
New traveling wave solutions of the (3+1)-dimensional

generalized breaking soliton equation

Xiaoxiao Zheng∗, Xiaolin Si, Yanxiao Lu

School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China

Abstract In this paper, we will study solutions of the (3+1)-dimensional generalized breaking solition

(gBS) equation which used to describe the interaction phenomena between Riemann wave and long wave

via three space variables in nonlinear media. Firstly, we transform (3+1)-dimensional gBS equation to the

bilinear form. Secondly, we apply the three-wave method to study bilinear form and then get many kinds

of solutions for (3+1)-dimensional gBS equation, concluding periodic solitary wave solutions, bell solitary

wave solutions, two-soliton solutions, breather lump wave solutions, et al. These solutions can describe

interaction between waves and are presented by 3D and 2D graphs. Finally, we analyze the resolving

thoughts of extended homoclinic test method and its correlation of three-wave method. Our results show

the significance and efficiency of these methods.
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1 Introduction

In recent years, many high-dimensional coeffcients nonlinear partial differential equations which can

better reflect complex and practical physical phenomena have been established in the fields of mechan-

ics, control processes, ecological and economic systems, chemical recycling systems and epidemiology.

Due to the fact that exact solutions can profoundly explain the physical model itself and predict the

evolution process of the actual physical state, more mathematicians and physicists investigated exact

solutions (including traveling waves and non-traveling waves) of high-dimensional nonlinear partial dif-

ferential equations with constant coefficients and variable coefficients [1–6]. Bilinear method, three-wave

method and extended homoclinic test method have been widely used to solve partial differential equations

(PDEs) [7–11]. Symbolic computations have been used in exploring lump solutions to nonlinear wave

equations since 2015 [12, 13]. Moreover, Ma [14] used Darboux transformations with a general class of

Darboux matrices to explore soliton solutions. Refs. [15–17] applied extended Jacobian elliptic function

expansion approach, unified method, Sardar sub-equation method, etc. to study solutions of nonlinear

partial differential equations. Inspired by the above literature, our article will explore traveling wave

solutions of generalized breaking soliton equation that describes the phenomena of folded waves in nature.

The (2+1)-dimensional breaking soliton equation[9]

ut + αuxxx + βuxxy + γuux + λuuy + δux∂x
−1uy = 0 (1.1)
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is used to describe the interaction phenomena for propagation of long wave along the x-axis and prop-

agation of Riemann wave along the y-axis direction, where real constants α, β, γ and δ are nonzero

hyper-parameters of the system, u(x, y, t) : R × R × R → R is the real function of variables x, y and t,

representing the Riemann wave. Xu [18] discussed the Painlev property and derived the bilinear form,

N-soliton solutions, BT, Lax pair and infinite conservation laws to (1.1) as λ = 2δ and βγ = 3αδ. By

introducing the nonzero seed solution, Hu [19] obtained the real non-static lumps, lump-soliton solutions

and other relevant exact solutions of (1.1). Based on the resulting Hirotas bilinear equation and the

extended homoclinic test theory, Ref. [20] constructed soliton solutions, homoclinic breather waves and

rogue waves. Via the Hirota method, Wronskian technique, extended modified rational expansion method,

Ref. [21,22] derived bilinear forms, N-soliton solutions, parallel solitons and so on. of Eq.(1.1).

Based on the (2+1)-dimensional breaking soliton equation (1.1), considering the case of discontinuity

in bottom depth, identifying the interaction phenomena between Riemann wave and long wave via three

space variables in nonlinear media, the following (3+1)-dimensional generalized breaking soliton (gBS)

equation

∂x−1(uxt + uyt + uzt) + αuxxx + βuxxy + γuux + λuuy + δux∂x
−1uy = 0 (1.2)

is derived. This equation can be used to model more general wave problems as these arbitrary constants

might be related to more general physical conditions, which is of great importance in ocean engineering,

fiber optics, mathematical physics, fluid dynamics, et al. u(x, y, z, t) : R×R×R×R→ R is the real function

of variables x, y, z and t, real constants α, β, γ, λ and δ are hyper-parameters of the system, ∂x−1 presents

integral operator of x. As y = −z, (1.2) can be reduced to (1.1). Refs. [23–25] have studied the lump-type

solutions, rogue wave type solutions, double-periodic solutions, breather-wave, multi-wave and periodic

lump-stripe interaction phenomena to (1.2). Ref. [26] introduced Bäcklund transformation, Wronskian

solutions and interaction solutions to (1.2). Using bilinear neural network method, Refs. [27, 28] studied

lump waves, lump-stripe solitons, rogue-type waves et al. for system (1.2). By using optimal system of

Lie subalgebra, Ref. [29] studied the symmetry analysis, closed-form invariant solutions and dynamical

wave structures of (1.2). Introducing the multi-dimensional Riemann theta function, Chen et al. [30]

constructed one-periodic wave solutions, two-periodic wave solutions, and gave asymptotic properties of

those solutions.

