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1 Introduction

Climate change such as global warming is believed to be the greatest threat to biodi-
versity [20]. Global warming has caused the destruction of Marine species diversity near
the equator, and species have shown a trend of migration to the north and south poles. In
the past, the tropics provided ideal temperatures for many species. But as the equatorial
waters get hotter, the outflow of the species that originally lived there accelerates. Ocean
warming is causing large scale changes in the latitudinal gradient of Marine biodiversity.
At the same time, creatures that live on land would also move to the poles and colder
elevations. Climate change drives the shifts in species range and distribution, see [6, 23].
This impact on ecological species has to be taken seriously.

For this phenomenon and its influence, many researchers have made very great sci-
entific research results, see [1, 4, 10, 24, 28, 29, 31]. Berestycki et al. in [2] proposed a
reaction-diffusion equation under shifting environment

ut(t, x) = duxx(t, x) + g(x− ct, u(t, x)), t ∈ R+, x ∈ R. (1.1)
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Here u(t, x) denotes the population density at time t and location x. The function g
represents the net effect of reproduction and mortality and d > 0 is the diffusion rate for
species. They have proved that the existence of the forced traveling waves for (1.1). In
[3], Berestycki and Fang established the existence and nonexistence of forced waves for the
Fisher-KPP equation in a shifting environment

ut(t, x) = duxx(t, x) + u(t, x)[r(x− ct)− u(t, x)], t ∈ R+, x ∈ R. (1.2)

Wu et al. in [35] concerned the existence and uniqueness of forced waves in a general
reaction-diffusion equation with time delay under climate change. They showed that there
exists a nondecreasing and unique wave front with the speed consistent with the habitat
shifting speed for (1.2).

Species interactions can influence the range sizes of populations. Both two species
follow the Logistic growth rate which is on the move to capture the key point that the
environment is both heterogeneous and directionally shifting over time with a forced rate
c > 0. As is well known, there are usually more than one biological species sharing
the same habitat and their typically interspecies relationships. Thus, there is a growing
interest in the study of two species in shifting habitat, for example, competition [7, 32],
cooperation [19, 37] and predator-prey [8, 36].

Subject to seasonal succession, climate change provides such a shifting and time pe-
riodic environment for the species. Fang et al. [11] studied the nonautonomous reaction-
diffusion equation in a time-periodic shifting environment,

ut(t, x) = uxx(t, x) + u(t, x)g(t, x− ct, u(t, x)), t > 0, x ∈ R.

That is g(x− ct, u(t, x)) in (1.1) becomes g(t, x− ct, u(t, x)), it can be understood as the
functional response to the time periodic variation.

Periodicity frequently appears in mathematical modelings due to seasonal changes
typically related to climate changes. For example, Pang, Wu and Ruan [22] considered
the dynamics of Lotka-Volterra competition system with time periodic. Zhou, Wu and
Bao [42] studied the propagation dynamics of a class of periodic degenerate systems. In
the case when ri(t) become ri(t, x − ct), i = 1, 2 in [37], we can get the following time
periodic Lotka-Volterra cooperative system

ut(t, x) = d1uxx(t, x) + u(t, x)(r1(t, x− ct)− u(t, x) + a1v(t, x)), t ∈ R+, x ∈ R,

vt(t, x) = d2vxx(t, x) + v(t, x)(r2(t, x− ct)− v(t, x) + a2u(t, x)), t ∈ R+, x ∈ R,
(1.3)

where u(t, x) and v(t, x) are the population densities of two species competing for common
resource at time t and position x; d1 and d2 are the diffusive coefficients; the parameters
a1 and a2 reflect the strength of interspecies cooperation and ai > 0, i = 1, 2. Most
importantly, the terms r1(t, x − ct) and r2(t, x − ct) are dependent on time t and the
climate shifting variable x − ct. ri(t, ·), i = 1, 2 are assumed to be T -periodic in the first
variable t for some positive number T . We studied the existence, asymptotics and stability
of forced pulsating waves for (1.3) in our previous work [12]. For the monostable case,
Zhao and Ruan [41] showed that system (1.2) possesses periodic traveling waves, only
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when the wave speed is greater than or equal to a minimal wave speed cmin. Liang, Yi and
Zhao [18] investigated spreading speeds and traveling wave solutions for general periodic
evolution systems.

Note that the classical reaction-diffusion equation like (1.2) is based on the assumption
that the internal interaction of species is random and local, i.e., individuals move randomly
between the adjacent spatial locations. However, it is not always the case in reality. The
movements and interactions of many species in ecology and biology can occur between
non-adjacent spatial locations, see [14]. Thus, nonlocal dispersal equations have been
presented to investigate the evolution of species, see [5, 17, 39] and references therein.
Recently, Li et al. in [15] considered the following nonlocal dispersal population model to
explore the species spread in the context of climate change,

ut = d[J ∗ u− u] + u[r(x− ct)− u] (1.4)

are the nonlocal dispersal operators to describe the long range effects of spatial structure.
As we all know, the growth rate r(x− ct) of many populations may be influenced greatly
by the time varying environments (e.g., due to seasonal variation). Therefore, Zhang et
al. [40] studied a more general time-periodic nonlocal dispersal Fisher-KPP equation

ut = d[J ∗ u− u] + u[r(t, x− ct)− u].

Furthermore, interspecies interactions include competition, cooperation, predation and
other types between two or more species. Motivated by previous studies, it is natural to
wonder how the seasonal succession, climate change and interspecific competition affect
the dynamic behaviors of two species under nonlocal dispersal mechanisms. Many scholars
have made study, see [9, 13, 25, 30].

Inspired by the above study and combined with our previous work, we concern the
following equation
ut(t, x) = d1(J1 ∗ u− u)(t, x) + u(t, x)(r1(t, x− ct)− u(t, x) + a1v(t, x)), t ∈ R+, x ∈ R,

vt(t, x) = d2(J2 ∗ v − v)(t, x) + v(t, x)(r2(t, x− ct)− v(t, x) + a2u(t, x)), t ∈ R+, x ∈ R,
(1.5)

where

(J1 ∗ u)(t, x) =

∫
R
J1(x− y)u(t, y)dy =

∫
R
J1(y)u(t, x− y)dy,

(J2 ∗ v)(t, x) =

∫
R
J2(x− y)v(t, y)dy =

∫
R
J2(y)v(t, x− y)dy.

This paper is devoted to the existence and stability of forced pulsating waves of the
equation (1.5).

Through out the present paper, the following assumptions are valid.
(H1) Assume that ri(t, z), i = 1, 2 is continuous, T -periodic in t and increasing in z.
Moreover,

lim
z→−∞

ri(t, z) = βi(t) < 0, lim
z→∞

ri(t, z) = θi(t) > 0, i = 1, 2, (1.6)
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uniformly in t, where θi(t), βi(t) ∈ Cγ(R,R) for some γ with γ ∈ (0, 1) and they are
T -periodic functions, that is βi(t+ T ) = β(t), θi(t+ T ) = θi(t) for all t ∈ R+.
(H2) There is

‖θi(t)− ri(t, z)‖ ∼ Aie−αiz, z →∞,

for some positive numbers αi, Ai(t), i = 1, 2. Here, the symbol “∼” is the standard sign
in asymptotic analysis.

(H3) Ji(x) ∈ C(R,R+) are symmetric with

∫
R
Ji(y)dy = 1 and there exists some λ0 > 0

such that

∫
R
Ji(y)eλydy <∞, ∀λ ∈ (0, λ0].

Next we consider the following system of ordinary differential equations{
u
′
(t) = u(θ1(t)− u+ a1v),

v
′
(t) = v(θ2(t)− v + a2u).

Let ri =
1

T

∫ T

0
θi(s)ds > 0 for i = 1, 2. According to Theorem 1 of [27], the above equation

has a unique and globally asymptotically stable periodic positive solution (p(t), q(t)) under
condition (H1).

By a forced pulsating wave solution of the system (1.5), we mean a particular solution
in the form of

(u, v)(t, x) = (φ, ϕ)(t, x− ct) =: (φ, ϕ)(t, z), z = x− ct, (1.7)

satisfying
(φ, ϕ)(t+ T, z) = (φ, ϕ)(t, z).

A substitution of (1.5) leads to the following wave profile system
φt = d1(J1 ∗ φ− φ) + cφz + φ(r1(t, z)− φ+ a1ϕ), t ∈ R+, z ∈ R,

ϕt = d2(J2 ∗ ϕ− ϕ) + cϕz + ϕ(r2(t, z)− ϕ+ a2φ), t ∈ R+, z ∈ R,
(1.8)

subjected to
lim

z→−∞
(φ, ϕ)(t, z) = (0, 0), lim

z→∞
(φ, ϕ)(t, z) = (p(t), q(t)) (1.9)

uniformly in t.
To our knowledge, the heterogeneity caused by the shifting and periodic coefficients

brings nontrivial difficulties. Our contributions in this paper can be summarized as three
parts. In Sec. 2, we establish the existence of the forced pulsating waves by applying
alternatively-coupling upper-lower solution method. In Sec. 3, we establish the asymptotic
behaviors of the forced pulsating waves. In Sec. 4, with proper initial, the stability of
the forced pulsating waves is studied by the squeezing technique based on the comparison
principle.
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2 Existence of forced pulsating waves for (1.5)

This section is devoted to establishing the existence of time-periodic forced pulsating
waves.

