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Abstract In this paper, we will study solutions of the (3+1)-dimensional generalized breaking solition
(gBS) equation which used to describe the interaction phenomena between Riemann wave and long wave
via three space variables in nonlinear media. Firstly, we transform (3+1)-dimensional gBS equation to the
bilinear form. Secondly, we apply the three-wave method to study bilinear form and then get many kinds
of solutions for (3+1)-dimensional gBS equation, concluding periodic solitary wave solutions, bell solitary
wave solutions, two-soliton solutions, breather lump wave solutions, et al. These solutions can describe
interaction between waves and are presented by 3D and 2D graphs. Finally, we analyze the resolving
thoughts of extended homoclinic test method and its correlation of three-wave method. Our results show
the significance and efficiency of these methods.
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1 Introduction

In recent years, many high-dimensional coeffcients nonlinear partial differential equations which can
better reflect complex and practical physical phenomena have been established in the fields of mechan-
ics, control processes, ecological and economic systems, chemical recycling systems and epidemiology.
Due to the fact that exact solutions can profoundly explain the physical model itself and predict the
evolution process of the actual physical state, more mathematicians and physicists investigated exact
solutions (including traveling waves and non-traveling waves) of high-dimensional nonlinear partial dif-
ferential equations with constant coefficients and variable coefficients [1-6]. Bilinear method, three-wave
method and extended homoclinic test method have been widely used to solve partial differential equations
(PDEs) [7-11]. Symbolic computations have been used in exploring lump solutions to nonlinear wave
equations since 2015 [12,13]. Moreover, Ma [14] used Darboux transformations with a general class of
Darboux matrices to explore soliton solutions. Refs. [15-17] applied extended Jacobian elliptic function
expansion approach, unified method, Sardar sub-equation method, etc. to study solutions of nonlinear
partial differential equations. Inspired by the above literature, our article will explore traveling wave
solutions of generalized breaking soliton equation that describes the phenomena of folded waves in nature.

The (2+1)-dimensional breaking soliton equation!®!

Ut + Qs + BUzzy + YUl + Mutty + Sugdz ™ uy =0 (1.1)
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is used to describe the interaction phenomena for propagation of long wave along the z-axis and prop-
agation of Riemann wave along the y-axis direction, where real constants «, 8, v and é are nonzero
hyper-parameters of the system, u(z,y,t) : R X R X R — R is the real function of variables z, y and t,
representing the Riemann wave. Xu [18] discussed the Painlev property and derived the bilinear form,
N-soliton solutions, BT, Lax pair and infinite conservation laws to (1.1) as A = 26 and vy = 3ad. By
introducing the nonzero seed solution, Hu [19] obtained the real non-static lumps, lump-soliton solutions
and other relevant exact solutions of (1.1). Based on the resulting Hirotas bilinear equation and the
extended homoclinic test theory, Ref. [20] constructed soliton solutions, homoclinic breather waves and
rogue waves. Via the Hirota method, Wronskian technique, extended modified rational expansion method,
Ref. [21,22] derived bilinear forms, N-soliton solutions, parallel solitons and so on. of Eq.(1.1).

Based on the (241)-dimensional breaking soliton equation (1.1), considering the case of discontinuity
in bottom depth, identifying the interaction phenomena between Riemann wave and long wave via three
space variables in nonlinear media, the following (3+1)-dimensional generalized breaking soliton (gBS)
equation

8x71(uzt + Uyt + Uzt) + QUzze + BUzzy + YUUz + Auuy + 5u18x71uy =0 (1.2)
is derived. This equation can be used to model more general wave problems as these arbitrary constants
might be related to more general physical conditions, which is of great importance in ocean engineering,
fiber optics, mathematical physics, fluid dynamics, et al. u(x,y, z,t) : RXRXRXR — R is the real function
of variables z, y, z and t, real constants «, 3, v, A and § are hyper-parameters of the system, Oz~ ! presents
integral operator of . Asy = —z, (1.2) can be reduced to (1.1). Refs. [23-25] have studied the lump-type
solutions, rogue wave type solutions, double-periodic solutions, breather-wave, multi-wave and periodic
lump-stripe interaction phenomena to (1.2). Ref. [26] introduced Bécklund transformation, Wronskian
solutions and interaction solutions to (1.2). Using bilinear neural network method, Refs. [27,28] studied
lump waves, lump-stripe solitons, rogue-type waves et al. for system (1.2). By using optimal system of
Lie subalgebra, Ref. [29] studied the symmetry analysis, closed-form invariant solutions and dynamical
wave structures of (1.2). Introducing the multi-dimensional Riemann theta function, Chen et al. [30]
constructed one-periodic wave solutions, two-periodic wave solutions, and gave asymptotic properties of
those solutions.

Letting A=0=30, y=6a, (1.2) can be transformed as follows

Ox ™ (Ut + Uyt + Ust) + QUgas + Bzay + 6auu, + 3Buuy + 3furdr”  uy = 0. (1.3)

In our paper, we investigate traveling wave solutions for (3+1)-dimensional gBS equation (1.3). Firstly,

we use ¥ = 2(In f)z to get the bilinear form of (1.3). Then, applying two forms of three-wave method "]

[12,13]

and the extended homoclinic test method , we obtain many exact solutions of (3+1)-dimensional gBS

equation (1.3).

2 Exact solutions of the (3+1)-dimensional gBS equation

Via the transformation v = 2(In f)zz, we will convert equation (1.3) into bilinear form
(D2Dyi + DyDi + D-Di + aDj + BD3D,)f - f
= of fozar — 40 s foae + 30 oz + Bf fozay — Bfaxafy — 3Bfr fray
+ 3B faafay + [for — fafo + [for — fufe + [ e — fofe = 0. (2.1)

2.1 First kind of three-wave method

In this subsection, using the three-wave method, we solve the solutions of (2.1) and further obtain
solutions of (1.3).



