), " D u;(s))ds
F(oz—l)];1 25—1/\;1> A ( s) 5 (5 1+(s)
k 1
logt )\j /e a—1 B
A log — gil(s,ui(s), " D, u;(s))ds
F(a); (Zf_l)\]—1> J < ) .7( J( ) 1+ J( ))
J#i
logt Xk: )\;1 )\a/e (loge)aﬂ ( (o) oo o ( ))d
— - - gi(s,ui(s), u;(s))ds.
I'(a) j=1 Z?q )\;1 " A S ' ' e
i

and
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. 1 1 1
+eie(g T(a-B+1)  T(a )F(2—ﬁ)+F(a+1)F(2—ﬁ))
+e( L L + L )

T(a —5+1> C(@I2—-8) ' T(a+ NI 2-5)

- "ot

1 o a—B
tlr@re—s * rarre—g) 5% )
J#i

)

)
+

X (A + A7 s(t) (Ilws = @il + | 7 DY, wi — DY, @
+

<) (Il = a5l + || DYy — 77, 1y

Hence, we have

llwi — willx

= Jlus — sl + |7 D, ws() = DY)

e( a+2 N 1 N a+1 )5-
- I(a+1) T(a—pB+1) T(a+1r2-8))"

" Z( it r<a+ci>+r<12—5>)€ﬂ

17'51
ot 1 a+1 Ve
( Pa+ ) (o~ ﬁ+1)+F(a+1)F(2_ﬁ))(>‘ + AT () (s — ] x
k
Z( CER ARy o) RASREUOITRLIE

1
#i

k
=01+ Y 0o + 00 (AT + A1) |us — i x

1

g
k

+ 300 + X))y — g x,

1
T

where

a+ 2 1 a+1
91:6(F(a+1) +r(a—ﬂ+1) +r(a+1)r(2ﬂ)>’

9 —e( a+1 N a+1 )
TP\ Ia+1) " Tla+1r2-5)/)"
Then we have

(lur = 1|l x, llug — Gellx, s lusz — Grallx)"
< Gler,e2, - e12) + A(|lur — || x, Jug — 2| x, .oy U2 — @12l x)7,
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where
01 0y - 0y
Oy 0p --- Oy
Giaxi2 =
Oy 0y --- 0,
Then, we can get
(|lur — @1 | x, Jug — allx, o Jurz — @12||x)" < (I — A)"'G(e1, €2, ..y 612)

Let
hii hi2 -+ hig2
1 hax haz -+ haio
H=(I-A4)"G=
hi21 hi22 -+ hi212
Obviously, h; ; >0, ¢, =1,2,---,12. Set ¢ = maz{e1, €2, ...,€12}, then we can
get

Ju—allxr < (Zzh”)& (4.4)

j=14i=1

Thus, we have derived that system (1.1) is Ulam-Hyers stable.

Remark 4.2. Making ¥y, 7, . 7 (¢) in (4.4). We have ¢, f, .. £, (0) = 0. Then by
Definition 4.2, we deduce that the fractional differential system (1.1) is generalized
Ulam-Hyers stable.

5. Example

The benzene graph we studied in the system (1.1) can be extended to other
types of graphs. For example, star graphs and chord bipartite graphs provide a
theoretical basis for physics, computer networks and other fields. Here we only
discuss the fractional differential system on the star graphs (i = 1, 2, 3). We
discuss the solution of a fractional differential equation on a formic acid graph and
the approximate graphs of solutions are presented by using iterative methods and
numerical simulation.
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Example 5.1. Consider the following questions

3
5 . D2 wy(t)]
HD2+u1( ) = (i)g ﬁ <5m(u1(t) + 1+3>> 7

1+ D2 ()]
Hp2 4
HD2 uy(t) = (3)2 ks | sin(uz(t) + ECHILUIER RN
1+\HD12‘+u2(t)|

321" D2, us (1)

HD% uz(t) = (3)3 arcsin(us(t))] +
Trus(t) = (1) 1000| (us(t))] 1000(1+\HD1%+u3(t)|)

we obtain
1 3
- =, A3 = —.
Ny 2 BTy
Coordinate systems with w1, us, ug are established respectively on the formic acid
graph with 3 edges (Figure 4).

o :
o .