Firstly, we give some preliminaries. Let X = C(R,R2) ∩ L∞(R,R2) be the set of
uniformly continuous and bounded vector function from R to R2 equipped with the norm
‖ ω ‖X:=‖ ω1 ‖ + ‖ ω2 ‖, where ‖ ωi ‖:= sup

x∈R
| ωi(x) |. Denote X+ = {ω = (ω1, ω2) ∈ X :

(ω1, ω2)(x) ≥ (0, 0), ∀x ∈ R}. It follows that X+ is a closed core of X and X is a Banach
lattice under the partial ordering induced by X+. Further, we set

Xr1×r2 :=

{
(ω1, ω2) ∈ X+ : (ω1, ω2)(x) ≤

(
min
t∈[0,T ]

θ1(t), min
t∈[0,T ]

θ2(t)

)
, ∀x ∈ R

}
.

Considering the Cauchy problem associated to (1.5)
ut(t, x) = d1(J1 ∗ u− u)(t, x) + u(t, x)(r1(t, x− ct)− u(t, x) + a1v(t, x)), t ∈ R+, x ∈ R,

vt(t, x) = d2(J2 ∗ v − v)(t, x) + v(t, x)(r2(t, x− ct)− v(t, x) + a2u(t, x)), t ∈ R+, x ∈ R,

(u(0, x), v(0, x)) = (u0(x), v0(x)) ∈ X+.
(2.1)

Define P (t) = (P1(t), P2(t)) by

P1(t)[u0](x) = e−d1t
∞∑
m=0

(d1t)
m

m!
am(u0)(x),

P2(t)[v0](x) = e−d2t
∞∑
m=0

(d2t)
m

m!
bm(v0)(x),

where a0(u0)(x) = u0(x), b0(v0)(x) = v0(x), and

am(u0)(x) =

∫
R
J1(x− y)am−1(u0)(y)dy,

bm(v0)(x) =

∫
R
J2(x− y)bm−1(v0)(y)dy,∀m ≥ 1.

Then, the mild solution of equation (2.1) is satisfied
u(t, x) = P1(t)u0(x) +

∫ t

0
P1(t− s)[f1(s, ·, u(s, ·), v(s, ·))](x)ds,

v(t, x) = P2(t)v0(x) +

∫ t

0
P2(t− s)[f2(s, ·, u(s, ·), v(s, ·))](x)ds,

(2.2)

where 
f1(t, x, u(t, x), v(t, x)) = u(t, x)(r1(t, x− ct)− u(t, x) + a1v(t, x)),

f2(t, x, u(t, x), v(t, x)) = v(t, x)(r2(t, x− ct)− v(t, x) + a2u(t, x)).
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For any 0 ≤ u1(t, x), u2(t, x) ≤ p(t) and 0 ≤ v1(t, x), v2(t, x) ≤ q(t), we have

| fi(t, x, u1(t, x), v1(t, x))− fi(t, x, u2(t, x), v2(t, x)) |≤ ρi(| u1 − u2 | + | v1 − v2 |), ∀x ∈ R,

where

ρi = max
[0,T ]

θi(t)− 2 min
[0,T ]

βi(t) + ai

[
max
[0,T ]

θ1(t) + max
[0,T ]

θ2(t)

]
, i = 1, 2.

Let ρ = max{ρ1, ρ2} and Fi(t, x, u1, u2) = ρui+fi(t, x, u1, u2), i = 1, 2. Then Fi(t, x, u1, u2)
is nondecreasing in ui ∈ [0, θi(t)]. Rewriting the Cauchy problem (2.1) as

ut(t, x) + ρu(t, x) = d1(J1 ∗ u(t, x)− u(t, x)) + F1(t, x, u, v),

vt(t, x) + ρv(t, x) = d2(J2 ∗ v(t, x)− v(t, x)) + F2(t, x, u, v),

u(0, x) = u0(x), v(0, x) = v0(x).

(2.3)

Then the solution of (2.1) satisfies the integral equation

u(t, x) = G1[u, v](t, x) := e−ρtP1(t)[u0](x)

+

∫ t

0
e−ρ(t−s)P1(t− s)[F1(s, ·, u(s, ·), v(s, ·))](x)ds,

v(t, x) = G2[u, v](t, x) := e−ρtP2(t)[v0](x)

+

∫ t

0
e−ρ(t−s)P2(t− s)[F2(s, ·, u(s, ·), v(s, ·))](x)ds.

(2.4)

It follows that any solution of (2.4) can be seen as a fixed-point of the operator G =
(G1, G2). To get the existence and uniqueness of solution (2.4), we first give the definition
of the upper and lower solutions.

Definition 2.1. A pair of vector functions (u1, u2), (u1, u2) ∈ C([0, T ),X+) with 0 < T <
∞ are called order upper and lower solutions of (2.4) if (u1, u2) ≥ (u1, u2) ≥ (0, 0) and
further satisfy 

u1(t, x)−G1[u1, u2](t, x) ≥ 0 ≥ u1(t, x)−G1[u1, u2](t, x),

u2(t, x)−G2[u1, u2](t, x) ≥ 0 ≥ u2(t, x)−G2[u1, u2](t, x).
(2.5)

Remark 2.1. If (u1, u2), (u1, u2) ∈ ([0, T )×R,R2) are C1 in t ∈ [0, T ) with (u1, u2)(t, ·),
(u1, u2)(t, ·) ∈ X+, and for t ∈ [0, T ), they satisfy

(ui)t(t, x)− di(J ∗ ui(t, x)− ui(t, x))− fi(t, x, ui(t, x), uj(t, x)) ≥ 0,

(ui)t(t, x)− di(J ∗ ui(t, x)− ui(t, x))− fi(t, x, ui(t, x), uj(t, x)) ≤ 0,

ui(0, x) ≥ ui(0, x), x ∈ R, i, j = 1, 2, i 6= j.
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Lemma 2.1. If (u0(x), v0(x)) ∈ Xr1×r2, then system (2.1) has a unique solution (u(t, x), v(t, x))
with (u(0, x), v(0, x)) = (u0(x), v0(x)) and (u(t, x), v(t, x)) ∈ C(R+,X+).

Proof. The proof of Lemma 2.1 is similar to Lemma 2.3 of [25], which will not be proved
here.

Lemma 2.2. The following statements hold.
(i) Let (u1, u2) ≤ (p(t), q(t)), (u1, u2) ≤ (p(t), q(t)) be a pair of upper and lower solu-
tions of (2.4) with (u1, u2)(t, ·), (u1, u2)(t, ·) ∈ X+. If (u1, u2)(0, x) ≥ (u1, u2)(0, x), then
(u1, u2)(t, x) ≥ (u1, u2)(t, x) for all (t, x) ∈ R+ × R.
(ii) Let (u1(t, x), u2(t, x)) and (v1(t, x), v2(t, x)) be two solutions of (2.4) with initial func-
tion (u1, u2)(0, x), (v1, v2)(0, x) ∈ Xr1×r2. If (u1, u2)(0, x) ≥ (v1, v2)(0, x) for x ∈ R, then
(u1, u2)(t, x) ≥ (v1, v2)(t, x) for all t > 0 and x ∈ R.

Proof. Lemma 2.1 in [34] can be utilized in a comparable manner to finish the proof.
Consequently, the details are omitted.

Based on the definition of time-periodic forced wave (φ(t, z), ϕ(t, z)) by (1.7), noting
that (φ(0, z), ϕ(0, z) = (u0(x), v0(x)) since z = x− ct = x when t = 0, we see that

(φ(t, z), ϕ(t, z)) = (u(t, z + ct), v(t, z + ct)) = T−ct[(u(t, ·), v(t, ·))](z),

where T−ct is a translation operator defined by T−ct[χ] = χ(·+ct),∀χ ∈ X+, and (u(t, x), v(t, x))
is the solutions of Cauchy problem (2.1).

For any (u0, v0) ∈ X+, denote

G(t)[(u0, v0)](x) := (G1(t),G2(t))[(u0, v0)](x)

= (T−ct ◦ (e−ρtP1(t)), T−ct ◦ (e−ρtP2(t)))[(u0, v0)](x).

It follows that the time-periodic forced wave satisfies that

(φ(t, z), ϕ(t, z)) = Ĝ[(φ(t, z), ϕ(t, z))] = G(t)[φ(0, ·), ϕ(0, ·)](z)

+

∫ t

0
G(t− s)[(Q1(s, ·, φ(s, ·), ϕ(s, ·)),Q2(s, ·, φ(s, ·), ϕ(s, ·)))](z)ds,

where 
Q1(t, z, u, v) = u(t, z)[ρ+ r1(t, z)− u(t, z) + a1v(t, z)],

Q2(t, z, u, v) = v(t, z)[ρ+ r2(t, z)− v(t, z) + a2u(t, z)].