We set the first form of f with exp-function, trigonometric function and hyperbolic function

{ f1 = azcos & + as cosh &3 + asett + a5efg4, (2.2)

E=kix+Liy+miz+ct+d;,, =234,

where & = kix + Liy + miz + ¢it + di, ki, li, ma, ¢i, di, a; (i = 2,3,4) and a5 are some constants to be
determined below. In summary, the following conclusion can be drawn.

Theorem 2.1. Let fi1 be given by (2.2). If fi is the solution of bilinear equation (2.1), then combing
u = 2(In f1)ze, we get solutions of (3+1)-dimensional gBS equation (1.3) with the following form
—a2k§ cos &z + agkg cosh &3 + a4kief4 + askfef54

as cos &2 + asz cosh €5 + agefs + ase—84

—asks sin 52 + asks sinh €3 + a4k4e§4 — a5l€4e*£4

az cos &2 + asz cosh €3 + asefs + ase—%4

u(z,y,t) =2

—2( )2, (2.3)

where & = k;x + Liy + miz + cit + di, ki, li, mi, ci, di, a; (i = 2,3,4) and a5 satisfy some corresponding
relationships.

Next, taking (2.2) into (2.1) and combing it with linear independence, yields a system of determining
equations about parameters k;, l;, m;, ¢;, a; (1 = 2,3,4) and as as follows
azaz(aki + aki — 6ak3k3 + Bk3lo 4 Bk3ls — 38k3ksls — 3Bkalak3 + c3(ks + I3 + ma3)
—ca(k2 + 12 +m2)) =0,
azaz(4akeki — dakiks — Bk3ls + Bkila + 36kekils — 38k31aks + ca(ks + I3 +ma)
+c3(ka + 12 +m2)) =0,
azaq(aks + aki — 6ak3ki + Bk3lo 4 Bkily — 38k3kaly — 3Bkalak] + ca(ka + 1y + ma)
ca(ka + 12 +ma2)) =0,
azaq(4akeki — dakiks — Bk3ls + Bkily + 38kokily — 3Bk31aks + co(ka + la +my)
+ca(ke + 12 +m2)) =0,
azas(aks + aki — 6ak3k? + Bk3lo 4 Bkily — 38k3kaly — 3Bkalak] + ca(ka + 1y + ma)
—ca(ka + 12 +m2)) =0,
—asas(dakeki — dakiks — B3l + BEila + 3Bkokily — 38k3loka + co(ky + la + my)
+ea(ke + 12 +m2)) =0,
azaq(aks + aki + 6akik? + Bk3ls 4 Bkily 4 38k3kaly + 3Bkslsk] + ca(ka + 1y + ma)
+es(ks + 13 + m3)) =0,
—azas(dakskl + dakiks + BEily + BEils + 38kskily 4+ 38k3lsks + ca(ky + la + my)
+ea(ks + 13 +m3)) =0,
azas(aki + aki + 6akiki + Bk3ls 4 Bkily 4 38k3kaly + 3Bkslsk] + ca(ka + 1y + my)
+ea(ks + 13 +m3)) =0,
asas(dakski + dakiks + Bkils + Bkils + 3Bkskils + 3Bk3lsks + c3(ka + la + my)
+ea(ks + 13 +m3)) =0,
asas(16aki + 166k51s + 4ca(ka + 14 +ma)) + a3 (4aks + 48k51 — ca(ka + Iz +m2))
+a3(4aks + 4Bk31s + cs(ks + 13 +ms3)) = 0.

(2.4)

Then, solving equation (2.4) and combining (2.3), we obtain the following solutions of (3+1)-dimensional
gBS equation (1.3).



e Case 1

12:—%l€2, mo = agﬂkz,
13:—%]637 m3:agﬂk3,
14:—%1% ma = O‘gﬁm,

where a;, ki, ¢, di (i =2,3,4) and as are free constants.
Combing conditions of Case 1 with (2.3), yields the solution of (3+1)-dimensional gBS equation (1.3)

2(fa2k§ cos&a + ask? cosh &+ askett + askie%“)
as cos &2 + asz cosh €5 + agefs + ase—4

—asks sin & + aszks sinh &3 + a4k4eg4 — a5k467§4 )2 (2 5)
az cos &2 + az cosh €3 + ageés + aze—¢4 ’ ’

ul(:rv:%t) =

_2(

where & = k;x — %kiy + O‘Tgﬁkzz + it + di,y ag, ki, ¢i, di (1 =2,3,4) and as are free constants.
Furthermore, through detailed analysis, we can obtain the following solution.

(1.1) If a2 = 0 in Case 1, one can obtain the solution of (1.3)

2a3 ((k§ + ki)(a4ef4 + a5e_54) cosh &3 — 2k3k4(a4e€4 — a5e_54) sinh 53) + 8asask] + 2a2k3
(a3 cosh &3 + aseés + ase—€4)2 '

ua(w,y,t) =
(2.6)
Especially, if asas > 0, solution us can be rewritten as two-soliton solution

_ Fdas\/asas ((k§ + ki) cosh(&s4 + 01) cosh &3 — 2kska sinh(€4 + 61) sinh 53) + 8asask? + 2a3k?

us(@,y, t) = (a3 cosh & & 2 /aas cosh(Ex + 61))2 ’
(2.7)

where 61 = In, /%4, When a4 > 0, the sign of u3 takes the positive sign. Otherwise, it takes the negative

sign. Moreover, as a4 > 0, as > 0 with a3 > 0, or as < 0, a5 < 0 with a3z < 0, solution us does not have
singularities. Otherwise, solution us have singularities.
If asas < 0, solution u2 can be simplified as

+4a3+v/—asas ((k:§ + ki) sinh &5 cosh €3 — 2ksk4 cosh &5 sinh 53) + 8a4a5kf + 2a§k§

) 7t = . ) 2'8
(@) (a3 cosh &3 £ 2v/—asas sinh €5)? 28)
where &5 = &4 + 62 and 02 = In —Z—g. The sign of us takes the positive sign as as > 0. Otherwise, it

takes the negative sign.

