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Abstract

We investigate a class of piecewise variable-order fractional differential equations with impulsive and
nonlocal conditions in Banach space. The nonhomogeneous term in the proposed system is given in
terms of variable kernel which has flexibility property. We formulate appropriate equivalent integral
equations to the considered evolution problem, then we show the solvability results by using mainly
fractional calculus and fixed point techniques. Further, we study Hyers-Ulam stability analysis by
adapting suitable conditions. The concerned area has numerous applications in those evolution
processes and phenamenon, where abrupt changes occur. At the end, we support our obtained
theory by illustrative and computational example.
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1. Introduction

Fractional calculus and its basic theory was built using different concepts and approaches. Various
definitions including the Riemann-Liouville (RL), and the Caputo as well as some other differential
operators were introduced . For instance, Kilbas et al., H], Samko et al. [2], and Lakshmikantham
et al. |3, u] have developed the said theory very well. The concerned area includes the genetic and
memory effects which have important role in the study of some real world and dynamical problems.
For applications point of view, one may see E, B, H, |. Mathematical models involving fractional
order derivatives for various phenomena have also been considered in many works, see B, , ,
, ] To overcome the limitations in the predefined definitions of fractional differential operators,
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various new operators have been introduced by researchers. For instance, Caputo and Fabrizio
defined new operator involving exponential kernel with the feature of removing singular kernels
in the classical operator ] In the same way, Atangana, Baleanu, and Caputo introduced
more general non-singular operators by involving Mittag-Leffler kernel. The said derivative has the
Mittag-LefHler function as its kernel instead of singular one. These operators have successfully been
applied to various mathematical problems.

As some physical and natural processes like molecular dynamics, economic fluctuations and etc.,
show crossover behavior. To study these processes with better, accurate results and to investigate
their crossover behaviors more comprehensively, various differential operators can be applied for
their mathematical modeling. For example, in E], the authors have studied some fractional-order
problems with impulsive behavior. In H], the authors introduced fractional order problems with
short memory terms. The theory of semﬁou has also been used actively to represent the solutions

of fractional problems, see for instance, |18, [19]. The classical problems of DEs have naturaldl;rabeen

)
In many recent papers, piecewise fractional order derivatives have been applied (see for instance

, , ]) Researchers have extended the concept of the Caputo fractional order derivative to

extended to variable order DEs, which have given much attention in the last recent few years

fractals derivative and have used to investigate various dynamical systems of real world problems,
we refer to [25, 126, [27, 128]. A new approach of fractional DEs corresponding to variable kernel
and piecewise order has been suggested [29]. The newly defined operators are suitable to apply
to physical systems, whose dynamics have memory effects and show crossover behaviors across the
time interval. Fractional DEs with variable kernel have flexibility in the kernel. For this reason,
interest shifted from DEs with constant kernel to DEs with variable kernel. Recently, Ali et al.

] considered a coupled system of non-integer piecewise order DEs of variable kernel. Here, we
further recommend some research work, where authors have used piecewise derivatives to investigate
different real world problems B, IQ]

On other hand, the class of evolution problems has been recognized an important class. The afore-
said class has been studied very well. Byszewski et al. ] initiated the basic theory of these problems
under nonlocal Cauchy conditions. We know that evolution DEs using the concept of fractional cal-
culus have numerous applications in electrochemistry and electromagnetism and visco-elasticity, etc.
Looking into the applications and importance of aforementioned equations, the interest has been
shifted to their study.

Authors have investigated a semi linear non-integer order evolution DEs. In the same way,
Bragadi et al.‘;g] studied existence and controllability results for evolution systems of non-integer
orders. Recently, using topological degree theory, Shah et al.@] studied an impulsive evolution
problem under non-local Cauchy conditions. They have derived sufficient criteria for the required

results.



Motivated from the aforesaid work, here we study the impulsive evolution problem given in @]
under piecewise fractional derivative with variable kernel as mentioned below:

T
DIy (s) = p(s)y(s) + 1/)<s,y(s), I‘(%(s)) /0 (T — v)q(s)_lh(y(”))dv>7

s€[0,T], s# sm, 0<q(s) <1,
Ay(sm) = Win(y(sm)),

y(0) = yo + o(y),

where the notion ©D%%) is used for Caputo fractional order derivative of order 0 < ¢(s) < 1, ¢(s)
is closed bounded linear operator, W,,, : Z — % are nonlinear impulsive mappings, 1 is nonlinear
continuous function that is ¢ : [0, T) x Zx Z — RZ, h: [0,1] x B — R, Ny(s)|s=s, = y(s5) —y(s5 ),
where yo is a real constant and ¢ € C([0,1]). Further the differential operator ¢D%(*) of function
y(s) is defined in piecewise order ¢, w.r.t a sequence of nonnegative increasing functions a,,; (m =
0,1,...,p) as
CDWXy(s), 0<s< s
Do)y - cDB 1y (s), | 51 <5< 59 (1.2)
CDImxmy(s), sy < s <Th
For definition of ¢D%%iy(s), i=0,1,...,m, we refer to Definition The order ¢(s) is defined
with finite number of terms as
g, 0<s<s
q1, s1<s<s2
q(s) = , (1.3)
Qm, Sm <s<T,
This type of problems have applications in electromagnetism and electrochemistry, etc. The integral
given in function v is considered as control term. Usually the applications of such functions are seen
in dynamical models corresponding to flow of heat in materials|33].

In addition, keeping in mind the significance of stability analysis, we attempt to develop some
sufficient criteria for Hyers-Ulam stability. In literature, Hyers-Ulam stability is given with much
importance. This aspect of qualitative analysis is studied for variety of problems of fractional DEs.
We refer to B, IQ, @] But for the piecewise order problem, the said stability has not properly
investigated yet. The said analysis is very important for optimization and numerical purposes.

Here, we organize our work as follows. In Section 2, some preliminary results are given to
help finding our results. In Section 3, we prove the existence results for our problem. In Section 4,
stability results in sense of Hyers-Ulam are provided. Illustrative examples associated with numerical
figures are presented in Section 5. In last section, conclusion and possible future research works are

addressed.