Letting λ=δ=3β, γ=6α, (1.2) can be transformed as follows

∂x−1(uxt + uyt + uzt) + αuxxx + βuxxy + 6αuux + 3βuuy + 3βux∂x
−1uy = 0. (1.3)

In our paper, we investigate traveling wave solutions for (3+1)-dimensional gBS equation (1.3). Firstly,

we use u = 2(ln f)xx to get the bilinear form of (1.3). Then, applying two forms of three-wave method[11]

and the extended homoclinic test method[12,13], we obtain many exact solutions of (3+1)-dimensional gBS

equation (1.3).

2 Exact solutions of the (3+1)-dimensional gBS equation

Via the transformation u = 2(ln f)xx, we will convert equation (1.3) into bilinear form

(DxDt +DyDt +DzDt + αD4
x + βD3

xDy)f · f

= αffxxxx − 4αfxfxxx + 3αf2
xx + βffxxxy − βfxxxfy − 3βfxfxxy

+ 3βfxxfxy + ffxt − fxft + ffyt − fyft + ffzt − fzft = 0. (2.1)

2.1 First kind of three-wave method

In this subsection, using the three-wave method, we solve the solutions of (2.1) and further obtain

solutions of (1.3).
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We set the first form of f with exp-function, trigonometric function and hyperbolic function{
f1 = a2 cos ξ2 + a3 cosh ξ3 + a4eξ4 + a5e−ξ4 ,

ξi = kix+ liy +miz + cit+ di, i = 2, 3, 4,
(2.2)

where ξi = kix + liy + miz + cit + di, ki, li, mi, ci, di, ai (i = 2, 3, 4) and a5 are some constants to be

determined below. In summary, the following conclusion can be drawn.

Theorem 2.1. Let f1 be given by (2.2). If f1 is the solution of bilinear equation (2.1), then combing

u = 2(ln f1)xx, we get solutions of (3+1)-dimensional gBS equation (1.3) with the following form

u(x, y, t) = 2
−a2k22 cos ξ2 + a3k

2
3 cosh ξ3 + a4k

2
4eξ4 + a5k

2
4e−ξ4

a2 cos ξ2 + a3 cosh ξ3 + a4eξ4 + a5e−ξ4

− 2(
−a2k2 sin ξ2 + a3k3 sinh ξ3 + a4k4eξ4 − a5k4e−ξ4

a2 cos ξ2 + a3 cosh ξ3 + a4eξ4 + a5e−ξ4
)2, (2.3)

where ξi = kix+ liy +miz + cit+ di, ki, li, mi, ci, di, ai (i = 2, 3, 4) and a5 satisfy some corresponding

relationships.

Next, taking (2.2) into (2.1) and combing it with linear independence, yields a system of determining

equations about parameters ki, li, mi, ci, ai (i = 2, 3, 4) and a5 as follows

a2a3(αk43 + αk42 − 6αk22k
2
3 + βk32l2 + βk33l3 − 3βk22k3l3 − 3βk2l2k

2
3 + c3(k3 + l3 +m3)

−c2(k2 + l2 +m2)) = 0,

a2a3(4αk2k
3
3 − 4αk32k3 − βk32l3 + βk33l2 + 3βk2k

2
3l3 − 3βk22l2k3 + c2(k3 + l3 +m3)

+c3(k2 + l2 +m2)) = 0,

a2a4(αk42 + αk44 − 6αk22k
2
4 + βk32l2 + βk34l4 − 3βk22k4l4 − 3βk2l2k

2
4 + c4(k4 + l4 +m4)

c2(k2 + l2 +m2)) = 0,

a2a4(4αk2k
3
4 − 4αk32k4 − βk32l4 + βk34l2 + 3βk2k

2
4l4 − 3βk22l2k4 + c2(k4 + l4 +m4)