Remark 2.1. If we take ks = tka, the solution us becomes hyperbolic function solutions

s (@, 1) = 8az+/azask3 cosh(&s F (€4 + 601)) + (8asas + 2a3)k3 ae >0 (2.9)
s\L 8t = (as cosh €3 + 2y/asas cosh(€4 + 61))2 P e '

—8as+/azasks cosh 0 8 2a3)k3
wo(z,y t) = —o0sv/asasks cosh(§s F (S 1 01)) + (Basas F2a3)k3 - (2.10)
(as cosh &3 — 24/asas cosh(&y + 61))?
Additionally, as ks = +ka, solution us reduces to

— 2 2y7.2
wr (2, y,t) = 8azy/—asasks sinh(&s F &) + (8asas + 2(13)14337 s >0, (2.11)

(a3 cosh &3 + 2v/—asas sinh &5)?

—8a3v/—asask3 sinh (€5 F &) + (8asas + 2a3)k3
(a3 cosh &3 — 2v/—asas sinh &5)? ’

as < 0. (2.12)

ug(x,y,t) =



Fig.l wg withas=a4=a5=1,y=2=0,
k3:2,k‘4:1,03:d3:1,64:d4:2.
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(¢) u~z-t with c3 =1 (d) u-2z-t with ez = —1 (e) u-z-t with cg = —2

Fig.2 hyperbolic function solutions us as
a3:a4:a5=1,m3:m4=—2, C4=1,d3=d4=0,1‘=y=0.

(f) u-t (g) u-z-t with sign “” (h) u-z-t with sign “4”

Fig.3 wg withaz=a4=a5=1,y=2=0,
k3:k‘4:1,63:2,04:1,d3:d4:1.

Solutions us —ug can be seen as combinations of two types of hyperbolic function solutions which reflect
the interaction between waves. In Fig.2, we fix one hyperbolic function and change another hyperbolic
function to better reflect the interaction between two solitary waves. Fig.3 reflects characteristics of

singular waves.



(1.2) If a3 = 0, combing Case 1 and (2.5), yields the solution of (1.3)

- 2(12(/@% — k%)(a4e5“ + a5efg4) cos &a + daskaks sin s (CL4e54 — a5efg4) + 8asaskl — 2a2k3
o (a2 cos&s + asefs + ase—84)2 ’

ug(x,y,t)

(2.13)
Moreover, as asas > 0, one can get the following solution from (2.13)

B +4as/asas ((ki — k%) cosh(&s + 01) cos &2 + 2kaka sinh(&4 + 61) sin 52) + 8asask? — 2a2k32

uro(2,y, 1) = (a2 cos & + 24 /aaas cosh(Ea + 61))2 ’
(2.14)

where 61 = In,/%%. As as > 0, the sign of uio takes positive. Otherwise, it takes the negative sign.
Moreover, as as > 0, a5 > 0, a2 + 2y/asas > 0 with 2 /asas — a2 > 0 or as <0, as <0, a2 — 2/asas <0
with —a2 —24/asas < 0, solution u1¢ does not have singularities. Otherwise, solution u10 have singularities.

In addition, if asas < 0, from (2.13), one obtains the solution

_ Fdazy/—asas ((ki — k%) sinh(&4 + 602) cos &2 + 2kaka cosh(€4 + 02) sin fg) + 8asaskl — 2a2k3

ui(z,y,t) = . )
(@ y,1) (a2 cos &2 £ 2¢/—aqas sinh(&4 + 62))2
(2.15)
where 02 = In —Z—:. As a4 > 0, the sign of ui; takes positive. Otherwise, it takes the negative sign.

Remark 2.2. Especially, for ko = tka, solution uio can be rewritten as breather lump wave solutions

(2,9, 1) = +8as+/asas k2 sinh (&4 + 01) sin &2 + (8asas — 2a§)k§ ae >0 (2.16)
12490 = (a2 cos & + 24/asas cosh(&s + 601))2 o ’ ’

- F8as~/azaska sinh(&4 + 601) sin &2 + (8asas — 2a§)k§

t 0. 2.17
us(z,9,%) (a2 cos &3 — 24/aaas cosh(Ea + 01))2 y Ga< (2.17)
If ko = tk4, the solution w11 reduces to breather lump wave solutions
— 2 cosh - —9a2)k2
s (2,9, 1) = +8a2+/—asasks cosh(€s + 02) sin &2 + (8asas a3)ks 4 >0, (2.18)

(a2 cos &2 + 2v/—aqas sinh(&4 + 62))? ’

- 2 : _9,2\1.2
s (2,1, 1) = F8azv/—asasks cosh(€s + 02) sin &z + (8asas — 2a3) k3 Can <o, (2.19)

(a2 cos &2 — 24/—aqas sinh(&4 + 62))?

where the sighs of u14 and uis take the symbol above as ko = k4, otherwise they take the symbol below.