2. Preliminaries
In the background materials, we provide auxiliary results to get our desired results.
Definition 2.1. [@] The non-integer order Caputo derivative of y, is defined as
“Dy(s) = 1" 1y (s),

where I is non-integer order integral which is defined in Definition[Z3, n—1 < q < n, and y(")(s) =
()" y(s).
Definition 2.2. ‘@, Iﬂj The non-integer order Caputo derivative of y, with respect to « is defined

as

cDy(s) = "1y (M(s),

where q satisfies the inequality given in Definition [21] and yén)(s) = (a’(s) %)"y(s)

Definition 2.3. [@] The non-integer order integral of function y is defined by

17(s) = ﬁ / (s — o) Yy (w)do,

where the symbol ' is used for the well known Gamma function.

Definition 2.4. ,@, mj The non-integer order integral of y with respect to « is defined as

1
['(q)

such that integral on right hand side converges. The function o is increasing and differentiable at

I7%y(s) = / o/ (v)(as) — a(v))*~ y(v)dv,

5> 0,.

Lemma 2.1. M/ Let ¢ € Cla,b); a <b. If the Caputo derivative exists, then

DT (IT%p(s)) = @(s),
and
112 (*D"%p(s)) = ¢(s) = p(a),
for 0 < q<1. And “D%%p(s) = 0, if the function ¢(s) is constant.

Lemma 2.2. ‘@/ For q € (0, 1], the solution of problem

‘D" y(s) D(s),

yla) = wo (2.1)
is given by . .
= —— | ' (s)(afs) —a(s)?T 1@ (v)dv.
W) =+ 115 | @) - o) B

Theorem 2.1. [@/ Let S be a Banach space and D be a non-empty closed subset of S. If 7 : D — D

is a contraction then J has a fived point in D.



3. Main results
To study the proposed problem, we need to define a Banach space. Let
Y o= {u:[0,T] > Z:ueC(J), anduy(slh), y(s;,), exist so that
Ay(sm) = y(st)—uy(s,,), form=12... p} (3.1)

Then the space (¥, y||), corresponding to the norm |ly|| = max{|y(s)| : s € [0,7]} is a Banach

space.
Lemma 3.1. If z € C([0,T],R), then y € ¥ is the solution of the evolution problem
‘Dy(s) = d(s)y(s) + z(s), s # sm, 0<q =<1,
Ay(sm) =Wmn(y(sm)), m=1,2,3,---,p, (3.2)

y(0) = yo + o(y),

if and only if y is the solution of the following integral equation

o)+ s [ ab(o)lan(s) = ap)® o)y oo

b i [ a0 —au@)r s € 0,00

wre+ Y [ elents) e owwan

yis)=4q F r(;m) /m 0 (0) (0m (5) = @ (0)) " $(v)y(v)dv (3.3)

WL K ah (V) (v (s;) — ai (V)% L2 (v)dw

3ty [ clante) ety

50 [ o (s) = e o

+Zwl(y(sz))v ERS (Sm;Serl], m=1,2,3,---,p.

Proof. Let y € ¥ be the solution of [B.2). If s € [0, s1], then
‘D%y(s) = ¢(s)y(s) + 2(s), [s] = 0. (3.4)

Applying the integral on ([B.4]), we have

! Tl w0~ p(p)y(v)dvy
) =30) = 7 [ ab(o)lan(e) — a0 e(wu(e)d -
L sa’vas—avqo_lzvv |
+ e | abaals) = aolo) (o)
Using the initial condition, we obtain from (B.3]), the following relation given in (3.6
s) = LSa’vas—avqo_lvUU
) = 0+ 200) + 7o [ ab(0)(ans) = aoe) o )yto)d -

1 So/va s) — ap(v))®z(v)dv
e | abeas) = ante)® a(w)d



Similarly, if s € (s1, s3], then
‘D™ y(s) = ¢(s)y(s) + z(s), [s] = s1.
Following the above procedure by applying the integral, we obtain

o) = (o) + s | o, (1) (1 (52) — 0 ()7 B0y ()

52 (3.7)
+ ﬁ/ o (v) (o (s2) — ozl(v))ql_lz(v)dv.
From (&8) and (31), we have
YoT) =0+ o) + ey | @b aalen) — ap() o )y(o)de
e [ b ans) = aote)ns(w)de,
and
y(sf) =y(s1),
Respectively.
From the relation given as
Ny(s1) = y(si) = y(s1) = Wi(y(s1)),
we get
o) =m0+ o)+ s [ abe)an(sn) = o) ooly(o)de
" ﬁ /0 ap(v)(ao(s1) — ao(v))® " z(v)dv + Wi(y(s1)).
Inserting the value of y(s1), into (B7) yields
V) =0+ 0o + s [ abe)antsn) = an(e) T ooly(o)ds
e [ () - ) oo
o (3.8)
+ %qo)/o ap(v)(ao(s1) — ao(v)™ 1 2(v)dv

+ ﬁ /:2 ay (v) (e (s2) — a1 () z(v)dv + Wi (y(s1)).
If s € (s2, 53], then
Dy(s) = ()y(s) +2(s),  [s] = s
Applying the integral on both sides, and repeated the previous procedure as done in (Z.5), (.6), we

obtain

1 % / g2—1
Vo) = v(o2) + s / b (0)(0(ss) ~ 02(0) o)y -

1 * ! q2—
+ @ /52 b (v)(aa(s3) — az(v)2 z(v)dw.

6



To find out y(s; ) and y(s5 ), we use [EJ) and [BJ) as follow
Ye3) =m0+ o)+ ey | ab) aalen)  ap()o)y(o)de

1 S2 , 0 =1 V(v do
+ qu)/Sl a1 (v)(a1(s2) — a1(v)" é(v)y(v)d

1 o w012 (v)dv
+ r(qo)/o ag(v)(ao(s1) = ao(v))* ™ 2(v)d
+ F(;) /51 ay (v) (e (s2) — a1 ()™~ z(v)dv + Wi (y(s1)),

and
y(s3) = y(s2).
From the following equation

Ay(s2) = y(s3) — y(sy) = Waly(s2)),

we get

o) =+ o) + o | " b ) ao(s1) — ao(0)® " B(o)y(w)do

1
I'(qo)
! h / q1—
’ m/ o (v) (@ (s2) = e (0))" T G(v)y(v)dv

! "o 01 () dw
+ s [ abfaatsn) - o) a(w)a
! Y D=L () do s s
+ ) /S1 aof (v)(a1(s2) — ai(v)) (v)dv + Wi (y(s1)) + Wal(y(sz)).