+c4(k2 + l2 +m2)) = 0,

a2a5(αk42 + αk44 − 6αk22k
2
4 + βk32l2 + βk34l4 − 3βk22k4l4 − 3βk2l2k

2
4 + c4(k4 + l4 +m4)

−c2(k2 + l2 +m2)) = 0,

−a2a5(4αk2k
3
4 − 4αk32k4 − βk32l4 + βk34l2 + 3βk2k

2
4l4 − 3βk22l2k4 + c2(k4 + l4 +m4)

+c4(k2 + l2 +m2)) = 0,

a3a4(αk43 + αk44 + 6αk23k
2
4 + βk33l3 + βk34l4 + 3βk23k4l4 + 3βk3l3k

2
4 + c4(k4 + l4 +m4)

+c3(k3 + l3 +m3)) = 0,

−a3a4(4αk3k
3
4 + 4αk33k4 + βk33l4 + βk34l3 + 3βk3k

2
4l4 + 3βk23l3k4 + c3(k4 + l4 +m4)

+c4(k3 + l3 +m3)) = 0,

a3a5(αk43 + αk44 + 6αk23k
2
4 + βk33l3 + βk34l4 + 3βk23k4l4 + 3βk3l3k

2
4 + c4(k4 + l4 +m4)

+c3(k3 + l3 +m3)) = 0,

a3a5(4αk3k
3
4 + 4αk33k4 + βk33l4 + βk34l3 + 3βk3k

2
4l4 + 3βk23l3k4 + c3(k4 + l4 +m4)

+c4(k3 + l3 +m3)) = 0,

a4a5(16αk44 + 16βk34l4 + 4c4(k4 + l4 +m4)) + a22(4αk42 + 4βk32l2 − c2(k2 + l2 +m2))

+a23(4αk43 + 4βk33l3 + c3(k3 + l3 +m3)) = 0.

(2.4)

Then, solving equation (2.4) and combining (2.3), we obtain the following solutions of (3+1)-dimensional

gBS equation (1.3).
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• Case 1

l2 = −α
β
k2, m2 =

α− β
β

k2,

l3 = −α
β
k3, m3 =

α− β
β

k3,

l4 = −α
β
k4, m4 =

α− β
β

k4,

where ai, ki, ci, di (i = 2, 3, 4) and a5 are free constants.

Combing conditions of Case 1 with (2.3), yields the solution of (3+1)-dimensional gBS equation (1.3)

u1(x, y, t) =
2(−a2k22 cos ξ2 + a3k

2
3 cosh ξ3 + a4k

2
4eξ4 + a5k

2
4e−ξ4)

a2 cos ξ2 + a3 cosh ξ3 + a4eξ4 + a5e−ξ4

− 2(
−a2k2 sin ξ2 + a3k3 sinh ξ3 + a4k4eξ4 − a5k4e−ξ4

a2 cos ξ2 + a3 cosh ξ3 + a4eξ4 + a5e−ξ4
)2, (2.5)

where ξi = kix− α
β
kiy + α−β

β
kiz + cit+ di, ai, ki, ci, di (i = 2, 3, 4) and a5 are free constants.

Furthermore, through detailed analysis, we can obtain the following solution.

(1.1) If a2 = 0 in Case 1, one can obtain the solution of (1.3)

u2(x, y, t) =
2a3
(
(k23 + k24)(a4eξ4 + a5e−ξ4) cosh ξ3 − 2k3k4(a4eξ4 − a5e−ξ4) sinh ξ3

)
+ 8a4a5k

2
4 + 2a23k

2
3

(a3 cosh ξ3 + a4eξ4 + a5e−ξ4)2
.

(2.6)

Especially, if a4a5 > 0, solution u2 can be rewritten as two-soliton solution

u3(x, y, t) =
±4a3

√
a4a5

(
(k23 + k24) cosh(ξ4 + θ1) cosh ξ3 − 2k3k4 sinh(ξ4 + θ1) sinh ξ3

)
+ 8a4a5k

2
4 + 2a23k

2
3

(a3 cosh ξ3 ± 2
√
a4a5 cosh(ξ4 + θ1))2

,

(2.7)

where θ1 = ln
√

a4
a5

. When a4 > 0, the sign of u3 takes the positive sign. Otherwise, it takes the negative

sign. Moreover, as a4 > 0, a5 > 0 with a3 > 0, or a4 < 0, a5 < 0 with a3 < 0, solution u3 does not have

singularities. Otherwise, solution u3 have singularities.