Solutions w12 — u1s reflcet the interaction of periodic solutions and hyperbolic function solutions. The
solutions all have the characteristics of periodic solutions and hyperbolic function solutions, reflecting by
Fig.4. Moreover, we fix the periodic solution and change the type of hyperbolic function solution to show
the different interactions between two solutions in Fig.4 (j) and (k).

(i) w12 with ca = 2 (u-z-t) (j) wia with ¢4 = 1 (u-z-t)
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(k) w14 with ca = 2 (u-z-t) (1) u-t

Fig.4 periodic two solitary solution as
aQ:a4:a5:k2:k4:02:d2:d4:1,x:y:0.

(1.3) In Case 1, if a4 = 0, one obtains the solution of (1.3)

—2a3k2 + 2a2k3 + dasaskaks sin &, sinh &5 + (AL + Bl)tf54 + 2a2a3(k§ — k%) cos &3 cosh &3
(az cos&a + az cosh &3 + ase—54)2

U1e (:Ev Y, t) = s
(2.20)
where
A1 = 2asas (k?, =+ kz) cosh {3 + 4asasksks sinh 53,
Bl = 2a2a5(ki — k‘g) COSs 52 — 4a2a5k2k4 Sinfz.
Especially, if k3 = k% = k2 and & = &, yields the solution

uir(z,y,t) = 2k3 (a3 — a3 + 2asas) + 4askaks sin £ (as sinh & F ase™*?) (2.21)
17(%, Y, - (CLQ cos 62 + as cosh 63 + 056153)2 . .

Furthermore, one gets the solutions from (2.21) as follows

2k3(a3 — a3 + 2 4askaks/as(as + 2as) sin &2 sinh(&5 + 6
wis(z, y, t) = 3(a3 — a3 + 2asas) + 4askaks+/as(as + 2as) sin &2 sinh (&3 3,)7 a5 > 0, a5+ 2a5 > 0,

(a2 cos&2 + v/as(as + 2as) cosh(&s + 63))?

2k2(a2 — a2 + 2asas) — 4azkaks/as(as + 2as) sin & sinh (&5 + 6
wro (@, y, 1) = 2(a3 — a3 3a5) okoksy/as(as 5) sin & (&3 3)7 a5 <0, a5+ 2a5 < 0,

(a2 cos & — v/as(as + 2as) cosh(€s & 03))2
(2.23)

The signs of u1s and ui9 take positive as €3 = &4, and take negative sign as

(2.22)

ag
az+2as ’

&3 = —&4. Moreover, as a2 + \/as(as + 2as) > 0 and /as(as + 2as) — a2 > 0, solution uig does not have
singularities. As —as — y/as(as + 2a5) < 0 and —\/as(as + 2as) + a2 < 0, solution u19 possesses singu-

larities. Otherwise, They all have singularities. The subsequent partial results have similar properties, so

where 03 = In

we will not list one by one.

( t) ng (a§ — a% + 2&3(15) + daskoks/ —ag(ag =+ 2a5) sin &2 COSh(fg + 94)
U20(T,Y,t) =
20l Y (a2 cos&2 £ v/—as(as + 2as) sinh(&3 + 64))?

, a3 >0, az+2a5 <0,

(2.24)
2k3 (a3 — a3 + 2a: daskaoks~/— 2a5) si h(é; £ 6
o (2,4, 1) = 5 (a5 — a3 + 2asas) F dazkaks ag(ag.Jr as) sin & cosh(&s 4)7 a5 < 0, as+2a5 > 0,
(az coséa F \/—as (a3 =+ 2a5) Slnh(fg + 94))2
(2.25)
where 64 = In —a3i32a5. The signs of uzo and w21 take the symbol above as {3 = &4. Otherwise, they

take the symbol below as €3 = —¢&4.



(1.4) If a5 = 0 in Case 1, it yields solution of (1.3)

—2a3k2 + 2a2k3 + dasaskaks sin & sinh &3 + (A2 + Bg)e§4 + 2a2a3(k§ — k%) cos &3 cosh &3

t) =
u22(2, 9, 1) (az cos&a + as cosh &3 + aqsets)?

(2.26)
where
Ay = 2a3a4(k§ + kZ) cosh &3 — 4asaaksks sinh &3,
By = 2a2a4(ki — k%) cos 52 + 4asaskoks sin 52.
And then, if k2 = k2 = k7 and £3 = +&,, one gets the solution

u2s(w,y,t) = 2k3 (a3 — a3 + 2asas) + 4askaks sin &3 (a3 sinh & + age™?) (2.27)
23(Z,y,t) = (a2 cos & + as cosh €5 + asetés)? . '

Furthermore, solution was can be rewritten as the following periodic-solitary wave solutions

2k32 (ag — a2+ 2a3a4) + 4azkaks+/as(as + 2a4) sin &2 sinh (&3 £ 05)
(a2 cos&2 + v/as(as + 2a4) cosh(&s + 65))?

2k3 (a3 — a3 + 2 — daskaks~/az(as + 2a4) sin & sinh (&5 + 0
was (2,9, 1) = 3(a3 — a3 + 2asa4) — 4askaksr/as(as + 2a4) sin &2 sinh (&3 5)7 a5 <0, s+ 2as <0,

(a2 cos&2 — v/as(as + 2a4) cosh(&s £ 65))?
where 05 = ln«/%.

B 2k3 (a3 — a3 + 2a3a4) T 4askaks/—as(as + 2a4) sin &2 cosh(£3 T 6s)

uge(z,y,t) = ,as >0, as+2a4 <0,

(a2 cos & F \/—as(as + 2a4) sinh(&3 F 0g))?