Inserting the value of y(s2) into ([B.9]), we have

y(s) =yo + o(y) + /051 ap(v)(ao(s1) — ao(v))® " (v)y(v)dv

1
L'(qo)
1 2 =1 a0\ u(v)do
+m/81 o) (v)(a1(s2) — ax (V)" P(v)y(v)d

1 T ©0=1z(v)dv
+T‘JO)/0 ap(v)(ao(s1) — ao(v))* ™ z(v)d

) (3.10)
. : qg1—1
* T(q1) /S1 oy (v) (a1 (s2) — a1 (v))" 1 z(v)dv

. " : q2—
’ @/ 0 (v) (e (53) — a2(0)) =~ H(v)y (v)dv

! " ! q2—1
T T / ay(v)(aa(s3) — a2(v) =~ 2(v)dv + Wiy(s1)) + Waly(s2))-

We generalize the result for ¢DI*my(s) = ¢(s)y(s) + z(s), [s] = $m and s € (Sm, Smy1]; m =



1,2,3,---,p,

1 5, am =15 () dw
+m/sm o, () (@ () — am ()7~ 2(v)d

LI gi—1 (3.11)
* ; I(qg:) /Si1 a;(v) (i (s:) — i (v) % p(v)y(v)dv

LT (s — e (oMol o 4 S W (s,
+;F(qi) /S () (ai(si) = ai(v)" ™ z(v)d +;Wz(y( ).

-1

From (B.6]), and [BI1]), we obtain the integral equation [B3). In converse, let y satisfies equation
B3), then taking the gth-order derivative of ([B3]), we obtain problem (2. O

Corollary 3.1. Lets denote z/;(s,y(s), m foT(T - S)q(S)lh(y(S))dS) by ¥(s,y(s), F(s,y(s))),
then via Lemmal31), the solution of (L)) is given by

s [ abwtants) — aalo)m ool

+ . 1 /OS L () (ao(s) — ag(v))®° Lep(v, y(v), F(v,y(v)))dv, s € [0, s1]

i—1 I'(gi)
1 s, o1
+ T(gm) /sm Wy (V) (@ (5) — i (v)) o(v)y(v)dv (3.12)
m 1 S (o) — o (v qi—1 v v v . v
+;F(qi) ~/sl o (v) (i (s:) — i () (v, y(v), F v, y(v)))d

We define an operator

TV =V



Yo+ oly) + (;O) / " o (o) @0 (s) — ao())® b (o)y(v)du

+ 5 1 ) /0 ah(v) (o (s) — ao(v)©~Mp(v, y(v), F(v,y(v)))dv, s € [0, s1]

—

o)+ Y s [ alals) - aile) owy(e)ds

Ty = T T [ O 0n(s) o)™ )y de (3.13)

We make use of the following assumptions.
(Hi1) Let the operator ¢ : D(¢) — ¥, is continuous for any s € [0,7] and p = sup,e(o 1) |-

(H3) Let for y,7 € ¥, there exists constant ©, € [0, 1) with
lo(y) — e(W)] < O,y — 7.
(Hs) Let for w € ¥, there exist real numbers C,, M, € [0, 1) with
lo()] < Colyl + M,
(H,) Let for y,§ € ¥ there exist real numbers Oy, Cy,, Mj, € [0,1) with
h(y(s)) = h(G(s))] < Only — 3.

(Hs)
Ih(y(s))| < Chly| + M.

(Hg) We write the given control term in function ¢ in problem (L)) as

T —w qg—1
O e L
then,
. 70, .
F50(6) = Flo. 8D < sl = .
Also
P06 < oy [ch|y| n Mh]



where

R X o A 10y,
[vb(s,y(s), F(s,y(s)) — (s, 9(s), F(s,9(s))| < Oply — g, with 0y =0y + =——=
I(g+1)
and
TIiCY, Tth
<C M, here Cp, = C — M, =M, _—.
Y(s,y(s), F(s))] < Chly| + My, where C, = Cy + T Me=Met 75
(H7) Let W, :R—= R (i = 1,2, ...,p), there exists a constant 6yy,, such that
Wi(y) = Wi(9)] < Owily — 3, forall y,j € R.
(Hs) There exist Cyy,, My, > 0, such that
Wily(si)l < Ow,lyl + Mw,, i=1,2,...,p, Vu €R.
Theorem 3.1. Let the hypothesis (Hy) — (Hs) hold. If the condition
ap ap(s1)—ag(v))?0 m Y
Yol + M, + <M¢ + 1?(q14\r4f)) : O(Ii()qurOl() s Yol + Mo + 322, Mw, + (M¢ T %) &
r > max , ,
1— [CQ + <'u +Cy+ 1}2;?&)) (ao(sﬁ()%iol()v))QO} 1— [CQ 4 2211 Cyy, + [/L-‘r <C¢ + I-?E;—f’f))] @:|

(3.14)

then the evolution problem (L)) has at least one solution.

Proof. Number of approaches can be used to derive this result. Here, we use Theorem [ZI]to perform
the following steps. We define a set B = {y € ¥ : ||y|| < r}. The set B is closed, bounded as well as
convex subset of 7.

Step 1.: We consider two cases.