If a4a5 < 0, solution u2 can be simplified as

u4(x, y, t) =
±4a3

√
−a4a5

(
(k23 + k24) sinh ξ5 cosh ξ3 − 2k3k4 cosh ξ5 sinh ξ3

)
+ 8a4a5k

2
4 + 2a23k

2
3

(a3 cosh ξ3 ± 2
√
−a4a5 sinh ξ5)2

, (2.8)

where ξ5 = ξ4 + θ2 and θ2 = ln
√
−a4
a5

. The sign of u4 takes the positive sign as a4 > 0. Otherwise, it

takes the negative sign.

Remark 2.1. If we take k3 = ±k4, the solution u3 becomes hyperbolic function solutions

u5(x, y, t) =
8a3
√
a4a5k

2
3 cosh(ξ3 ∓ (ξ4 + θ1)) + (8a4a5 + 2a23)k23

(a3 cosh ξ3 + 2
√
a4a5 cosh(ξ4 + θ1))2

, a4 > 0, (2.9)

u6(x, y, t) =
−8a3

√
a4a5k

2
3 cosh(ξ3 ∓ (ξ4 + θ1)) + (8a4a5 + 2a23)k23

(a3 cosh ξ3 − 2
√
a4a5 cosh(ξ4 + θ1))2

, a4 < 0. (2.10)

Additionally, as k3 = ±k4, solution u4 reduces to

u7(x, y, t) =
8a3
√
−a4a5k23 sinh(ξ5 ∓ ξ3) + (8a4a5 + 2a23)k23

(a3 cosh ξ3 + 2
√
−a4a5 sinh ξ5)2

, a4 > 0, (2.11)

u8(x, y, t) =
−8a3

√
−a4a5k23 sinh(ξ5 ∓ ξ3) + (8a4a5 + 2a23)k23
(a3 cosh ξ3 − 2

√
−a4a5 sinh ξ5)2

, a4 < 0. (2.12)
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(a) u-t (b) u-x-t

Fig.1 u2 with a3 = a4 = a5 = 1, y = z = 0,

k3 = 2, k4 = 1, c3 = d3 = 1, c4 = d4 = 2.

(c) u-z-t with c3 = 1 (d) u-z-t with c3 = −1 (e) u-z-t with c3 = −2

Fig.2 hyperbolic function solutions u5 as

a3 = a4 = a5 = 1, m3 = m4 = −2, c4 = 1, d3 = d4 = 0, x = y = 0.

(f) u-t (g) u-x-t with sign “-” (h) u-x-t with sign “+”

Fig.3 u6 with a3 = a4 = a5 = 1, y = z = 0,

k3 = k4 = 1, c3 = 2, c4 = 1, d3 = d4 = 1.

Solutions u2−u8 can be seen as combinations of two types of hyperbolic function solutions which reflect

the interaction between waves. In Fig.2, we fix one hyperbolic function and change another hyperbolic

function to better reflect the interaction between two solitary waves. Fig.3 reflects characteristics of

singular waves.
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(1.2) If a3 = 0, combing Case 1 and (2.5), yields the solution of (1.3)

u9(x, y, t) =
2a2(k24 − k22)(a4eξ4 + a5e−ξ4) cos ξ2 + 4a2k2k4 sin ξ2(a4eξ4 − a5e−ξ4) + 8a4a5k

2
4 − 2a22k

2
2

(a2 cos ξ2 + a4eξ4 + a5e−ξ4)2
.

(2.13)

Moreover, as a4a5 > 0, one can get the following solution from (2.13)

u10(x, y, t) =
±4a2

√
a4a5

(
(k24 − k22) cosh(ξ4 + θ1) cos ξ2 + 2k2k4 sinh(ξ4 + θ1) sin ξ2

)
+ 8a4a5k

2
4 − 2a22k

2
2

(a2 cos ξ2 ± 2
√
a4a5 cosh(ξ4 + θ1))2

,

(2.14)

where θ1 = ln
√

a4
a5

. As a4 > 0, the sign of u10 takes positive. Otherwise, it takes the negative sign.

Moreover, as a4 > 0, a5 > 0, a2 + 2
√
a4a5 > 0 with 2

√
a4a5 − a2 > 0 or a4 < 0, a5 < 0, a2 − 2

√
a4a5 < 0

with −a2−2
√
a4a5 < 0, solution u10 does not have singularities. Otherwise, solution u10 have singularities.