2k3(a3 — a3 + 2 daskoks\/— 2a4) si h(és 40
war(z,y,t) = 5(a3 — a3 + 2azaq) F dazkaks as(as + 2a4) sin &2 cosh (&3 6)’ a5 < 0. as+2as > 0.

(a2 cos&2 F v/—as(as + 2a4) sinh(&3 + 05))?

uz4(a:,y,t) = , a3 >0, az + 2a4 > 0,

(2.28)

(2.29)

(2.30)

(2.31)
where 0 =1In , /— a3i32a4 .
(1.5) Combing az = az = 0 with Case 1, (1.3) has solution
8@40,5]{?4%
ty= —————. 2.32
u28($,y7 ) (CL4€54 + a5e_§4)2 ( )
Then, in the condition of asas > 0, one can obtain bell solitary wave solution
UuU29 (JJ, Y, t) = 2kisech2(£4 + 91) (233)
Similarly, as asas < 0, it yields singular travelling wave solution
uzo(x,y,t) = 2kicsch® (€4 + 62). (2.34)

(1.6) In Case 1, if az = a4 = 0, yields solution of (1.3)

_ 2a3k3 + 2asas ((k‘§ + k3) cosh &5 + 2ksks sinh §3)6_54 .
uz1(z,y,t) = (a3 cosh &3 + ase—64)2 ) (2.35)

Moreover, as asz(2as + asz) > 0, &3 = £&4, (2.35) becomes

_ 2a2k2 + 4dasask?

2
u32 (33, Y, t) = a3(2a5 T ag) sech (fg + 93). (236)



As as(2as + a3) < 0, & = £&4, solution uz1 can reduce to

wss (@, Y, 1) = 2a2k2 + dasask?
33T, Y, _—a3(2a5+a3)

(1.7) Combing a2 = as = 0 with Case 1, yields solution of (1.3)

csch?(€3 £ 6,).

B 2a3k2 + 2a3a4((k§ + kﬁ) cosh &3 — 2ksky sinh 53)654

t) =
u34($,y: ) ((13 COSh€3+a4€£4)2

Moreover, as a3(2a4 + az) > 0, &3 = &4, solution uss4 can reduce to

wss (@, Y, 1) = 2a2k2 + dasask?
35(T,Y,1) = —a3(2a4+a3)

As a3(2a4 + a3) < 0, &3 = £&4, (2.38) can be rewritten as

sech? (&3 £ 65).

_ 2a2k2 + 4dasask?

2
Uu3se (ZE, Y, t) - as (2@4 ¥ a3) csch (63 + 86)

(1.8) If a3 = a4 = 0 in Case 1, one gets solution of (1.3)

—2a3k3 + 2a2a5((kz — k:%) cos €o — 2kaky sin 52)6754

Y, t) =
u37(CC Y, ) (a2 COSfQ +a5e*54)2

_ —2a3k3 + 2azas(k3 + k3) cos(&2 + O7)e
o (a2 cos&a + ase—¢4)2

)

2koky
2 2 -
k47k2

where 07 satisfies tanf; =

(1.9) Similar to case (1.8), if a3 = as = 0 in Case 1, one obtains

—2a3k2 + 2a2a5((k2 — k%) cos &2 + 2kak4 sin 52)6_54

1) —
U38(x7ya ) (a2 COS£2+LL4€£4)2

—2a3k? + 2a2a4(k3 + k3) cos(&2 — 97)654
(a2 cos & + aqeba)? ’

(1.10) When Case 1 with a4 = a5 = 0, yields

—2a3k2 + 2a2k32 + 2asas ((k§ — k%) cos €2 cosh €3 + 4koks sin &2 sinh &3

t) =
uzg(x, Y, 1) (a2 cos & + a3 cosh €3)?

Especially, if k2 = tks, one gets the solution from (2.43)

wso(x,y,t) = 2k3 (a3 — a3) £ 4azasks sin &> sinh &3
O SE = (a2 cos &2 + as cosh €3)?

(m) u-t (n) u~z-t with co = 2 (o) u-z-t with co =1

F1g5 ’U,40aSazzl,a3=2,k‘gzkg:Cg:l,d2=d3:—1,y=2’:0.

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)



Solution u40 can be seen as the superposition of periodic solutions and hyperbolic function solutions.
Fig.5 shows the properties of periodicity and hyperbolic function. Moreover, (n) and (o) in Fig.5 reflect
the impact of parameter perturbations on the behavior of solution.

Remark 2.3. In solutions ui — 4o,

&2 = kox — %kzy + a’%ﬁkzz + cat + da,
§3 = ksx — %k3y+ @ ; 5k32 —+ C3t+d3,
s = kax — %kw + a‘%ﬁkﬂ + cat + da,

ai, ki, ¢i, d; (i =2,3,4) and as are free constants.

e Case 2
(]CQ + m2)C2 — 4ozk§

CL3=CL4=CL5=O7 l2:

45]6% — C2
or
@ 3
a3:a4:a5:0, mzzﬁszkg, 02:4ﬁk2,
or ﬂ
(67 o —
0,32(14:(1,5:07 lgz—*k% ma = ka.
s B

Combing the conditions of Case 2 with (2.3), it gets the periodic solution of (3+1)-dimensional gBS
equation (1.3)

uar (z,y,t) = —2k§(1 + tan 53), (2.45)
where

(kg + mQ)CQ — 4&]{)3
4ﬂkj§ — C2

& = ko + Yy + maz + cat + da,

k2, ma, co and d2 are free constants, or

€2 = kox + Loy + (Sky — ka)z + 4Bk3L + da,

B

ka2, l> and ds are free constants, or

«@ a—pf

52 = kox — *k2y+ k22+62t+d2,

B B

ka2, c2 and d2 are free constants.
e Case 3
a3 8aki + 48kils + 48K}l
a2:0, as = —, k‘3=k’4, C3 = C4 =