Case I:

If s € [0, s1]. Then for arbitrary y € ¥, we have

L?yﬁﬂﬁ|mﬂ+ldyﬁﬂﬁ+fégyésﬁﬂw&m@)—O@WD%_W¢@NMQOMU

L ’ ! qo—1
+ m/o ag(v)(ao(s) — ap(v)) [t(v, y(v), F(v,y(v)))|dv

T9C, \ (@0(s1) — ap(v))®
SIyo|+Mg+r[CQ+(u+c¢+r(q+1)> 0 Fl(q0+01) } (3.15)
TIMy, \ (ao(s1) = ag(v))®
+O%+NWHQ D@0 + 1)
<r

where

3y ap(s1)—ap(v))?0
lyo| + M, + <M¢ + Izzq¥f)> ( 0(I‘l()qurol() )
r Z )
TaC),_\ (eo(s1)—ao(v))9
- {CQ + (“ +Co F<Z+’1>) @D }

(3.16)

10



such that

1.

c,+ (AH' Cy+ TICy, )) (ao(?) —ag(v))®

I(g+1 (g0 +1)
Therefore, .7 (y) is bounded and hence .7 (y) € B. That is .7 (B) C B
Case II:

If s € (Sm, Sm+1). Then for arbitrary y € ¥, we have

7] < ol + o)+ 7 [ @) ams) = an () () o)l

I'(gm)
LSO‘/UO‘S—Q )4 b (v, y(v v, y(v v
) 0 (5) — 0 ) 090 Fo ()i
+;1—‘(qz) / a;j(v)(ai(si) — ai(v)) " |(v)[[y(v)|dv (3.17)

Upon simplification of ([BIT), we obtain

(am(Sm+1) — am(Sm))™

[T y(s)] < lyol + Cpr + My + pr

L(gm +1)
[l g
o i (ai(?()‘h’ f 3()U))q (3.18)
¥ i (osle =l (4 s o+ M+ )|
" i (Cwir+ 30w,

S TIC,
< |yol +MQ+I‘|:CQ+ZCWi + [/L"r (C¢+F(7—|—hl)>:|
i=1

ai(si) —a; ()% (am(Sma1) — am(sm)) e
{Z TG+l ;(qm +1) H + ZMW (3.19)

(e [ a0 ) o]

1=1

To avoid complexity, lets denote [Z?ﬁl (ai(?ig;ili()v))Qi + (am(sm+8 iT(sm)) } by @ in (319), then

we have

% TIC
|9y|s|yo|+Mg+r[cg+chi+[u+<c¢+F( h ﬂ ]+ZMW
=1

TN,
+ | My+ =—|p<r,
( ¢ F(q+1)>p_

11



where

lyol + M, + 221 My, + (M¢> + IEF(:]J\:I{L)>

2
r 2 )
1- [Cg + 225 O, + [u + <C¢ + rﬁfi‘))} p]

(3.20)

such that
u TICY,
) - 1.
Cot+ > Cw, + [u+ <O¢+ F(q+1))]p§£

=1

Thus 7 (y) is bounded in this case and also 7 (B) C B.
Step 2.: .7 is continuous.
Let {ys}een be a sequence, such that y, converges to — y as £ — 0o in By.

Case I: if s € [0, s1], then one has

1 ° / qo—1
[T ye(s) = Ty(s)| < loye(s) — ey(s)[ + sup } m/{) ag(v)(ao(s) = ao(v))* @ (v)|lye(v) = y(v)|dv

sel0,T

i ﬁ /OS ap(v)(ao(s) = ao(v)® Y (v, ye(v), F (v, ye(v))) — (v, y(v), F(v,y(v)))|dv.
(3.21)
Using the hypothesis (Hy) — (Hz), (Hg), and simplifying yields
170 =701 <[00+ 0+ (1 5 ) S el 62)

Look at the inequality (8:22), we see that as £ — oo, y, converges to y, which produces 7 (y;) —
7 (y). This means that .7 is continuous at s € [0, s1].

Case II: If s € (S, Smt1]- Then for arbitrary y € ¥, we consider

[T ye(s) = Ty(s)|

< loye(s) — oy(s)| + sup qul / o (0) (i (s:) — ()% () e () — y(v)|dv

s€[0,T]

LSa’vas—avqm_lU v) —y(v)|dv
+ sup (qm)/Sm ! (0)(m(5) — am (0))7 1 $(0) e () — y(w)|d

SE[O T) r

+ ; m /Sl aj(v)(i(si) = ai(v)) "W (v, ye(v), F (v, ye(v))) = (v, y(v), F(v,y(v)))|dv

* o] / 0 (0) (@ (5) = ()70, (0, F (0, 36(0))) = (0, y(0), (0, y(0)))|dv

m

+) 0 Wiye(si) — Wiy(si)]-
i=1
(3.23)
Using the hypothesis (Hy) — (Hz), (Hs), and simplifying gives
17 ye — Ty

<[00 (it o+ 1255 ) (pgpyanmtomsn) —antom”

DY ﬁmi(si) - ai<si_1>>m) +pewl] lye =yl

12



Look at the inequality ([B.23]), we see that as £ — oo, yy converges to y. This implies that 7 (y¢) —
7 (y). This means that 7 is continuous at s € (S, Sm+1]. Hence in both cases, 7 is continuous at
s.

Step 3.: .7 maps bounded sets into equi-continuous sets of ¥'.
Assume that B, is a bounded set as in Steps 2 and y € B;.
Case I:

Let 7,1 € [O,Sl], with 7 < 7, Then

| Zy(ra) — Ty(m)
< lo(r) - ev() + s / " o (o) <(040(72) o)™ — (ao(m) - ao(v))‘”l)

X [p(v)[ly(v)|dv + /T2 ap(v)(ao(r2) — ao(v)™~é(v)|ly(v)|dv

1
P(qo) T1

! " ! q0 — qo—
+ m/o O‘o(v)((ao(ﬁ) —ag(v))® " = (ag(m1) — an(v)) 1) [ (v, y(v), F(v,y(v)))|dv

e L () a0(m) = an(w) (o, y(o), Flo.y(o))de

1

< O,ly(r2) — y(1)] (ao(72) — ao(11))® + (a0(71) — @0(0))™ — (a0 (72) — GO(O))q°>

qo + 1

ur (C¢ Tr q+1)>r + My + IEF(qJJ\r4f)
I'(q+1) I'(q+1)

x <(ao(72) ~a0(m)® + (ao(r) — a0(0)® — (o (rs) — 040(0))%)

(ao(72) — ao(m1))® +

TN,
<C¢ + F(q+1))r + Mg+ F(q+{)