In addition, if a4a5 < 0, from (2.13), one obtains the solution

u11(x, y, t) =
±4a2

√
−a4a5

(
(k24 − k22) sinh(ξ4 + θ2) cos ξ2 + 2k2k4 cosh(ξ4 + θ2) sin ξ2

)
+ 8a4a5k

2
4 − 2a22k

2
2

(a2 cos ξ2 ± 2
√
−a4a5 sinh(ξ4 + θ2))2

,

(2.15)

where θ2 = ln
√
−a4
a5

. As a4 > 0, the sign of u11 takes positive. Otherwise, it takes the negative sign.

Remark 2.2. Especially, for k2 = ±k4, solution u10 can be rewritten as breather lump wave solutions

u12(x, y, t) =
±8a2

√
a4a5k

2
2 sinh(ξ4 + θ1) sin ξ2 + (8a4a5 − 2a22)k22

(a2 cos ξ2 + 2
√
a4a5 cosh(ξ4 + θ1))2

, a4 > 0, (2.16)

u13(x, y, t) =
∓8a2

√
a4a5k

2
2 sinh(ξ4 + θ1) sin ξ2 + (8a4a5 − 2a22)k22

(a2 cos ξ2 − 2
√
a4a5 cosh(ξ4 + θ1))2

, a4 < 0. (2.17)

If k2 = ±k4, the solution u11 reduces to breather lump wave solutions

u14(x, y, t) =
±8a2

√
−a4a5k22 cosh(ξ4 + θ2) sin ξ2 + (8a4a5 − 2a22)k22

(a2 cos ξ2 + 2
√
−a4a5 sinh(ξ4 + θ2))2

, a4 > 0, (2.18)

u15(x, y, t) =
∓8a2

√
−a4a5k22 cosh(ξ4 + θ2) sin ξ2 + (8a4a5 − 2a22)k22

(a2 cos ξ2 − 2
√
−a4a5 sinh(ξ4 + θ2))2

, a4 < 0, (2.19)

where the sighs of u14 and u15 take the symbol above as k2 = k4, otherwise they take the symbol below.

Solutions u12−u15 reflcet the interaction of periodic solutions and hyperbolic function solutions. The

solutions all have the characteristics of periodic solutions and hyperbolic function solutions, reflecting by

Fig.4. Moreover, we fix the periodic solution and change the type of hyperbolic function solution to show

the different interactions between two solutions in Fig.4 (j) and (k).

(i) u12 with c4 = 2 (u-x-t) (j) u14 with c4 = 1 (u-x-t)

6



(k) u14 with c4 = 2 (u-x-t) (l) u-t

Fig.4 periodic two solitary solution as

a2 = a4 = a5 = k2 = k4 = c2 = d2 = d4 = 1, x = y = 0.

(1.3) In Case 1, if a4 = 0, one obtains the solution of (1.3)

u16(x, y, t) =
−2a22k

2
2 + 2a23k

2
3 + 4a2a3k2k3 sin ξ2 sinh ξ3 + (A1 +B1)e−ξ4 + 2a2a3(k23 − k22) cos ξ2 cosh ξ3

(a2 cos ξ2 + a3 cosh ξ3 + a5e−ξ4)2
,

(2.20)

where

A1 = 2a3a5(k23 + k24) cosh ξ3 + 4a3a5k3k4 sinh ξ3,

B1 = 2a2a5(k24 − k22) cos ξ2 − 4a2a5k2k4 sin ξ2.

Especially, if k22 = k23 = k24 and ξ3 = ±ξ4, yields the solution

u17(x, y, t) =
2k22(a23 − a22 + 2a3a5) + 4a2k2k3 sin ξ2(a3 sinh ξ3 ∓ a5e∓ξ3)

(a2 cos ξ2 + a3 cosh ξ3 + a5e∓ξ3)2
. (2.21)

Furthermore, one gets the solutions from (2.21) as follows

u18(x, y, t) =
2k22(a23 − a22 + 2a3a5) + 4a2k2k3

√
a3(a3 + 2a5) sin ξ2 sinh(ξ3 ± θ3)