Next, we establish the existence of time-periodic forced pulsating waves. In order to
construct the upper and lower solutions by using differential equations, we consider the
following system 

∂u

∂t
= d1[J1 ∗ u− u] + c

∂u

∂z
+ u[r1(t, z)− u+ a1v],

∂v

∂t
= d2[J2 ∗ v − v] + c

∂v

∂z
+ v[r2(t, z)− v + a2u].

(2.6)
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Definition 2.2. A pair of vector functions (u, v), (u, v) ∈ (R,X+) are called order upper
and lower solutions of (2.6) if (u, v) ≥ (u, v) ≥ (0, 0) and further satisfy

∂u

∂t
≥ d1[J1 ∗ u− v] + c

∂u

∂z
+ u[r1(t, z)− u+ a1v],

∂v

∂t
≥ d2[J2 ∗ v − v] + c

∂v

∂z
+ v[r2(t, z)− v + a2u],

∂u

∂t
≤ d1[J1 ∗ u− u] + c

∂u

∂z
+ u[r1(t, z)− u+ a1v],

∂v

∂t
≤ d2[J2 ∗ v − v] + c

∂v

∂z
+ v[r2(t, z)− v + a2u]

for z ∈ R except for a finite number of points.

Lemma 2.3. If (u, v) and (u, v) are a pair of upper and lower solutions for (2.6), then
we have

u(t, z) ≥ G1(t)[u(0, ·)](z) +

∫ t

0
G1(t− s)[Q1(s, ·, u(s, ·), v(s, ·))](z)ds, (2.7)

v(t, z) ≥ G2(t)[v(0, ·)](z) +

∫ t

0
G2(t− s)[Q2(s, ·, u(s, ·), v(s, ·))](z)ds, (2.8)

u(t, z) ≤ G1(t)[u(0, ·)](z) +

∫ t

0
G1(t− s)[Q1(s, ·, u(s, ·), v(s, ·))](z)ds, (2.9)

v(t, z) ≤ G2(t)[v(0, ·)](z) +

∫ t

0
G2(t− s)[Q2(s, ·, u(s, ·), v(s, ·))](z)ds. (2.10)

Proof. The proof of Lemma 2.3 is similar to the Claim (3.30) of [16], which will not be
proved here.

Now we are in a position to give the general existence result.

Lemma 2.4. Let c > 0 and assume that (u, v) and (u, v) ∈ C(R,X+) are a pair of
upper and lower solutions of (2.6) with (p(t), q(t)) ≥ (u, v) ≥ (u, v) ≥ (0, 0). Further, if
(u, v)(t, z) and (u, v)(t, z) are periodic in t ∈ R, then (2.6) admits a time-periodic forced
wave (φ(t, z), ϕ(t, z)) satisfying that

(u, v)(t, z) ≤ (φ(t, z), ϕ(t, z)) ≤ (u, v)(t, z), z ∈ R.

Proof. Define the following set

Γ = {(u, v)(t, z) ∈ C(R2,R2) : (u, v)(t+ T, z) = (u, v)(t, z),
(u, v)(t, z) ≤ (u, v)(t, z) ≤ (u, v)(t, z)}.
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Particularly, (u, v)(t, z), (u, v)(t, z) are in Γ. Now we consider the operator equation

(u, v)(t, x) = Ĝ[(u, v)(t, x)] = G(t)[(u, v)(0, ·)](x)

+

∫ t

0
G(t− s)[(Q1(s, ·, u(s, ·), v(s, ·)),Q2(s, ·, u(s, ·), v(s, ·)))](x)ds,

where
G(t) = (G1(t),G2(t)) = (T−ct ◦ (e−ρtP1(t)), T−ct ◦ (e−ρtP2(t))).

Let (u(0), v(0)) = (u, v) and (u(0), v(0)) = (u, v), then we define the iterations as follows

u(n+1) = Ĝ1
[(
u(n), v(n)

)]
, v(n+1) = Ĝ2

[(
u(n), v(n)

)]
,

u(n+1) = Ĝ1
[(
u(n), v(n)

)]
, v(n+1) = Ĝ2

[(
u(n), v(n)

)]
.

It then follows from Lemma 2.3 that

u ≤ u(n) ≤ u(n+1) ≤ u(n+1) ≤ u(n) ≤ u,

and

v ≤ v(n) ≤ v(n+1) ≤ v(n+1) ≤ v(n) ≤ v.

Together with the fact that u(n)(t, z), v(n)(t, z), u(n)(t, z), v(n)(t, z) are continuous for z ∈ R,
induce the following limits in the sense of point-to-point convergence with respect to z ∈ R,
for any fixed t ∈ (0, T ],

u(t, z) ≤ φ(t, z) := lim
n→∞

u(n)(t, z) ≤ u(t, z), (2.11)

v(t, z) ≤ ϕ(t, z) := lim
n→∞

v(n)(t, z) ≤ v(t, z). (2.12)

By Lebesgue’s dominated convergence theorem, we can get

(φ(t, z), ϕ(t, z)) = G(t)[φ(0, ·), ϕ(0, ·)](z)

+

∫ t

0
G(t− s)[(Q1(s, ·, φ(s, ·), ϕ(s, ·)),Q2(s, ·, φ(s, ·), ϕ(s, ·)))](z)ds.

(2.13)
In view of the fact that (u, v)(t, z), (u, v)(t, z) are time periodic in t, then we obtain a pair
of T -time periodic functions (φ(t, z), ϕ(t, z)).

In the following, we show that φ(t, z) and ϕ(t, z) are continuous in z ∈ R. Notice that
(φ(T, z), ϕ(T, z)) = (φ(0, z), ϕ(0, z)), ∀z ∈ R. By the definition of G(t), we see that

φ(0, z) = φ(T, z) = G1(T )[φ(0, ·)](z) +

∫ T

0
G1(T − s)[Q1(s, ·, φ(s, ·), ϕ(s, ·))](z)ds,

ϕ(0, z) = ϕ(T, z) = G2(T )[ϕ(0, ·)](z) +

∫ T

0
G2(T − s)[Q2(s, ·, φ(s, ·), ϕ(s, ·))](z)ds,
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which can be rewritten as

(I − G1(T ))[φ(0, ·)](z) =

∫ T

0
G1(T − s)[Q1(s, ·, φ(s, ·), ϕ(s, ·))](z)ds,

(I − G2(T ))[ϕ(0, ·)](z) =

∫ T

0
G2(T − s)[Q2(s, ·, φ(s, ·), ϕ(s, ·))](z)ds,

where I denote the identity map. By the similar argument in [16], we have ‖ Gi(t) ‖< 1
for each t > 0 and i = 1, 2. Thus,

[φ(0, ·)](z) = (I − G1(T ))−1
∫ T

0
G1(T − s)[Q1(s, ·, φ(s, ·), ϕ(s, ·))](z)ds

=

∞∑
k=0

(G1(T ))k
∫ T

0
G1(T − s)[Q1(s, ·, φ(s, ·), ϕ(s, ·))](z)ds,

[ϕ(0, ·)](z) = (I − G2(T ))−1
∫ T

0
G2(T − s)[Q2(s, ·, φ(s, ·), ϕ(s, ·))](z)ds

=
∞∑
k=0

(G2(T ))k
∫ T

0
G2(T − s)[Q2(s, ·, φ(s, ·), ϕ(s, ·))](z)ds.

Further, we have

φ(t, z) = G1(t)
∞∑
k=0

(G1(T ))k
∫ T

0
G1(T − s)[Q1(s, ·, φ(s, ·), ϕ(s, ·))](z)ds

+

∫ t

0
G1(t− s)[Q1(s, ·, φ(s, ·), ϕ(s, ·))](z)ds,

(2.14)

and

ϕ(t, z) = G2(t)
∞∑
k=0

(G2(T ))k
∫ T

0
G2(T − s)[Q2(s, ·, φ(s, ·), ϕ(s, ·))](z)ds

+

∫ t

0
G2(t− s)[Q2(s, ·, φ(s, ·), ϕ(s, ·))](z)ds.

(2.15)

Inspired by Lemma 3.2 of [33], we next show that

∫ t

0
Gi(t− s)[Qi(s, ·, φ(s, ·), ϕ(s, ·))](z)ds
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is continuous in z ∈ R. Come back to the definition of Gi(t), we know that∫ t

0
Gi(t− s)[Qi(s, ·, φ(s, ·), ϕ(s, ·))](z)ds

=

∫ t

0
e−(ρ+di)(t−s)

∞∑
k=0

(d(t− s))k

k!
aik[Qi(s, ·, φ(s, ·), ϕ(s, ·))](z + cs)ds

=
1

c

∫ ct+z

z
e−(ρ+di)(t−

η−z
c

)

×
∞∑
k=0

(
d
(
t− η−z

c

))k
k!

aik

(
Q
(
η − z
c

, η, φ

(
η − z
c

, η

)
, ϕ

(
η − z
c

, η

)))
dη.