(g0 + 1)

+ (ao(72) — ap(m1))™

(3.24)

Since ag is continuous, |7 (12) — Ty(11)| — 0 as 72 — 71, hence 7 (y) is equi-continuous.
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Case II: Let 71,72 € (Sm, Sm+1], with 71 < 72, then

| Ty(r2) — Ty(m1)|

< loy(ms) — ey(m)| + ﬁm) / ") (<am<n> = o (0)) " (ai(2) — am<v>>qm1)

o) (o)l + o / e >(<am<m> () )00l
i | o)) = 0 ) = ()00 F )
i [ @ () = an (@)™ ) oy, Flowy(e) o
. Z Wiy(s:)
< Ouly(r) ~ 5]+ s ((an(2) = () + () = )
~ (am(m) - am<xm>>%> " m ((@n(r) - anmy)
(con i o ais h

+

I(gm) +1 ((am(T2) B Ozm(Tl))‘Jm + (am(Tl) - am(‘rm))qm

 (an(m) — anlan ) ) + (ot ?E}:;Al@ R (@t = amtr)

0<sm<T2—T1

(3.25)

Since ayy, (m=1,2,3,---,p) is continuous, hence |7 (y)(12) — T (y)(11)| = 0 as 72 — 71.

Hence, 7 (y) is equi-continuous.

Step 4. In this step, we define aset ¥, = {y € ¥ : y= ATy, 0 <X < 1}. We need to show
that the set ¥, is bounded. Let y € 7, then y = AT y.

Case I
Let s € [0, s1], then from Step 1, one has

AT y(s)| < )\[|yo| T lo(y(s))] + %q) / " (0)(@0(s) — o) |$(0)ly(v)|dv

e o el o), Fo oo
JrF(qo)/o 0(v)(ao(s) — ao(v)™ " (v, y(v), F (v, y(v)))ld ]
TC > (ao(s1) — ao(“))qo}

§|y0|+MQ+r{CQ+<u+C¢,+

(g +1) [(q +1)
TN, (ap(s1) — ap(v))®
+ <M¢+ I‘(q+1)> I(qo+1)

<r.

Hence, the set 7}, is bounded.

14



Case 1II:

If s € (Sm, Sm41]. Then for y € ¥, we have
1, »
AT y(s)| < A[|y0| +lo(y(s))| + m/ 0 (V) (@ (8) — am (V)7 G(v) |y (v)|dv

1 s, T o )
 Tlgm) / A (V) (@ (8) = am ()P (v, y (), F(v,y(v)))|d

m

+3 1@ / i (0) (@i (51) — 0 ()" (0) [y (v)|dv

1 Si ’ (s:) — i (v qi—1 v v v v ”
T(q:) /Silo‘i(”)(az( i) = ai(0) " (v, y(v), F(v,y(v))|d

= TC,
< Iyo|+MQ+r{OQ+ZOWi + [u+ <C¢+1“(7+h1))]
=1

[ e e

(84 + Ff”‘ﬁ)) {il CIOEL Ol <am<sm§;;+a%<sm>>%] .
where
[yol + M, + 3270, My, + <M¢+ T(q?ff))p
r =: As.
1- [CQ +2 221 Cw + { (C¢, + FT(qu)ﬂ p:|
such that

ot S50+ o (004 1% Vo .

i=1
Therefore, the set %, is bounded. Hence in view of Theorem [2], 7 has at least one fixed point.

Theorem 3.2. If the hypothesis (Hy) — (Hs), (Hy) — (Hg) along with the condition

max(A,B) <1
hold, where
5 790\ (ao(s1) — ao(0))®
A=0 0
el (“ r<q+1>> Mg+
and

- . Tie, 1 e
B0t (4ot 1o ) (o o) = an(on)

! ; m(ai(si) - ai(sil))qi) + phw;,,

then the evolution problem (LIl has a unique solution.
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Proof. For the proof of this result, we utilize Banach fixed point theorem.
We consider two cases.
Case I

If s € [0,s1]. Then for arbitrary y, 4 € ¥, we consider

| Ty(s) — TG(s)| < |oy(s) — oi(s)| + SSE?T] ﬁ /O alh(v)(ao(s) — ap(0)) o ()|ly(v) — §(v)|dv

1 ’ ! qo— ~ %
+m/0 af(v) (e (s) — ao(v) b (v, y(v), F(v,y(v))) — (v, §(v), F(v,u*(v)))|dv.

Using the assumptions (Hy), (Hz), (Hg), and simplifying, we obtain

T0,, ) (ao(s1) — ap(0))
) T

74(5) = i) < 00+ 05+ (4 1

(a+1 wrn
Case II:
If s € (8, Sm+1], then for arbitrary y, 9 € ¥, we consider
|Ty(s) = Th(s)|
< loy(s) — 0g(s)| + sup Z / aj(v)(ai(si) — @i (v)) () |[y(v) — §(v)|dv
s€[0,T] 2 1—‘ qz Si—1

1 so/va 8) — m (V) (V) ||ly(v) — g(v)|dv
+ sup]r(qm)/% () (5) = @ (0) S0 ly(0) = 3(0)}d

sel0,T

+ Z T(q) /S 1 o (v) (e (5:) — i (v) 5 (v, y(v), F (v, y(v) — P (v, §i(v), F(v,u* (v)))|dv

1 s o A *
+ ) /Sm oy, (V) (am () — am (V) [t (v, y(v), F(v,y(v))) — (v, 5(v), F(v,u*(v)))|dv

+> Wiy(si) = Waii(si)].
i=1

Using assumptions (Hy), (Hz), (Hg), and simplifying, one has

< {@Q + <u +04+ 770 )> < L (@ (5ms1) — @m(sm))

Ilg+1 T(gm+1)
- 1
. L) — . . qi 5
+ ; F(qZ T 1) (az(sz) 041(81—1)) ) +p9w1:| ||y y”
As
max(A, B)
where
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and

B . T, 1 e
B=0,+ (14 0o+ o) (g (o) = am(om)

i ; m(ai(si) - O‘i(sil))qi) + pbyy,.