_2k4+13+l4+m3+m4‘
From condition of Case 3 and (2.3), yields the following two-soliton solution

40,4

2 2
2a3(k3 + ki) (ase™t + j2-e” %) cosh & — daskska sinh &3(ase™ — f2e™ %) + 2a3kF + 2a3k3

waz(x,y,t) = pe
(a3 cosh&s + asets + Fo-e~ta)?
5 cosh &3 cosh(€s + 0s) — sinh €3 sinh (&4 4 65) + 1
= :t4]€3
(cosh &3 £ cosh(&4 + 65))?
_ ﬂ:4k2 COSh(§4 + 0g — §3) +1
% (cosh €3 + cosh(€q + 65))2’

(2.46)
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where 0 = In |%|,

8ak? + 4B8k31s + 48k} 15 .
2ks + U3+ 1y +m3z + may
S8aki + 4B8k3ls + 48K315
2ks + 13 +1la+m3+may

53:k4x+13y—|—m32— + ds,

s = kaz + Loy + maz — t + dy,

as, a4, k2, ka, c2, l; and m; (i = 2,3,4) are free constants. As azas > 0, the sign of (2.46) takes positive.
Otherwise, it takes negative sign.

Solution u42 can be seen as the superposition of two hyperbolic function solutions. When taking the
positive and negative signs respectively, solution u42 shows different properties in Fig.6. When taking the
negative sign, the solution w4 reflects singularity properties in Fig.6(q).

(p) waz with sign “” (u-t) (q) waz with sign “” (u-y-t) (r) w42 with sign “4” (u-y-t)
FlgG a4:]€3:k4:—lg:d3:d4:1,03:C4:—4, a3:l4:2,x:z:0.

e Case 4

k3l2 4 cal a a—
(13:07 0,324040,57 k2202:0’m2:_w7 l4:_7k47 M4:J1€4.

Cq ﬁ /8

Following condition of Case 4 and (2.3), one gets the breather lump wave solution of Eq.(1.3)

_ :|:4a2\/m«k§ — k%) COSh(£4 + 91) CcoS €2 4+ 2koky sinh(£4 + 91) sin 52) + 2&% (ki — k%)

- (a2 cos &2 £ 24/asas cosh(&s + 61))?

_ +2((kf — k3) cosh(&s + 61) cos &2 + 2kaka sinh(&4 + 61) sin &) + 2(k7 — k3) (2.47)

(cos &2 + cosh(&s + 61))?
where 6; = In \/%7

waz(z,y,t)

&2 =y

. ﬁk‘ilz + C4l2t+ dz,
C4

§4:k4$—%k4y+a;ﬂ

a4, as, ka, l2, ca, d2 and dy4 are free constants. As az > 0, the sign of u43 takes positive. Otherwise, it

kaz + cat + dy,

takes the negative sign.
Especially, if k3 = k2, solution u43 can reduce to

. +4koky sinh(£4 + 91) sin 52
uaa (2,9, 8) = (cos&s £ cosh(€s + 61))2

(2.48)

e Case 5
ay =0, ka=k3 =0, l2 =-ma, I3=—mg3,

11



Bkima Bkims _ —aki — Bkil

- ko +1a+my’ “= ka+1a+my’ “= ka+1la+my’
Combing Case 5 with (2.3), one obtains the solution

C2

2ask3 (a3 cosh €3 + ao cos £2)e ™54
t) = 2.49
u45($7y> ) (a2 COS§2 +as COSh§3 +a56754)27 ( )
where
5ki’m2
= —may + maz + 2t + dy,
& M2y mes ka4 1y +ma 2
Bkims
0= — — % t+d-
&3 m3y+m32+k4+l4+m4 +ds,
aki + Bkila
=k l - t+d
€14 = kaw + lay + maz P par— + da,
az, as, as, ka, la, m; and d;(i = 2,3,4) are free constants.
e Case 6
a5:O, k2:k‘320, lzz—mz, 13:—m3,
Bkims _ Bkims _ —aki — Bkl

C2

:k4+l4+m4’ C37/64-&-l4+m47 = ka+1ls+mg

Similar to Case 5, from (2.3), we obtain the solution

2a4k3 (a3 cosh &3 + az cos £3)e®
o 2.50
U6 (2, Y, t) (a2 cos & + a3 cosh €3 + aqefs)?’ ( )

where &2, &3 and &4 are similar to Case 5, a2, a3, a4, k4, la, m; and d;(i = 2,3,4) are free constants.

e Case 7
k32=k3=0, 0220320, My = a;6k4,
o Cama o cms o
BES + ey Bk3 +ca’ B
From condition of Case 7 and (2.3), as asas > 0, we yield the following solution
war (2,9, 1) = 8asaski & 2k3\/asas cosh(&4 + 01)(az cos &2 + as cosh £3) (2.51)
A\ Y ) = (az CcOS 52 + a3 cosh 53 + Jasas COSh(£4 + 91))2 ’ ’
where
& = _7ﬁ]:§73—204 Y+ moz + da,
4
cam
& = fﬁy + msz + ds,
4
&4 = kaz — %kw + a’%ﬁkw ~+ cat + da,

a2, a3, a4, as, ka, ca, ma, ms and d;(i = 2, 3,4) are free constants.
In addition, as asas < 0, we can get the solution
Sasaski £ 2k3/— inh 9 h
was (w,y, 1) = 249K 1V —aaas sinh(& + 2)(a2.00s52 +as con &) (2.52)
(ag cos &2 + ag cosh &3 + /—aqas sinh(&4 + 01))
As a4 > 0, the sign of us7 and u4g takes positive. Otherwise, it takes the negative sign.
e Case 8

k2:k4=0, 02=C4=0,

12



lo =

__camy ___camy ! __gk m _af,Bk
Bk§+03’ 4 = ﬁkg'i‘CS’ 3 — ﬁ 3 3 — 6 3-

From condition of Case 8 and (2.3), as asas > 0, one gets the following multi-wave solution