Recall from (2.13) that (φ(t, ·), ϕ(t, ·)) are continuously differentiable in t, it then follows

that aik

(
Q
(
η − z
c

, η, φ

(
η − z
c

, η

)
, ϕ

(
η − z
c

, η

)))
is continuous in z ∈ R. This to-

gether with the above expression implies that
∫ t
0 Gi(t − s)[Qi(s, ·, φ(s, ·), ϕ(s, ·))](z)ds is

continuous in z ∈ R. Further, we can obtain that φ(t, z) and ϕ(t, z) are continuous in
z ∈ R by (2.14) and (2.15).

Next, we define
u(t, z) = p(t)(1 + ε1e

−γz), v(t, z) = q(t)(1 + ε2e
−γz),

u(t, z) = max{0, p(t)(1− ε3e−γz)}, v(t, z) = max{0, q(t)(1− ε4e−γz)}

for (t, z) ∈ R2, where γ > 0, ε1, ε4 > 0 and ε2, ε3 > 1. Meanwhile, εi(i = 1, 2, 3, 4) satisfy
that

ε1p(t) ≥ ε2a1q(t), ε4q(t) ≥ ε3a2p(t), ε3p(t) > ε4a1q(t), ε2q(t) > ε1a2p(t) (2.16)

for all t ∈ [0, T ].

Lemma 2.5. Under the assumptions (H1) and (H2), there exist γ > 0, εi > 0, i = 1, 2
and εi > 1, i = 3, 4 with (2.16) being valid such that (u(t, z), v(t, z)) and (u(t, z), v(t, z))
are a pair of upper and lower solutions of (2.6) with any c > 0.

Proof. We divide the proof by the following steps.
Step1. Show L1[(u, v)](t, z) ≥ 0, where

L1[(u, v)](t, z) := ut(t, z)− d1[J1 ∗ u(t, z)− u(t, z)]− cuz(t, z)

−u(t, z)[r1(t, z)− u(t, z) + a1v(t, z)].
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By u(t, z) = p(t)(1 + ε1e
−γz) and v(t, z) = q(t)(1 + ε2e

−γz), we have

L1[(u, v)](t, z)

= p′(t)(1 + ε1e
−γz)− ε1p(t)e−γz

(
d1

∫
R
J1(y)eγydy − d1

)
+ cγε1p(t)e

−γz

−p(t)(1 + ε1e
−γz)[r1(t, z)− p(t)(1 + ε1e

−γz) + a1q(t)(1 + ε2e
−γz)]

= p(t)(1 + ε1e
−γz)[r1(t,∞)− p(t) + a1q(t)]− ε1p(t)e−γz

(
d1

∫
R
J1(y)eγydy − d1

)
+cγε1p(t)e

−γz − p(t) [r1(t, z)− p(t)(1 + ε1e
−γz) + a1q(t)(1 + ε2e

−γz)]

−ε1p(t)e−γz [r1(t, z)− p(t)(1 + ε1e
−γz) + a1q(t)(1 + ε2e

−γz)]

= p(t)[r1(t,∞)− p(t) + a1q(t)− r1(t, z) + p(t)(1 + ε1e
−γz)− a1q(t)(1 + ε2e

−γz)]

+ε1p(t)e
−γz[−d1

∫
R
J1(y)eγydy + d1 + cγ + r1(t,∞)− p(t) + a1q(t)

−r1(t, z) + p(t)(1 + ε1e
−γz)− a1q(t)(1 + ε2e

−γz)]

= p(t)[r1(t,∞)− r1(t, z) + ε1p(t)e
−γz − ε2a1q(t)e−γz]

+ε1p(t)e
−γz[−d1

∫
R
J1(y)eγydy + d1 + cγ + r1(t,∞) + r1(t,∞)− r1(t, z)

+ε1pe
−γz − ε2a1q(t)e−γz].

By (H3), we see that

∫
R
J1(y)

eγy − 1

γ
dy → 0 as γ → 0. Hence, we can choose sufficiently

small γ > 0 such that

c > d1

∫
R
J1(y)

eγy − 1

γ
dy. (2.17)

This implies that

L1[(u, v)](t, z) ≥ p(t)(1 + ε1e
−γz)[r1(t,∞)− r1(t, z) + ε1p(t)e

−γz − ε2a1q(t)e−γz]

≥ 0,

since r1(t, z) is nondecreasing with respect to z ∈ R and ε1p(t) ≥ ε2a1q(t).
Similarly, we can get
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L2[(u, v)](t, z) ≥ q(t)(1 + ε2e
−γz)[r2(t,∞)− r2(t, z) + ε2q(t)e

−γz − ε1a2p(t)e−γz]

≥ 0,

where
L2[(u, v)](t, z) := vt(t, z)− d2[J2 ∗ v(t, z)− v(t, z)]− cvz(t, z)

−v(t, z)[r2(t, z)− v(t, z) + a2u(t, z)].

Step2. Show L1[(u, v)](t, z) ≤ 0. For z ≤ z3 = 1
γ ln ε3, since u(t, z) = 0 satisfies the

inequality above obviously, we only need to verify that L1[(u, v)](t, z) ≤ 0 for z > z3. In
fact, for z > z3, u(t, z) = p(t)(1− ε3e−γz) and v(t, z) ≥ q(t)(1− ε4e−γz). Consequently, by
(2.17), we have

L1[(u, v)](t, z) ≤ p′(t)(1− ε3e−γz) + ε3p(t)e
−γz

(
d1

∫
R
J1(y)eγydy − d1 − cγ

)
−p(t)(1− ε3e−γz)[r1(t, z)− p(t)(1− ε3e−γz) + a1q(t)(1− ε4e−γz)]

≤ p(t)(1− ε3e−γz)[r1(t,∞)− r1(t, z)− ε3p(t)e−γz + ε4a1q(t)e
−γz].

Recall the facts that ε3p(t) > ε4a1q(t), ε3 > 1 and lim
z→∞

ri(t,∞)− ri(t, z)
e−αiz

= Ai. Let γ > 0

be sufficiently small such that if z > z3, then r1(t,∞) − r1(t, z) ≤ (A1 + 1)e−α1z. This
yields that for z > z3 and γ < α1,

L1[(u, v)](t, z) ≤ p(t)(1− ε3e−γz)e−γz
[
(A1 + 1)e−(α1−γ)z − ε3p(t) + ε4a1q(t)

]
≤ p(t)(1− ε3e−γz)e−γz

[
(A1 + 1)e−(α1−γ)z3 − ε3p(t) + ε4a1q(t)

]
.

Note that since ε3 > 1, there holds

(A1 + 1)

(
1

ε3

)α1−γ
γ

→ 0 as γ → 0.

Therefore, we can choose γ > 0 small enough such that

(A1 + 1)

(
1

ε3

)α1−γ
γ

< p(t)ε3 − a1q(t)ε4.

It follows that L1[(u, v)](t, z) ≤ 0. Similarly, we can get L2[(u, v)](t, z) ≤ 0.
The proof is completed.

Theorem 2.1. Under the assumptions (H1)-(H3), then for any c > 0, (1.5) admits a
time-periodic forced pulsating wave (u(t, x), v(t, x)) = (φ(t, x− ct), ϕ(t, x− ct)) connecting
(0, 0) to (p(t), q(t)).
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Proof. From Lemma 2.5, (u(t, z), v(t, z)) and (u(t, z), v(t, z)) are a pair of upper and lower
solutions of (1.5) with any c > 0. It then follows from Lemma 2.4 that there is a time-
periodic forced pulsating wave (φ(t, z), ϕ(t, z)) ∈ Γ of (1.5). Next, we check that the
boundary condition

lim
z→−∞

(φ, ϕ)(t, z) = (0, 0), lim
z→∞

(φ, ϕ)(t, z) = (p(t), q(t)).

Since
lim

z→−∞
(u, v) = lim

z→−∞
(u, v) = (0, 0),

we have (φ(t,−∞), ϕ(t,−∞)) = (0, 0). Because (0, 0) ≤ (u, v) ≤ (φ, ϕ) ≤ (u, v), taking
the limit on z yields (0, 0) < (φ(t,∞), ϕ(t,∞)) ≤ (p(t), q(t)). Similar to Theorem 2.5 in
[41], we can get (φ(t, z), ϕ(t, z)) ∈ C1,2(R2,R2). By Barbǎlat′s theorem, we have

lim
z→∞

(φzz, ϕzz)(t, z) = lim
z→∞

(φz, ϕz)(t, z) = (0, 0).

Therefore, (φ(t,∞), ψ(t,∞)) is a positive periodic solution to the following equation{
φ
′
(t) = φ(θ1(t)− φ+ a1ϕ),

ϕ
′
(t) = ϕ(θ2(t)− ϕ+ a2φ).

Thus, (φ(t,∞), ψ(t,∞)) = (p(t), q(t)). This ends the proof.

3 Asymptotic behaviors of forced pulsating waves for (1.5)

In this section, we investigate the asymptotic behaviors of (U, V )(t, z) of (1.8)-(1.9)
around (0,0).