Hence the operator .7 is contraction and has a unique fixed point. O

4. Stability Analysis

In this section, we develop some adequate conditions under which the proposed problem (1] is
Hyers-Ulam stable. Before going to prove the results, we provide definitions concerning Hyers-Ulam
stability and necessary remarks.

We define the operator, 7 : ¥ — ¥, by
Ty =y; yev. (4.1)

Definition 4.1. The solution y of problem (@I is Hyers-Ulam stable if for any ¢ > 0 and any
solution y € V" of the inequality

ly — T (y)| <, (4.2)

there exists a constant C > 0 and unique solution § of @I) in ¥, such that the given inequality
satisfies

9 —yll < Ce.
Definition 4.2. The solution of problem (&1 is G-Hyers-Ulam stable, if we find
€:(0,00) = (0,00), £(0) =0,
so that for any solution of the inequality (E2), the following relation satisfies
19— yll < C&(e).

Remark 4.1. y is the solution in ¥V for the inequality (£2), if and only if there exists a function

w € ¥ which is independent of solution y such that for any s
(i) lw(s) <€ Jwm| <
(i1) DI y(s) = d(s)y(s) + (s, y(s), F(s.y(s))) + w(s),

(131) Ay(sm) =W (y(s,,)) + wm, m=1,...,p.
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By Remark 1] we have the following problem with small perturbation function

“DUy(s) = ¢(s)y(s) + (s, y(s), F(5,y(s))) +w(s), s # sm, 0 < qls) <1,
A y(sm) = Wm(y(sm)) + W, (4.3)
y(0) = yo + o(y),

Lemma 4.1. Solution of problem with perturbation term given in (E3)) satisfies the following relation

\y<s> - (y o)+ s | " o (0) (a0(s) — 00(0)® " Gv)y(v)du

L Sa/,uas_a,uqo—lv v v v »
+I‘(q0)/0 o(v)(ao(s) — ao(v)® (v, y(v), Fv,y(v)))d )

(ao(s1) — ap(0))®
= ( T(go +1)

>e, if s€l0,s1],

1 ° / qm—1
}y(S) - (yo +oly) + T /Sm Ay (V) (@ (8) = am (v)) " G(v)y(v)dv

/S "l (0) (am () — @ ()7 (0, y(0), F(o,y(0)))do (4.4)

m

- (i (Smi1) = am(sm))? o= (ailsi) = oi(si-1))%
- Zwi(y(si))) } = < }(Qm-i-l) 2 T(g +1) >€’

i=1 i=1

Z.f s € (Sm,5m+1], m = 152735"' y D-

Proof. The proof is easy, so we omit it. |
Theorem 4.1. If the assumptions (Hy) — (Hz), (Hy) — (Hs) are true and the condition
max(A,B) < 1,

satisfies where

A = 69 + é¢ + (M n T0y, > (040(81) — ao(()))qo

Ig+1) Klg+1) 7

and

_ ) 0 1 — a (5.))dm
B0+ (4ot 1o ) (o o) = an(on)

— 1
Eiii_iifqi O, -
+i:1 F(qz'+1)(a (6:) = asloe-1)) ) e
Then (L)) is Hyers-Ulam stable.

Proof. Let § be any solution of inequality (£2]), and y be a unique solution of problem (I]), then

one has:

18



Case I
If s € [0,s1]. Then we have from the integral equations (312 and and ([@J).

ly(#) = 5(s)] < ley(s) = ef(#)| + sup %q) / () (a0 (3) — a0(0))® | $()][y(w) — §(v)|dv

+ F(l ) /S af(v)(an(s) — ap(v)) (v, y(v), F(v,y(v)) — (v, §(v), F (v, u*(v)))|dv

do) Jo

+ % /OS o (v)(ap(s) — ag(v))® ™t |w|dv

F(Qo
A 7905 1\ (ao(s1) — ag(0))® X (ao(s1) — ap(0))®
<[00+ (1 rgry) s W+ ()

Thus we have

Iy =91 < (@4 + (ot oy ) =2t |y, gy (Lol =20 @D ).,

I(g+1) [(qo +1) (g +1)
Which implies

(@0 (81)=0(0))%0
I'(gqo+1)

; 790, ) (a0(s1)—ag(0)®0
1= {eﬁ% + (“+ F<Z+’1>> T@ry ]

ly — 9l < €.

Where

< 1.

[(g+1) I'(qo+1)
Case II:

If s € ($m, Sm+1]. Then

lu(s) — 9(5)
<lov(s) — i) + s w2 [l @) am(s) — )™ 0 Iy(0) — 50)lde
- s€[0,T F(qm) Sm "

—1 So/ ), (8) — i, (0))? Hw|do
i | o) — e

. o, qm—1 . .

+ Tlan) /Sm ar (V) (am(8) — am(v)) [(v,y(v), F(v,y(v))) — (v, 5(v), F(v,u*(v)))|dv
m 1 S; . "t A

"L W) [ altants) - aso) o) lye) ~ io)ldo

+> <1 ) / o) (i(s) — s (0) % (o, y(0), F (v, 5(0))) — (0, 5(0), Flv, u*(0)))]dv

i i—1

—

i=1
m 1 Si , o m A
- ; T(q) /SH () (a(:) — i (v) ™ Hwldv + ; Wiy (si) — Wigi(si)].
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Using the hypothesis (Hy) — (Ha), (Hg), and simplifying, we have
lly — 3l
A T0y, 1
<[00t (404 s ) (g @nomen) = anls))”

+ Z %(ai(si) - ai(si—l))%) +p9wi] lly =9

A ($mi1) = am(sm))?" | o= (@i(si) — qi(si1))®
* ] D Ty )

Which further implies that

((am<sm+1>am<sm>>% Ly <ai<si>ai<si1>>%>

T(gm+1) T(qi+1)
_all < )
ly =9l < . €
where
A 10y, 1
B=06© —|—< + 64 + )( O (S, — i (5m)) 0™
o+ (o + 77 ) (T (om(sr) = (o)
i 1
+ — (0 (s;) — a;(8i—1))4 | + pOyy, < 1.
> Ty (50— ulsi)® )+l
Hence
(am(sm )_anl(snl))qm m (ai(si)_ai(sif ))ql
< }l(qmﬂ) +2in L(gi+1) ; > C
-7l < =: Ce.
ly =9l < T B € €
Therefore, the evolution problem (1)) is Hyers-Ulam stable. O

Corollary 4.1. By setting £(e) = C(e) such that £(0) = 0. Then problem (L)) is considered as
G-Hyers-Ulam stable.