5 3
=5 B=5 k=3 =7 =

Figure 3. A sketch of C2H>0 Figure 4. Formic acid graph with labeled vertices
For ¢t € [1, €],
1 . Hp2 y
g1 (t, uq (t), HDf+u1(t)) = L (sm(ul(t) + |1+1()|> ,
1+ [7DF u ()]
1 . Hp2 y
g2 (t, us(t), "Dy us(t)) = R (5”1(”2@) + ”2()> ;
L+ 7D up(t)]
3t D2 U
gt s0), 7 D () = o faresinus()] + — a9 0L
1000(1 + |HD1+u3(t)|)

For any x, y, x1, y1, it is clear that

g1(t,z,y) — g1(t, 1, 1) < (|7 = 21| + [y — wl),

(t+7)4
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1
92(t, 2, y) — g2(t, w2, y2) < mﬂx — 2| + |y — v2)),
3t
t t — — Yys|)-
g3tz y) — gs(t, x37y3)_1000(|w 3| + |y — ys)
So we get
1 1 3e
Iy = sup |l1(t)]| = ——=,lo = sup |l2(t)|=—=—,l3 = sup [|l3(t)| = —,
L 1O g = 2, = g = i 01 a0
By = 22.3235, By = 23.7510, B3 = 25.7324,
and

(Bl + By + Bg)(ll + Iy + l3) =0.6735 < 1.

Therefore, by Theorem 3.1 system (5.1) has a unique solution on [1, e].

Meanwhile,
01 = 8.0140, 0y = 4.4778,
5.5028e — 04 2.9594e — 03 0.0452
A= |3.0747e — 04 5.2966¢ — 03 0.0452
3.0747e — 04 2.9594e — 03 0.0809
Let

det(AI — A) = (A —0.0824)(A — 0.0003)(\ — 0.0036) = 0,
so we have
A1 =0.0824 <1, Xy =0.0003 <1, A3=0.0036 < 1.

It follows from Theorem 4.1 that system (5.1) is Ulam-Hyers stable, and by
Remark 4.2, it will be generalized Ulam-Hyers stable.

Ultimately, the simulate iterative process curve and approximate solution to the
fractional differential system (5.1) are carried out by using the iterative method and
numerical simulation. Let u; o = 0, the iteration sequence is as follows,

(i)g 0 ! %71 sin(u |HD1%+u17n(t)| ]
wnta(f) = (S)/ (lg ) (t+7)4< (1’”(t))+1+HD§+u1,n(t)|>d

L3 (L1 © 3
N (4) (2) (logt) /1( 1Ogs)2m<smu2,n(t)l

T Diuaa(t) ) dot (1)%(3)""(log1) /E(lilogs)g
1+|HD1+uQn(t)\ ((411)_1“‘(%)_1"‘(2)_1)1—‘(3) 1

3t D2, ug o (t
[ Dy (1) )ds
1000 + 1000|HD1+U3 n ()]

(3)"'(3)3 (log?) ¢ s 1 ( .
- (1 —logs)2 —— | sin(uin(t))
(GREIGRRYCRNG J e

X <0.003t|arcsin(u&n )|+
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LMD () ) o ;
1+|HD% up (1)) -1 (Ly=14 (3)y-1\(8
[, D+ G+ GG

1
"D} urn (1)

1 )
X (D <sm(u17n(t)) +

1 L1 HDE ) (
X (1—1logs)z ———| sin(uin(t)) + | 1+7f1’ @) ds
3 (t+7) 3

2) )1 L+ [ DE g p(8)]

2 ¢ 1 1 .
_ ( , /1 (1 —logs)z @1ap <sznu27n(t)|

+—|D§+52’”(t)| >ds— DO og) /e(l—logS)%
LIDR O () () (e

3
3t|HD?2, ug , (t
X (1 + 0.003t|arcsin(us ()] + |" D7 uz n(t)] ds.
)l

3
1000 + 1000/ D?, us3

The iterative sequence of ug ;41 and ug 41 is similar to uy py1. After several
iterations, the approximate solution of fractional differential system (5.1) can be
obtained by using the numerical simulation. Figure 5 is the approximate graph
of the solution of ujug after iterations. Figure 6 is the approximate graph of the
solution of wzug after iterations. Figure 7 is the approximate graph of the solution
of uzug after iterations.

T )ds —
DR (s e @))

-3
<0
. _ ™
L ~
N\ 021 .
\
\ \
-0.05 \ -04
\\
AN \\
= 5061
“
S
01| S -08 .
™~ N
\\\
1 N
015 . . . . . . . 12 .
1 12 14 16 18 2 22 24 1 12 14 16 18 2 22 24 26

Figure 5. Approximate solution of u; Figure 6. Approximate solution of wus
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x10%

Figure 7. Approximate solution of us
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