Lemma 3.1. Assume that (H1), (H2) and c > 0 hold. Then the asymptotic behaviors of
the forced pulsating wave solution (U, V )(t, z) as z → −∞ can be described as below(

U(t, z)
V (t, z)

)
∼
(
A1φ̌0(t)e

−µ1z

A2ψ̌0(t)e
−µ2z

)
, z → −∞, (3.1)

where Ai, i = 1, 2 are positive numbers, and µ1, µ2 are solutions of

d1

(∫
R
J1(y)eµ1ydy − 1

)
− cµ1 + β1(t) = 0,

d2

(∫
R
J2(y)eµ2ydy − 1

)
− cµ2 + β2(t) = 0.

(3.2)

Proof. We concentrate the case z → −∞. When z → −∞, both U and V tend to zero.
Therefore, the terms U2 and UV can be regarded as higher-order smallness and thus can
be discarded. This indicates that we need work on the linear system first.

By z → −∞ in (1.8) and by virtue of the boundary conditions (1.9) as well as the
assumptions on ri(t, z), i = 1, 2, the limiting system that follows can be deduced
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{
Ǔt = d1(J1 ∗ Ǔ − Ǔ) + cǓz + Ǔβ1(t), t ∈ R+, x ∈ R,
V̌t = d2(J2 ∗ V̌ − V̌ ) + cV̌z + V̌ β2(t), t ∈ R+, x ∈ R. (3.3)

Making an ansatz Ǔ(t, z) = A1φ̌0(t)e
−µ1z with φ̌0(t) being a T -periodic function.

When it is substituted into the first equation of (3.3), the corresponding eigenvalue problem
arises

φ̌′0(t)

φ̌0(t)
= d1

(∫
R
J1(y)eµ1ydy − 1

)
− cµ1 + β1(t). (3.4)

From (3.4), we can obtain

φ̌0(t) = φ̌0(0)exp

[∫ t

0

(
d1

(∫
R
J1(y)eµ1ydy − 1

)
− cµ1 + β1(s)

)
ds

]
,

where µ1 is the solution of

d1

(∫
R
J1(y)eµ1ydy − 1

)
− cµ1 + β1(t) = 0.

Similarly, making an ansatz V̌ (t, z) = A2ψ̌0(t)e
−µ2z with ψ̌0(t) being a T -periodic

function. When it is substituted into the second equation of (3.4), the corresponding
eigenvalue problem arises

ψ̌′0(t)

ψ̌0(t)
= d2

(∫
R
J2(y)eµ2ydy − 1

)
− cµ2 + β2(t). (3.5)

From (3.5), we have

ψ̌0(t) = ψ̌0(0)exp

[∫ t

0

(
d2

(∫
R
J2(y)eµ2ydy − 1

)
− cµ2 + β2(s)

)
ds

]
,

where µ2 is the solution of

d2

(∫
R
J2(y)eµ2ydy − 1

)
− cµ2 + β2(t) = 0.

Thus, the proof is completed.

4 Stability of forced pulsating waves for (1.5)

In this section, we study the stability of the forced pulsating wave of the equation
(1.5). First we consider the initial value problem
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∂u(t, x)

∂t
= d1(J1 ∗ u− u)(t, x) + u(t, x)(r1(t, x− ct)− u(t, x) + a1v(t, x)),

∂v(t, x)

∂t
= d2(J2 ∗ v − v)(t, x) + v(t, x)(r2(t, x− ct)− v(t, x) + a2u(t, x)),

(u(0, x), v(0, x)) = (u0(x), v0(x)),

(4.1)

where (u0(x), v0(x)) ∈ C(R,R2) satisfy

(0, 0) ≤ (u0(x), v0(x)) ≤ (p(0), q(0)), x ∈ R.

Inspired by Theorem 2.5 of [41], in the process of studying the stability of the forced
pulsating waves, we assume the conditions

a1q(t)− p(t) < 0, a2p(t)− q(t) < 0

are always true.

Lemma 4.1. For any x ∈ R, t ∈ R+, the mild solution of equation (4.1) is satisfied
u(t, x, u0(x), v0(x)) = P1(t)u0(x) +

∫ t

0
P1(t− s)[f1(s, ·, u(s, ·), v(s, ·))](x)ds,

v(t, x, u0(x), v0(x)) = P2(t)v0(x) +

∫ t

0
P2(t− s)[f2(s, ·, u(s, ·), v(s, ·))](x)ds.

Remark 4.1. Assume that (u(t, x, u0(x), v0(x)), v(t, x, u0(x), v0(x))), (u(t, x, ϕ0(x), ψ0(x)),
v(t, x, ϕ0(x), ψ0(x))) are mild solutions to (4.1). If

(0, 0) ≤ (u0(x), v0(x)) ≤ (ϕ0(x), ψ0(x)), t ∈ R+, x ∈ R,

then
(0, 0) ≤ (u(t, x, u0(x), v0(x)), v(t, x, u0(x), v0(x)))

≤ (u(t, x, ϕ0(x), ψ0(x)), v(t, x, ϕ0(x), ψ0(x))), t ∈ R+, x ∈ R.

In the following study, we abbreviate u0(x), v0(x), ϕ0(x), ψ0(x) as u0, v0, ϕ0, ψ0.

Lemma 4.2. Assume that (u(t, x, u0, v0), v(t, x, u0, v0)), (u(t, x, ϕ0, ψ0), v(t, x, ϕ0, ψ0)) are
mild solutions to (4.1). If (u0, v0), (ϕ0, ψ0) ∈ C(R,R), (ϕ0, ψ0) ≤ (u0, v0), then there exists
a positive continuous function θ̂(·), ϕ̂(·) defined on [0,+∞) such that

u(t, x, u0, v0)− u(t, x, ϕ0, ψ0) ≥ θ̂(M̂)

∫ z+1

z
[u(t0, y, u0, v0)− u(t0, y, ϕ0, ψ0)]dy ≥ 0,

v(t, x, u0, v0)− v(t, x, ϕ0, ψ0) ≥ ϕ̂(M̂)

∫ z+1

z
[v(t0, y, u0, v0)− v(t0, y, ϕ0, ψ0)]dy ≥ 0

for any M̂ > 0, x ∈ R and t > t0 ≥ 0.
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The proof of Lemma 4.2 is similar to Lemma 3.3 of [21], which will not be proved
here.

Lemma 4.3. Assume that (u(t, x, u0, v0), v(t, x, u0, v0)), (u(t, x, ϕ0, ψ0), v(t, x, ϕ0, ψ0)) are
mild solutions to (4.1). If (ϕ0, ψ0) ≤ (u0, v0) ≤ (p(0), q(0)), then

‖ u(t, x, u0, v0)− u(t, x, ϕ0, ψ0) ‖≤ min{eµt(‖ u0 − ϕ0 ‖ + ‖ v0 − ψ0 ‖), p(t))},

‖ v(t, x, u0, v0)− v(t, x, ϕ0, ψ0) ‖≤ min{eµt(‖ u0 − ϕ0 ‖ + ‖ v0 − ψ0 ‖), q(t))},

where ‖ · ‖ is the maximum value norm of C(R,R), µ = 2 max{M1,M2} > 0, and

M1 = max{ max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂uf1 |, max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂vf1 |},

M2 = max{ max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂uf2 |, max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂vf2 |}.

Proof. Assume d = min{d1, d2}, we have

‖ u(t, x, u0, v0)− u(t, x, ϕ0, ψ0) ‖

≤
∫ t

0
P1(t) ‖ f1(u(s, x, u0, v0), v(s, x, u0, v0))− f1(u(s, x, ϕ0, ψ0), v(s, x, ϕ0, ψ0)) ‖ ds

+ ‖ P1(t)u0 − P1(t)ϕ0 ‖

≤
∫ t

0
e−d(t−s)(max | ∂uf1 | · ‖ u(s, x, u0, v0)− u(s, x, ϕ0, ψ0) ‖

+ max | ∂vf1 | · ‖ v(s, x, u0, v0)− v(s, x, ϕ0, ψ0) ‖)ds+ P1(t) ‖ u0 − ϕ0 ‖

≤M1

∫ t

0
e−d(t−s)(‖ u(s, x, u0, v0)− u(s, x, ϕ0, ψ0) ‖ + ‖ v(s, x, u0, v0)− v(s, x, ϕ0, ψ0) ‖)ds

+e−dt ‖ u0 − ϕ0 ‖,

where

M1 = max{ max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂uf1 |, max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂vf1 |}.

Similarly, we can see

‖ v(t, x, u0, v0)− v(t, x, ϕ0, ψ0) ‖

≤M2

∫ t

0
e−d(t−s)(‖ u(s, x, u0, v0)− u(s, x, ϕ0, ψ0) ‖ + ‖ v(s, x, u0, v0)− v(s, x, ϕ0, ψ0) ‖)ds

+e−dt ‖ v0 − ψ0 ‖,

where

M2 = max{ max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂uf2 |, max
(t,u,v)∈[0,T ]×[0,p(t)]×[0,q(t)]

| ∂vf2 |}.