_ 2a3k} + 2ask3(as cos & + \/aaas cosh(&q 4 61)) cosh &s

wao(@,9,1) = (a2 cos&s + as cosh & + /asas cosh(é4 + 01))2
where
&= —%y +maz + da,
&3 = ksx — %kgy + @ ; 5k32 + c3t + ds,
§a = —%y + maz +da,

az, as, a4, as, ks, cz, ma, ma and d;(i = 2, 3,4) are free constants.
In addition, as asas < 0, we can get the multi-wave solution

oo (. 1) — 203K5  23k8 (a2 c0s € & v/=aaas sinh(& + 1)) cosh &
OB Y = (az cos &2 + az cosh &3 £ v/—asas sinh(&4 4 61))?

As a4 > 0, the sign of u49 and uso takes positive. Otherwise, it takes the negative sign.

(2.53)

(2.54)

Solutions w49 and usp can be seen as the interaction of three waves. When the positive and negative
signs are taken in the solution wu4g, the solution exhibits different properties. When taking the positive
sign, the solution uag shows periodicity and hyperbolic function properties in Fig.7(s). Otherwise, w49 has

periodicity and singularity properties in Fig.7(t).

(s) uag with sign “47 (u-y-t) (t) uag with sign “” (u-y-t)
F1g7 U49 asa2:a3:a4:1, k3:1, 6321, l3=—1, l2:l4=—%,$:2§:0.
e Case 9
k‘3 = k’4 = 0, Co = 0, lz = —%k27

03(m2 — QTZBICQ) l . _ 04(m2 — O(Tzﬁkz)
[ T
From condition of Case 9 and (2.3), one obtains multi-wave solution

( b= 2a2k3 — 2a2k3 (a3 cosh &3 + \/asas cosh(&4 + 01)) cos &2
Ys1\TH ¥, 5 = (a2 cos &2 + a3 cosh €3 & \/azas cosh(&s + 601))2 ’

l3 = —ms3 =

asas > 0,
where

&2 = kax — %kﬂ/ + moz + d2,

13
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ma — 28y mo — Pk

2
€ =c3 Bk;f y M; z4t) + ds,
a—/f a—pf
mo — 7’62 mo — 7](?2
&1 = cal Bk; y— Bkgﬂ z+t) + da,

az, as, a4, as, ka2, ma, c3, ca and d;(i = 2,3,4) are free constants.
In addition, as asas < 0, we can get the solution

U (J,’ t) . 2(12]4,‘3 — 2a2k§ (a3 cosh 53 + /—asas Sinh(§4 =+ 91)) CcoS fz
s Yo ) = (a2 cos&2 + az cosh &3 + /—aaas sinh(&s + 61))? ’

As a4 > 0, the sign of us1 and us2 takes positive. Otherwise, it takes the negative sign.
e Case 10

(2.56)

k2:l2:m2:(32:0, kgIO, 64207

cs(ma — “Tgﬂkzl) @
%13 l4 = _7]{?4.
Bk B

From condition of Case 10 and (2.3), one gets the two-soliton solution

132—7713:—

( b= +2k2. /asas cosh(&s4 + 01)(as cosh &3 + az cos&2) + Sasask?
Uss\T: Y, 1) = (a2 cos &2 + as cosh &3 + /azas cosh(&s + 01))2 ’

aqas > 0, (2.57)

where

&2 = da,

C,(mfﬂk) C,(m,ﬂk)

3 4 B 4 n 3 4 B 4
oy Y B

&y = kax — %Imy + maz + da,

&3 = c3(— z+1t) + ds,

az, as, a4, as, ka2, ma, c3, ca and d;(i = 2,3,4) are free constants.
In addition, as asas < 0, we can get the solution

wsa(,,1) = +2k3\/—asas sinh(£4 + 61) (a3 cosh €3 + ag cos &2) + Sasask]
sl Yo t) = (a2 cos&2 + az cosh &3 + /—aaas sinh(&s + 61))?

As a4 > 0, the sign of us1 and us2 takes positive. Otherwise, it takes the negative sign.

(2.58)

Remark 2.4. Moreover, if « = 8 in Remark 2.3, we can get solutions u1 — u4o for the (2+1)-dimensional
generalized breaking soliton (gBS) equation

83771(“11 + Uyt) + QUgze + QUzay + 6auu, + 3auuy + 304u1-8m71uy =0. (2.59)

In o = f in the third condition of Case 2, Case 4, Case 7, Case 8, Case 9, Case 10 with ms = ms = my4 = 0,
yields the periodic solutions, breather lump wave solutions, hyperbolic function solitary solutions w41, u4s3,
ugsa and usr — uss of Eq.(2.59).