5. Numerical example

To apply our main results, we take the given problem as

R (f:_O)y(S) i (|y(|sy>(|si| 0" /01 - f(Z%_é Sin(gy()(v)l)d”>v

s€[0,1],8 # sm, m=1,2,...,8,

1 1 (5.1)
Dy(sm) = Pl B e T
som) = u(55)| = 575
sin |y|
0)=2
y(0) =2+ —5=,
Take J =1[0,1], p=8,u= %, where
s 1 fa-v)2
= — and th trol t = — —————si d
o(s) 5o 20d the control term F(v,y(v)) 90/0 () sin(Jy(v)|)dv
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Let

Then, for y,y € ¥, we obtain

[F(s,9(s)) = F(s,9(s))] < —7=Iy —l,

and
(s, y(s), Fs9())) = (s, (), Fls 35| < (2 + == ) Iy — 3

s,y(s s,9(8))) — (s, y(s s,U(s — -

7y ) 7y 7y b 7y —_— 70 45ﬁ y y7
where 9A¢:7—10,@h:%,0ne has 9¢:7—10+ﬁ.Further @Qzé, O, :%. Using these values,
we have

~ Tth (040(81) — 040(0))%
A=0,+10 +( + ) <1,
e\t ) T Tt

and

_ ) T0 L ~ o (5.))4m
B=06,+ (M+9¢+F(q+1))(F(qm+1)(am(sm+l) m(8m))

E 1
Eiii—iz;qi Oy, <1,
+i:1F(Qi+1)(a (86) — eulei1)) )+p WS
Thus, we have
max(A,B) < 1.

Therefore, by Theorem [B2] the evolution problem 1] has exactly one solution. Moreover, the
conditions of Theorem [£]] fulfil. Thus, system (.1l is also Hyers-Ulam stable. We present the

functions ¢ and « in Figure [l and Figure 2] respectively.
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Figure 1: Graphical presentation of gq.

0.6
0.5
~ 04
5 0.3
0.2
0.1
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S

Figure 2: Graphical presentation of a.

Here, in Figure Bl we present the graphical presentation of evolution problem using different
values of piecewise fractional order gq. Here, we have used impulsive points for m = 1,2,...,8. From
Figure[3l we observe the crossover behavior at each impulsive point which behaves like a stair process.

Such up and down usually we observe in real life problem due to various situation.
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Figure 3: Graphical presentation of solution of Problem [E11

6. Conclusion

We have considered the impulsive evolution problem with Cauchy condition using piecewise frac-
tional order derivative. We carried out criteria for existence of solution using some remarkable
fixed point approaches. Moreover some adequate results for the Hyers-Ulam type stability have also
studied. The whole analysis has been demonstrated through a numerical example. The concerned
approach through piecewise fractional order is very interesting and applicable. Many real world
problems which exhibit multi-behavior in their state of evolution can be characterized through the
mentioned approach. We believe that the piecewise variable-order derivative can be also applied to
discrete calculus as further direction in the future. More sophisticated results can be deduced in the

future by using piecewise variable discrete derivative.

Data availability: All used data is included in the paper.
Authors contributions: All authors have equal contribution.
Conflict of interest: The authors state that there is no conflict of interest.
Acknowledgement: Authors are thankful to Prince Sultan University for support through TAS
research Lab.

Funding: No funding source exists.

23




References

1]

2]

[11]

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, Elsevier, Amsterdam, 2006.

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory
and Applications, Gordon & Breach, Amsterdam, The Netherlands, 1993.

V. Lakshmikantham and A. Vatsala, Basic theory of frac- tional differential equations, Non-
linear Analysis: Theory, Methods & Applications, 69(8) (2008) 2677-2682.

V. Lakshimikantham and A. Vatsala, Theory of fractional differential inequalities and appli-
cations, Communications in Applied Analysis, 11 (2007) 395-402.

M. Du, Z. Wang, H. Hu, Measuring memory with the order of fractional derivative, Scientific

Reports, 3(1) (2013) 1-3.

Y.A. Rossikhin, and M.V. Shitikova, Applications of fractional calculus to dynamic problems
of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50 (1997) 15-67.

C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math Bio.
181 (2003) 1-16.

R.L. Magin, Fractional calculus in bioengineering-part 2. Crit. Rev. Biomed. Eng. 32(2) (2004)
105-193.

B. Maayah, A. Moussaoui, S. Bushnaq, O. Abu Arqub, The multistep Laplace optimized
decomposition method for solving fractional-order coronavirus disease model (COVID-19) via

the Caputo fractional approach, Demonstratio Mathematica, 55(1) (2022) 963-977.

H. Kim, R. Sakthivel, A. Debbouche, D.F.M. Torres, Traveling wave solutions of some impor-
tant Wick-type fractional stochastic nonlinear partial differential equations, Chaos, Solitons

& Fractals, 131 (2020) 109542.

S. Kumar, R. Kumar, M.S. Osman, B. Samet, A wavelet based numerical scheme for fractional
order SEIR epidemic of measles by using Genocchi polynomials, Numerical Methods for Partial

Differential Equations, 37(2) (2021) 1250-1268.

A. Jajarmi, D. Baleanu, K. Zarghami Vahid, S. Mobayen, A general fractional formulation
and tracking control for immunogenic tumor dynamics, Mathematical Methods in the Applied

Sciences, 45 (2022) 667-680.

24



[13]

[17]

[18]

[19]

[20]

21]

22]

23]

[24]

[25]

J. Alzabut, M. Houas, M.I. Abbas, Application of fractional quantum calculus on coupled
hybrid differential systems within the sequential Caputo fractional g-derivatives, Demonstratio

Mathematica, 56(1) (2023) 2022-0205.