Further, we can obtain

‖ u(t, x, u0, v0)− u(t, x, ϕ0, ψ0) ‖ + ‖ v(t, x, u0, v0)− v(t, x, ϕ0, ψ0) ‖

≤ µ
∫ t

0
e−d(t−s)(‖ u(s, x, u0, v0)− u(s, x, ϕ0, ψ0) ‖ + ‖ v(s, x, u0, v0)− v(s, x, ϕ0, ψ0) ‖)ds

+e−dt(‖ u0 − ϕ0 ‖ + ‖ v0 − ψ0 ‖),
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i.e.,

edt(‖ u(t, x, u0, v0)− u(t, x, ϕ0, ψ0) ‖ + ‖ v(t, x, u0, v0)− v(t, x, ϕ0, ψ0) ‖)

≤ µ
∫ t

0
eds(‖ u(s, x, u0, v0)− u(s, x, ϕ0, ψ0) ‖ + ‖ v(s, x, u0, v0)− v(s, x, ϕ0, ψ0) ‖)ds

+ ‖ u0 − ϕ0 ‖ + ‖ v0 − ψ0 ‖,

where µ = 2 max{M1,M2}. By Gronwall’s inequality, we can establish

‖ u(t, x, u0, v0)− u(t, x, ϕ0, ψ0) ‖ + ‖ v(t, x, u0, v0)− v(t, x, ϕ0, ψ0) ‖
≤ eµt(‖ u0 − ϕ0 ‖ + ‖ v0 − ψ0 ‖).

Therefore,

‖ u(t, x, u0, v0)− u(t, x, ϕ0, ψ0) ‖≤ eµt(‖ u0 − ϕ0 ‖ + ‖ v0 − ψ0 ‖),
‖ v(t, x, u0, v0)− v(t, x, ϕ0, ψ0) ‖≤ eµt(‖ u0 − ϕ0 ‖ + ‖ v0 − ψ0 ‖).

Thus, the proof is completed.

Definition 4.1. For any t ∈ [0, T ), x ∈ R, if the continuous function (u(t, x), v(t, x)),
(u(t, x), v(t, x)) satisfy

ut(t, x) ≥ d1(J1 ∗ u− u)(t, x) + u(t, x)[r1(t, x− ct)− u(t, x) + a1v(t, x)], (4.2)

vt(t, x) ≥ d2(J2 ∗ v − v)(t, x) + v(t, x)[r2(t, x− ct)− v(t, x) + a2u(t, x)], (4.3)

ut(t, x) ≤ d1(J1 ∗ u− u)(t, x) + u(t, x)[r1(t, x− ct)− u(t, x) + a1v(t, x)], (4.4)

vt(t, x) ≤ d2(J2 ∗ v − v)(t, x) + v(t, x)[r2(t, x− ct)− v(t, x) + a2u(t, x)], (4.5)

then (u(t, x), v(t, x)), (u(t, x), v(t, x)) are a pair of upper and lower solutions of the system
(4.1).

Lemma 4.4. Assume that (u(t, x), v(t, x)), (u(t, x), v(t, x)) are a pair of upper and lower
solutions of the system (4.1). If (u(0, x), v(0, x)) ≤ (u(0, x), v(0, x)) ≤ (u(0, x), v(0, x)),
then (u(t, x), v(t, x)) and (u(t, x), v(t, x)) satisfy (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) for any
t ∈ [0, T ), x ∈ R. Therefore, (4.1) has a unique classical solution (u(t, x), v(t, x)) satisfies
(u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)).

Lemma 4.5. Assume that (u(t, x), v(t, x)), (µ(t, x), ν(t, x)), (w(t, x), ω(t, x)) are the upper
solutions of (4.1) and (u(t, x), v(t, x)), (µ(t, x), ν(t, x)), (w(t, x), ω(t, x)) are the lower solu-
tion of the system (4.1). They satisfy (u(0, x), v(0, x)) ≤ (u(0, x), v(0, x)) ≤ (u(0, x), v(0, x)),
(µ(0, x), ν(0, x)) ≤ (µ(0, x), ν(0, x)) ≤ (µ(0, x), ν(0, x)), (w(0, x), ω(0, x)) ≤ (w(0, x), ω(0, x))
≤ (w(0, x), ω(0, x)). If

(u(0, x), v(0, x)) ≤ min{(µ(0, x), ν(0, x)), (w(0, x), ω(0, x))},

then (µ(t, x), ν(t, x)), (w(t, x), ω(t, x)) and (u(t, x), v(t, x)) satisfy (u(t, x), v(t, x)) ≤
min{(µ(t, x), ν(t, x)), (w(t, x), ω(t, x))} for any t ∈ [0, T ), x ∈ R. Therefore, (4.1) has
a unique classical solution (u(t, x), v(t, x)) satisfies (u(t, x), v(t, x)) ≤ (u(t, x), v(t, x)) ≤
min{(µ(t, x), ν(t, x)), (w(t, x), ω(t, x))}.
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Lemma 4.4 and Lemma 4.5 can be derived from the classical theory of parabolic
equation mixed quasi-monotonic systems in Smoller [26] and Ye et al. [38], the proof is
omitted here.

Remark 4.2. By Lemma 4.5, min{(µ(t, x), ν(t, x)), (w(t, x), ω(t, x))} is still the upper
solution of the equation (4.1).

Theorem 4.1. If the initial function (u0(x), v0(x)) satisfies
(i) (0, 0) ≤ (u0(x), v0(x)) ≤ (p(0), q(0));
(ii) (u, v) ≤ (u0(x), v0(x)) ≤ (u, v), where (u, v), (u, v) are a set of lower and upper
solutions defined by Definition 4.1;
(iii) lim inf

x→∞
u0(x) > 0, lim inf

x→∞
v0(x) > 0;

(iv) lim
x→−∞

u0(x)

K1eλ1x
= 1, lim

x→−∞

v0(x)

K2eλ2x
= 1.

Let (Φc,Ψc) be a solution defined by Theorem 2.1, then we have

lim
t→∞

sup
x∈R

∣∣∣∣u(t, x, u0, v0)

Φc(t, x− ct)
− 1

∣∣∣∣ = 0, lim
t→∞

sup
x∈R

∣∣∣∣v(t, x, u0, v0)

Ψc(t, x− ct)
− 1

∣∣∣∣ = 0.

Next we use the following lemmas to prove Theorem 4.1.

Lemma 4.6. (Φc(t, z),Ψc(t, z)) is strictly monotonically increasing with respect to z, i.e.

Φc
z(t, z) > 0,Ψc

z(t, z) > 0.

Proof. The proof of Lemma 4.6 is similar to Lemma 2.4 of [41], which will not be proved
here.

Lemma 4.7. Assume ξ+ ∈ R and ε ∈ (0, ε], where ε ∈ (0, 1). If γ > 0 is sufficiently
small, σ > 0 and σγ is sufficiently large, then (u, v)(t, x) is an upper solution of (4.1),
where

u(t, x) = (1 + εe−γt)Φc(t, x− ct− ξ+ − εσe−γt),

v(t, x) = (1 + εe−γt)Ψc(t, x− ct− ξ+ − εσe−γt).

Proof. We only prove that u(t, x) satisfies inequality (4.2), since v(t, x) satisfies inequality
(4.3) that can be handled similarly.

Let τ = x− ct− ξ+ − εσe−γt, u(t, x) = (1 + εe−γt)Φc(t, τ), we can get

∂u(t, x)

∂t
= −εγe−γtΦc(t, τ) + (1 + εe−γt)Φc

t(t, τ)

−c(1 + εe−γt)Φc
τ (t, τ) + εσγe−γt(1 + εe−γt)Φc

τ (t, τ),

J1 ∗ u− u = (1 + εe−γt)(J1 ∗ Φc(t, τ)− Φc(t, τ)),

and

u(r1(t, x− ct)− u+ a1v)
= (1 + εe−γt)Φc(t, τ)[r1(t, x− ct)− (1 + εe−γt)Φc(t, τ) + a1(1 + εe−γt)Ψc(t, τ)]
= (1 + εe−γt)Φc(t, τ)(r1(t, x− ct)− Φc(t, τ) + a1Ψ

c(t, τ))
+εe−γt(1 + εe−γt)Φc(t, τ)(−Φc(t, τ) + a1Ψ

c(t, τ)).
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Therefore, we can get

d1(J1 ∗ u− u) + u(r1(t, x− ct)− u+ a1v)− ut
= d1(1 + εe−γt)(J1 ∗ Φc(t, τ)− Φc(t, τ))

+(1 + εe−γt)Φc(t, τ)(r1(t, x− ct)− Φc(t, τ) + a1Ψ
c(t, τ))

+εe−γt(1 + εe−γt)Φc(t, τ)(−Φc(t, τ) + a1Ψ
c(t, τ)) + εγe−γtΦc(t, τ)

−(1 + εe−γt)Φc
t(t, τ) + c(1 + εe−γt)Φc

τ (t, τ)− εσγe−γt(1 + εe−γt)Φc
τ (t, τ)

= (1 + εe−γt)[d1(J1 ∗ Φc − Φc)(t, τ) + cΦc
τ (t, τ)− Φc

t(t, τ) + Φc(t, τ)(r1(t, x− ct)− Φc(t, τ)
+a1Ψ

c(t, τ))] + εe−γt(1 + εe−γt)Φc(t, τ)(−Φc(t, τ) + a1Ψ
c(t, τ)) + εγe−γtΦc(t, τ)

−εσγe−γt(1 + εe−γt)Φc
τ (t, τ).