If ma = 0 in the first condition of Case 2, ka = —g in the second condition of Case 2, ms = mq = 0
in Case 3, ma = mg = 0 in Case 5 and Case 6, yields the periodic solution u41, two-soliton solution ua2,
bell soliton solutions uss and uae of (2+1)-dimensional generalized breaking soliton (gBS) equation

aafl(umt + Uyt) + QUgzs + Blzey + 6auu, + 3Puuy + BBqumfluy =0. (2.60)

In (2.59) and (2.60), u(z,y,t) : R x R x R — R is the real functions of the variables x, y and t, real
constants « and 3 are hyper-parameters of the system, Azt presents integral operator of x.
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2.2 Application of other methods

In this section, we will analyze other three methods for obtaining exact solutions.
Firstly, for the three-wave method, we can set the second form of f with exp-function, trigonometric

function and hyperbolic function

(2.61)

fo = assinés + assinh & + ase5t + ase ™4,
G =kizx+Liy+miz+cat+di, 1=2,3,4,

where a;, ki, l;, ms, ¢;, d; and as are some constants to be determined below. Taking (2.61) into (2.1), we
let the coefficients of sin &3 sinh &3, ¢ sin &2, e ™% sin&,, €% sinh &2, e ™% sinh £, cos & cosh &3, €54 cos &,
e % cos &y, €% cosh &, e cosh &, and the constant term are zero, and then yield a system of determining
equations about parameters a;, ki, l;, m;, ¢;, d; and as which is the same as (2.4). Similarly, the following
conclusion can be drawn.

Theorem 2.2. Let fa be given by (2.61). If f2 is the solution of bilinear equation (2.1), then combing
u = 2(In f2)ze, we get the following form of solutions for (3+1)-dimensional gBS equation (1.3)

—agk? sin & + ask? sinh &s + askZe®t + askle %
az sin &z + ag sinh &3 + aset4 + ase—%4

asks cos €2 + asks sinh 53 + (1414,‘4654 — a5k4e_54
a2 sin &3 + agz sinh €3 + aq4ef4 + ase—84

u(z,y,t) =2

—2( )%, (2.62)

where & = kix + Liy + miz + cit + ds, ki, li, ma, ¢i, di, a; (i =2,3,4) and as are some constants.

Similar to Cases 1-10, we can obtain 54 kinds of exact solutions.
Secondly, applying the extended homoclinic test method, we set an auxiliary function of the following
form

{ f3 =1+ b1e® cos €1 + b2e®® + bze cosh &y, (2.63)

Si=kix+Liy+miz+ct+di, 1=1,2,
where & = kixz + Ly + miz + cit + di, bi, ki, li, mi, ¢i, di (¢ = 1,2) and bz are some constants to be
determined below. We can see the forms of fie®* and f; are similar. Then, taking (2.63) into (1.3), we
get the system of coefficients

)+ B3y + k3l2 — 3kTkala — 3k1l1k3) + ca(k2 + 12 +m2) —ci(kr + 11 +m1)) =0
—o(4k1 k5 — 4Kk3ko) — B3l — k3la — 3k liko 4 3k1k312) — co(kr + 11 +ma) — c1(ke + 12 +m2)) =0,
ki + k3 + 6kTk3) + B(k311 + k3lo + 3k kala + 3k1l1k3) + ca(ka + 1o +m2) +ci(ki + 1 +m1)) =0
4k k5 — 4KkSko) 4 B(Kk311 + K3la 4 3kl ko 4 3k1k312) + co(kr + 11 +ma) + c1 (ke + 12 +m2)) =0,
bibs(—4aki — 4BkiL) = 0,

bibs(ci(k1 + 11 +m1)) =0,

bo(16aks + 166k31s + 4ca (ko + 12 +ma)) + b3 (dakt + 48k311 — c1 (k1 + 11 +ma)) + b3 (4akt + 48k31

+c1(k1 + 1 +mq)) =0.
(2.64)

. . 2
With the solution u(z,t) = 2’3”§+f“ and the relation between f1 and fs, we get the solution same as
3

2

2

2
u(zx,t) = th“”;%f”, which just make some changes to the coefficients.
1

Finally, if assuming (2.63) as

{ fo=1+0b1e?sin & + boe®*? + bze* sinh &, (2.65)

G =kic+liy+miz+cet+d;, i=1,2
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and carrying (2.65) into Eq.(1.3), we yield a system of determining equations about parameters k;, l;, m;,
¢, bi (1=1,2) and bs same as (2.64).

3 Conclusion

In this paper, we derive a series of new traveling wave solutions of (3+1)-generalized breaking solition
equation by two types of three-wave methods and two types of the extended homoclinic test methods.
These solutions contain bell solitary solutions, singular solitary solutions, periodic-solitary solutions and
many interaction solutions between periodic waves and hyperbolic solutions. Our work contains the
breather lump wave solutions [23] and multi-wave soluions [24]. If «, 8, m2, m3 and m4 take appropriate
values, we can obtain many solutions of (2+1)-dimensional generalized breaking soliton (gBS) equation
(2.59) and (2.60). We also analyze other three methods which can be used to study solutions and obtain
more traveling wave solutions. Our results greatly enrich and expand the existing results. From our
research process, we find that three wave method and extended homoclinic test method are two convenient,
feasible, and efficient methods for solving exact solutions of nonlinear partial differential equations.

Moreover, we investigate several wave patterns for the free parameter values and also show the in-
teraction of two waves propagation with various 2D and 3D graphs. Fig.3, Fig.4 and Fig.6 show the
interaction of periodic waves and hyperbolic waves. Fig.1, Fig.2 and Fig.5 describe the interaction be-
tween two hyperbolic waves. The obtained results are very helpful in the study of interaction phenomena
in mathematical physics, fluid dynamics, engineering and many other various areas of scientific fields.
In the future, we will apply three-wave method to study exact solutions for four-component nonlinear
Schrodinger integrable models and novel nonlocal nonlinear Schrédinger equations. Moreover, we will
attempt to explore traveling wave solutions of (3+1)-dimensional gBS equation by other methods.
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