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel,

Progress in Fractional Differentiation and Applications, 1(2) (2015) 73-85.

A.Atangana, & D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel:

theory and application to heat transfer model Thermal Science, 20(2) (2016) 763-769.

G.C.Wu, D.Q.Zeng, D.Baleanu,Fractional impulsive differential equations: Exact solu-
tions,integral equations and short memory case, Fractional Calculus and Applied Analysis,

22 (2019) 180-192.

G.C. Wu, M.Luo, L.L. Huang, S. Banerjee, Short memory fractional differential equations for
new memristor and neural network design, Nonlinear Dynamics, 100(4) (2020) 3611-3623.

K.Karthikeyan, A.Debbouche, D.F.M.Torres, Analysis of Hilfer fractional integro-differential

equations with almost sectorial operators, Fractal and Fractional, 5(1) (2021) 22.

A.Debbouche, J.J.Nieto, Relaxation in controlled systems described by fractional integro-
differential equations with nonlocal control conditions, Electronic Journal of Differential Equa-

tions, 2015(89) (2015) 1-18.

L.L.Huang, J.H. Park, G.C. Wu, Z.W. Mo, Variable-order fractional discrete-time recurrent
neural networks, J. Comput. Appli.Math., 370 (2020) 112633.

G.C.Wu, Z.G.Deng, D.Baleanu, D.Q.Zeng, New variable-order fractional chaotic systems for
fast image encryption, Chaos, 29 (2019) 083103.

K. Shah, T. Abdeljawad, A. Ali, Mathematical analysis of the Cauchy type dynamical system
under piecewise equations with Caputo fractional derivative, Chaos, Solitons € Fractals, 161

(2022) 112356.

A. Zeb, A. Atangana, Z. Khan, S. Djillali, A robust study of a piecewise fractional order
COVID-19 mathematical model, Alexandria Engineering Journal, 61(7) (2022) 5649-5665.

K.J. Ansari, Asma, F. Ilyas, K. Shah, A. Khan, T. Abdeljawad, On new updated concept
for delay differential equations with piecewise Caputo fractional-order derivative, Waves in

Random and Complex Media, 2023 (2023) 1-20.

7. Ahmad, G. Bonanomi, A. Cardone, A. Iuorio, G. Toraldo, F.Giannino, Fractal-fractional
sirs model for the disease dynamics in both prey and predator with singular and nonsingular

kernels, Journal of Biological Systems, 32(04) (2024) 1487-1520.

25



[26] Z. Ahmad, S. Crisci, S. Murtaza, G. Toraldo, Numerical insights of fractal-fractional modeling
of magnetohydrodynamic Casson hybrid nanofluid with heat transfer enhancement, Mathe-

matical Methods in the Applied Sciences, 47(11)(2024) 9046-9066.

[27] Z.Ahmad, G. Bonanomi, D. di Serafino, F. Giannino, Transmission dynamics and sensitiv-
ity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential

operator of Mittag-Leffler kernel, Applied Numerical Mathematics, 185 (2023) 446-465.

[28] Z. Ahmad, F. Ali, A.M. Algahtani, N. Khan, I. Khan, Dynamics of cooperative reactions
based on chemical kinetics with reaction speed: A comparative analysis with singular and

nonsingular kernels, Fractals, 30(01) (2022) 2240048.

[29] T. Abdeljawad, N. Mlaiki, M.S. Abdo, Caputo-type fractional systems with variable order
depending on the impulses and changing the kernel, Fractals, 30(8) (2022) 2240219.

[30] A. Ali, K.J. Ansari, H. Alrabaiah, A. Aloqaily, N. Mlaiki, Coupled system of fractional im-
pulsive problem involving power-law kernel with piecewise order, Fractal Fract. 7(6) (2023)

436.

[31] M. Mohammad, M. Sweidan, and A. Trounev, Piecewise fractional derivatives and wavelets in

epidemic modeling, Alezandria Engineering Journal, 101 (2024) 245-253.

[32] X.Liao, T. Zhou, L. Zhang, X. Hu, Y. Peng, A method for calculating the derivative of acti-

vation functions based on piecewise linear approximation, Electronics, 12(2) (2023) 267.

[33] L. Byszewski, and V. Lakshmikantham, Theorem about the existence and uniqueness of a
solution of a nonlocal abstract Cauchy problem in a Banach space, Applicable Analysis 40(1)

(1991) 11-19.

[34] K. Balachandran, and S. Kiruthika, Existence of solutions of abstract fractional impulsive semi-
linear evolution equations, Electronic Journal of Qualitative Theory of Differential Equations,

4 (2010) 1- 12.

[35] M. Bragdi, A. Debbouche, D. Baleanu, Existence of solutions for fractional differential inclu-
sions with separated boundary conditions in Banach space, Advances in Mathematical Physics,

(2013) 426061.

[36] K. Shah, A. Ullah, J.J. Nieto, Study of fractional order impulsive evolution problem under
nonlocal Cauchy conditions, Math. Method. Appl. Sci., 44(11) (2021) 8516-8527.

[37] H. Khan, W. Chen, A. Khan, T.S. Khan, Q.M. Al-Madlal, Hyers-Ulam stability and existence
criteria for coupled fractional differential equations involving p-Laplacian operator, Advances

in Difference Equations, 2018 (2018) 1-16.

26



[38] A. Khan, J.F. Gémez-Aguilar, T.S. Khan, H. Khan, Stability analysis and numerical solutions
of fractional order HIV/AIDS model, Chaos, Solitons Fractals, 122 (2019) 119-128.

[39] H.Khan, J. Alzabut, D. Baleanu, G. Alobaidi, M.U. Rehman, Existence of solutions and a nu-
merical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential

equations with an application, ATMS Mathematics, 8(3) (2023) 6609-6625.

[40] R. Almeida, A Caputo fractional derivative of a function with respect to another function,

Commun. Nonlinear Sci. Numer. Simul. 44 (2017) 460-481.

[41] H. Schaefer, Uber die Methode der a priori-Schranken, Math. Ann., 129 (1955) 415-416.

27



	Introduction
	Preliminaries
	 Main results
	Stability Analysis
	Numerical example
	Conclusion