From the definition of the forced pulsating wave solution, we have

d1(J1 ∗Φc−Φc)(t, τ)+cΦc
τ (t, τ)−Φc

t(t, τ)+Φc(t, τ)[r1(t, x−ct)−Φc(t, τ)+a1Ψ
c(t, τ)] = 0.

In order to get (4.2), we need to prove

(1 + εe−γt)Φc(t, τ)[−Φc(t, τ) + a1Ψ
c(t, τ)] + γΦc(t, τ)− σγ(1 + εe−γt)Φc

τ (t, τ) ≤ 0,

in other words,
(1 + εe−γt)Φc(t, τ)[−Φc(t, τ) + a1Ψ

c(t, τ)]
≤ −γΦc(t, τ) + σγ(1 + εe−γt)Φc

τ (t, τ).
(4.6)

Take a sufficiently large positive integer H and verify it in three steps.
(I)Assume | τ |≥ H, when τ →∞,

−Φc(t, τ) + a1Ψ
c(t, τ)→ −p(t) + a1q(t).

For −p(t) + a1q(t) < 0, so we have

(1 + εe−γt)Φc(t, τ)[−Φc(t, τ) + a1Ψ
c(t, τ)] < 0.

Since γ > 0 is sufficiently small, σγ > 0 is sufficiently large and ε ∈ (0, 1), Φc
τ (t, τ) > 0,

then −γΦc(t, τ)→ 0 and σγ(1 + εe−γt)Φc
τ (t, τ)→∞. i.e.,

−γΦc(t, τ) + σγ(1 + εe−γt)Φc
τ (t, τ)→∞.

Thus, (4.6) is true;
(II)Choose | τ |≤ H, we can get −γΦc(t, τ) + σγ(1 + εe−γt)Φc

τ (t, τ)→∞ by the same
proof as (I). Due to Φc(t, τ), Ψc(t, τ) are bounded, then (1 + εe−γt)Φc(t, τ)[−Φc(t, τ) +
a1Ψ

c(t, τ)] are bounded. Therefore, (4.6) is true, i.e., u(t, x) satisfies inequality (4.2).
The similar method shows that if a2p(t) − q(t) < 0, then v(t, x) satisfies inequality

(4.3). Thus, (u, v)(t, x) is an upper solution of (4.1).

Lemma 4.8. Assume ξ− ∈ R and ε ∈ (0, ε] for ε ∈ (0, 1). If γ > 0 is sufficiently small,
σ > 0 and σγ is sufficiently large, then (u, v)(t, x) is a lower solution of (4.1), where

u(t, x) = (1− εe−γt)Φc(t, x− ct+ ξ− + εσe−γt),

v(t, x) = (1− εe−γt)Ψc(t, x− ct+ ξ− + εσe−γt).
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Proof. We only prove that u(t, x) satisfies inequality (4.4), since v(t, x) satisfies inequality
(4.5) that can be handled similarly.

Let ς = x− ct+ ξ− + εσe−γt. When u(t, x) = (1− εe−γt)Φc(t, ς), we can obtain

∂u(t, x)

∂t
= εγe−γtΦc(t, ς) + (1− εe−γt)Φc

t(t, ς)

−c(1− εe−γt)Φc
ς(t, ς)− εσγe−γt(1− εe−γt)Φc

ς(t, ς),

J1 ∗ u− u = (1− εe−γt)(J1 ∗ Φc(t, ς)− Φc(t, ς)),

and

u(r1(t, x− ct)− u+ a1v)
= (1− εe−γt)Φc(t, ς)[r1(t, x− ct)− (1− εe−γt)Φc(t, ς) + a1(1− εe−γt)Ψc(t, ς)]
= (1− εe−γt)Φc(t, ς)(r1(t, x− ct)− Φc(t, ς) + a1Ψ

c(t, ς))
−εe−γt(1− εe−γt)Φc(t, ς)(−Φc(t, ς) + a1Ψ

c(t, ς)).

Therefore, we can get

d1(J1 ∗ u− u) + u(r1(t, x− ct)− u+ a1v)− ut
= d1(1− εe−γt)(J1 ∗ Φc(t, ς)− Φc(t, ς))

+(1− εe−γt)Φc(t, ς)(r1(t, x− ct)− Φc(t, ς) + a1Ψ
c(t, ς))

−e−γt(1− εe−γt)Φc(t, ς)(−εΦc(t, ς) + a1εΨ
c(t, ς))− εγe−γtΦc(t, ς)

−(1− εe−γt)Φc
t(t, ς) + c(1− εe−γt)Φc

ς(t, ς) + εσγe−γt(1− εe−γt)Φc
ς(t, ς)

= (1− εe−γt)[d1(J1 ∗ Φc − Φc)(t, ς) + cΦc
ς(t, ς)− Φc

t(t, ς) + Φc(t, ς)(r1(t, x− ct)− Φc(t, ς)
+a1Ψ

c(t, ς))]− εe−γt(1− εe−γt)Φc(t, ς)(−Φc(t, ς) + a1Ψ
c(t, ς))− εγe−γtΦc(t, ς)

+εσγe−γt(1− εe−γt)Φc
ς(t, ς).

From the definition of the forced pulsating wave solution, we have

d1(J1 ∗Φc−Φc)(t, ς) + cΦc
ς(t, ς)−Φc

t(t, ς) + Φc(t, ς)[r1(t, x− ct)−Φc(t, ς) +a1Ψ
c(t, ς)] = 0.

In order to get (4.4), we need to prove

−(1− εe−γt)Φc(t, ς)[−Φc(t, ς) + a1Ψ
c(t, ς)]− γΦc(t, ς) + σγ(1− εe−γt)Φc

ς(t, ς) ≥ 0,

in other words,
(1− εe−γt)Φc(t, ς)[−Φc(t, ς) + a1Ψ

c(t, ς)]
≤ −γΦc(t, ς) + σγ(1− εe−γt)Φc

ς(t, ς).
(4.7)

Take a sufficiently large positive integer N and verify it in three steps.
(I)Assume | ς |≥ N , when ς →∞,

−Φc(t, ς) + a1Ψ
c(t, ς)→ −p(t) + a1q(t).

For −p(t) + a1q(t) < 0, so we have

(1− εe−γt)Φc(t, ς)[−Φc(t, ς) + a1Ψ
c(t, ς)] < 0
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Since γ > 0 is sufficiently small, σγ > 0 is sufficiently large and ε ∈ (0, 1), Φc
ς(t, ς) > 0,

then −γΦc(t, ς)→ 0 and σγ(1− εe−γt)Φc
ς(t, ς)→∞. i.e.,

−γΦc(t, ς) + σγ(1− εe−γt)Φc
ς(t, ς)→∞.

Thus, (4.7) is true.
(II)Choose | ς |≤ N , we can get −γΦc(t, ς) + σγ(1 − εe−γt)Φc

ς(t, ς) → ∞ by the
same proof as (I). Since Φc(t, ς), Ψc(t, ς) are bounded, then (1− εe−γt)Φc(t, ς)[−Φc(t, ς) +
a1Ψ

c(t, ς)] are bounded. Therefore, (4.7) is true, i.e., u(t, x) satisfies inequality (4.4).
The similar method shows that for a2p(t)− q(t) < 0, v(t, x) satisfies inequality (4.5).

Thus, (u, v)(t, x) is a lower solution of (4.1).

Lemma 4.9. For ε > 0, there is τ1 = τ1(ε), for any τ ≤ τ1, such that

inf
t≥0

u(t, τ − ct− 2ε, u0, v0) ≤ Φc(t, τ) ≤ sup
t≥0

u(t, τ − ct− 2ε, u0, v0),

inf
t≥0

v(t, τ − ct− 2ε, u0, v0) ≤ Ψc(t, τ) ≤ sup
t≥0

v(t, τ − ct− 2ε, u0, v0).
(4.8)

Proof. We know that
inf
t≥0

Φc(t, τ) ≤ Φc(t, τ) ≤ sup
t≥0

Φc(t, τ)

for any τ ∈ R. Since (Φc,Ψc) is a solution of (4.1), there is τ1 = τ1(ε), for any τ ≤ τ1,
such that

inf
t≥0

u(t, τ − ct− 2ε, u0, v0) ≤ inf
t≥0

Φc(t, τ),

sup
t≥0

u(t, τ − ct− 2ε, u0, v0) ≥ sup
t≥0

Φc(t, τ).

Thus, the first equation of (4.8) is true. The second inequality of (4.8) can be proved
similarly.

Lemma 4.10. There exist positive constants ε ∈ (0, 1), γ, σ, z0, such that

(1− εe−γt)Φc(t, ξ − z0 + εσe−γt) ≤ u(t, x, u0, v0) ≤ (1 + εe−γt)Φc(t, ξ + z0 − εσe−γt),

(1− εe−γt)Ψc(t, ξ − z0 + εσe−γt) ≤ v(t, x, u0, v0) ≤ (1 + εe−γt)Ψc(t, ξ + z0 − εσe−γt)
(4.9)

for all t ≥ 1, x ∈ R.
Then for all t > 1, we have

1− εe−γt ≤ inf
R

u(t, · − ct, u0, v0)
Φc(t, ·+ z0)

≤ sup
R

u(t, · − ct, u0, v0)
Φc(t, · − z0)

≤ 1 + εe−γt,

1− εe−γt ≤ inf
R

v(t, · − ct, u0, v0)
Ψc(t, ·+ z0)

≤ sup
R

v(t, · − ct, u0, v0)
Ψc(t, · − z0)

≤ 1 + εe−γt.

22



Proof. According to Lemma 4.2 and 4.7-4.9, there exist constants ε ∈ (0, 1), γ > 0, σ > 0,
z0 ≥ 0, such that

(1− εe−γt)Φc(t, ξ + z0 + εσe−γt) ≤ u(t, x, u0, v0) ≤ (1 + εe−γt)Φc(t, ξ − z0 − εσe−γt),

(1− εe−γt)Ψc(t, ξ + z0 + εσe−γt) ≤ v(t, x, u0, v0) ≤ (1 + εe−γt)Ψc(t, ξ − z0 − εσe−γt)

for all ξ ∈ R. At the same time, these constants also satisfy the conditions of Lemma
4.7-4.8 when z0 are sufficiently large. Therefore, the conclusion can be obtained from
Lemma 4.4.

Lemma 4.11. For all ε ∈ (0, 1), there exists a positive integer H0, such that

(1− ε)Φc(t, ξ + 3εσ) ≤ Φc(t, ξ) ≤ (1 + ε)Φc(t, ξ − 3εσ), ξ ≥ H0,

(1− ε)Ψc(t, ξ + 3εσ) ≤ Ψc(t, ξ) ≤ (1 + ε)Ψc(t, ξ − 3εσ), ξ ≥ H0.
(4.10)

Proof. Considering the function (1 + η)Φc(t, ξ − 3ησ), we can obtain

d

dη
{(1 + η)Φc(t, ξ − 3ησ)} = Φc(t, ξ − 3ησ)− 3σ(1 + η)Φc

η(t, ξ − 3ησ).

From the asymptotic behavior of the forced pulsating wave solution, there exists a
constant H0 > 0, such that

Φc(t, ξ − 3ησ)− 3σ(1 + η)Φc
η(t, ξ − 3ησ) ≥ 0

for any ξ ≥ H0. Therefore, we have

(1− ε)Φc(t, ξ + 3εσ) ≤ Φc(t, ξ) ≤ (1 + ε)Φc(t, ξ − 3εσ).

The second inequality of (4.10) can be proved similarly.

Lemma 4.12. Let z,H be the positive constants and (u+(t, x), v+(t, x)), (u−(t, x), v−(t, x))
be solutions to the initial value problem of (4.1). Define χ(y) = min{max{0,−y}, 1} for
any y ∈ R, and assume that the initial values satisfy

(u±(0, x− c), v±(0, x− c)) = (Φc(0, x± z)χ(x+H) + Φc(0, x± 2z)[1− χ(x+H)],
Ψc(0, x± z)χ(x+H) + Ψc(0, x± 2z)[1− χ(x+H)]).

Then there is a constant ε ∈ (0,min{12 ,
z
3σ}) such that

(u+(1, x− c), v+(1, x− c)) ≤ ((1 + ε)Φc(t, x+ 2z − 3εσ), (1 + ε)Ψc(t, x+ 2z − 3εσ)),

(u−(1, x− c), v−(1, x− c)) ≥ ((1− ε)Φc(t, x− 2z + 3εσ), (1− ε)Ψc(t, x− 2z + 3εσ))
(4.11)

for any x ∈ [−H,∞).
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Proof. According to the definition of χ(y), we can see (u+(0, x − c), v+(0, x − c)) ≤
(Φc(0, x + 2z),Ψc(0, x + 2z)). On the nonempty subset of R, we can obtain (u+(1, x −
c), v+(1, x− c)) ≤ (Φc(1, x + 2z),Ψc(1, x + 2z)) from the regularity of T (t) and the com-
parison principle. Let H0 satisfy the condition of Lemma 4.12. Since u+, v+,Φc,Ψc are
continuous functions, they are uniformly continuous on a bounded set. Then there exists
a constant ε ∈ (0,min{12 ,

z
3σ}) such that

(u+(1, x− c), v+(1, x− c)) ≤ ((1 + ε)Φc(t, x+ 2z − 3εσ), (1 + ε)Ψc(t, x+ 2z − 3εσ))

for x ∈ [−H,H0 − 2z].
From Lemma 4.11, we have that

(u+(t, x− c), v+(t, x− c))
< (Φc(t, x+ 2z),Ψc(t, x+ 2z))
≤ ((1 + ε)Φc(t, x+ 2z − 3εσ), (1 + ε)Ψc(t, x+ 2z − 3εσ))

for x ∈ [H0 − 2z,∞).
The similar method can be used to prove the second inequality of (4.11). Thus, the

proof is completed.

Now let us prove Theorem 4.1, we only proof lim
t→∞

sup
x∈R

∣∣∣∣u(t, x, u0, v0)

Φc(t, x− ct)
− 1

∣∣∣∣ = 0. The

rest can be proved similarly.

Proof. Define z+ := inf{z | z ∈ D+}, z− := inf{z | z ∈ D−}, where

D+ = {z ≥ 0 | lim sup
t→∞

sup
ξ∈R

u(t, ξ − ct, u0, v0)
Φc(t, ξ + 2z)

≤ 1},

D− = {z ≥ 0 | lim inf
t→∞

inf
ξ∈R

u(t, ξ − ct, u0, v0)
Φc(t, ξ − 2z)

≥ 1}.

According to Lemma 4.10, we can obtain [12z0,∞) ⊂ D±, z± ∈ [0, 12z0]. If z± = 0, the
proof is completed.

Assume z+ > 0, let z = z+, H = z+(1 − ξ1
2 ), ε ∈ (0,min{12 ,

z
3σ}). Since z+ ∈ D+,

there exists t′ ≥ 0 such that

sup
R

u(t′, ξ − ct′, u0, v0)
Φc(t′, ξ + 2z+)

≤ 1 +
ε

max
t∈[0,T )

p(t)
,

where 4ε = εe−µ min

{
min
t∈[0,T )

Φc(t,−H − 3εσ), min
t∈[0,T )

Ψc(t,−H − 3εσ)

}
, µ = 2 max{M1,M2} >

0.
From Lemma 4.12, for ξ ∈ [−H,∞), we can obtain

u(t′, ξ − ct′, u0, v0) ≤ Φc(t′, ξ + 2z+) + ε = u+(0, ξ − c) + ε.

24



For ξ ∈ (−∞,−H], we can see

u(t′, ξ − ct′, u0, v0) ≤ Φc(t′, ξ + z+) ≤ u+(0, ξ − c).

Thus,

u(t′ + 1, ξ − c(t′ + 1), u0, v0) ≤ u+(1, ξ − c) + 4εeµ ≤ u+(1, ξ − c) + εΦc(t′,−H − 3εσ).

By Lemma 4.12, we have that

u(t′ + 1, ξ − c(t′ + 1), u0, v0)
≤ u+(1, ξ − c) + εΦc(t′,−H − 3εσ)
≤ (1 + ε)Φc(t′, ξ + 2z+ − 3εσ) + εΦc(t′,−H − 3εσ)
≤ (1 + 2ε)Φc(t′, ξ + 2z+ − 3εσ)

for e−γt ≥ 1, ξ ∈ [−H,∞). Since 3εσ ≤ z+, we can see that

u(t′ + 1, ξ − c(t′ + 1), u0, v0) ≤ Φc(t′, ξ + z+) ≤ Φc(t′, ξ + 2z+ − 3εσ)

for ξ ∈ (−∞,−H]. Thus,

u(t′ + 1, ξ − c(t′ + 1)) ≤ min{(1 + 2ε)Φc(t′, ξ + 2z+ − 3εσ), p(t)}.

By the comparison principle, we can obtain

u(t′ + 1 + t, ξ − c(t′ + 1 + t), u0, v0) ≤ min{(1 + 2εe−γt)Φc(t′, ξ + 2z+ − εσ − 2εσe−γt), p(t)}.

If t ≥ 0, ξ ∈ R, we have

lim sup
t→∞

sup
ξ∈R

u(t, ξ − ct, u0, v0)
Φ(t, ξ + 2z+ − εσ)

≤ 1.

So we can see z+− εσ
2 ∈ D

+ from the inequality. It is a contradiction. Therefore, z+ = 0.
For the case z− = 0, we can prove it similarly.

Thus, the proof is completed.
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