(a2 cos ξ2 +
√
a3(a3 + 2a5) cosh(ξ3 ± θ3))2

, a3 > 0, a3 + 2a5 > 0,

(2.22)

u19(x, y, t) =
2k22(a23 − a22 + 2a3a5)− 4a2k2k3

√
a3(a3 + 2a5) sin ξ2 sinh(ξ3 ± θ3)

(a2 cos ξ2 −
√
a3(a3 + 2a5) cosh(ξ3 ± θ3))2

, a3 < 0, a3 + 2a5 < 0,

(2.23)

where θ3 = ln
√

a3
a3+2a5

. The signs of u18 and u19 take positive as ξ3 = ξ4, and take negative sign as

ξ3 = −ξ4. Moreover, as a2 +
√
a3(a3 + 2a5) > 0 and

√
a3(a3 + 2a5)− a2 > 0, solution u18 does not have

singularities. As −a2 −
√
a3(a3 + 2a5) < 0 and −

√
a3(a3 + 2a5) + a2 < 0, solution u19 possesses singu-

larities. Otherwise, They all have singularities. The subsequent partial results have similar properties, so

we will not list one by one.

u20(x, y, t) =
2k22(a23 − a22 + 2a3a5)± 4a2k2k3

√
−a3(a3 + 2a5) sin ξ2 cosh(ξ3 ± θ4)

(a2 cos ξ2 ±
√
−a3(a3 + 2a5) sinh(ξ3 ± θ4))2

, a3 > 0, a3 +2a5 < 0,

(2.24)

u21(x, y, t) =
2k22(a23 − a22 + 2a3a5)∓ 4a2k2k3

√
−a3(a3 + 2a5) sin ξ2 cosh(ξ3 ± θ4)

(a2 cos ξ2 ∓
√
−a3(a3 + 2a5) sinh(ξ3 ± θ4))2

, a3 < 0, a3 +2a5 > 0,

(2.25)

where θ4 = ln
√
− a3
a3+2a5

. The signs of u20 and u21 take the symbol above as ξ3 = ξ4. Otherwise, they

take the symbol below as ξ3 = −ξ4.
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(1.4) If a5 = 0 in Case 1, it yields solution of (1.3)

u22(x, y, t) =
−2a22k

2
2 + 2a23k

2
3 + 4a2a3k2k3 sin ξ2 sinh ξ3 + (A2 +B2)eξ4 + 2a2a3(k23 − k22) cos ξ2 cosh ξ3

(a2 cos ξ2 + a3 cosh ξ3 + a4eξ4)2
,

(2.26)

where

A2 = 2a3a4(k23 + k24) cosh ξ3 − 4a3a4k3k4 sinh ξ3,

B2 = 2a2a4(k24 − k22) cos ξ2 + 4a2a4k2k4 sin ξ2.

And then, if k22 = k23 = k24 and ξ3 = ±ξ4, one gets the solution

u23(x, y, t) =
2k22(a23 − a22 + 2a3a4) + 4a2k2k3 sin ξ2(a3 sinh ξ3 ± a4e±ξ3)

(a2 cos ξ2 + a3 cosh ξ3 + a4e±ξ3)2
. (2.27)

Furthermore, solution u23 can be rewritten as the following periodic-solitary wave solutions

u24(x, y, t) =
2k22(a23 − a22 + 2a3a4) + 4a2k2k3

√
a3(a3 + 2a4) sin ξ2 sinh(ξ3 ± θ5)

(a2 cos ξ2 +
√
a3(a3 + 2a4) cosh(ξ3 ± θ5))2

, a3 > 0, a3 + 2a4 > 0,

(2.28)

u25(x, y, t) =
2k22(a23 − a22 + 2a3a4)− 4a2k2k3

√
a3(a3 + 2a4) sin ξ2 sinh(ξ3 ± θ5)

(a2 cos ξ2 −
√
a3(a3 + 2a4) cosh(ξ3 ± θ5))2

, a3 < 0, a3 + 2a4 < 0,

(2.29)

where θ5 = ln
√

a3+2a4
a3

.

u26(x, y, t) =
2k22(a23 − a22 + 2a3a4)∓ 4a2k2k3

√
−a3(a3 + 2a4) sin ξ2 cosh(ξ3 ∓ θ6)

(a2 cos ξ2 ∓
√
−a3(a3 + 2a4) sinh(ξ3 ∓ θ6))2

, a3 > 0, a3 +2a4 < 0,

(2.30)

u27(x, y, t) =
2k22(a23 − a22 + 2a3a4)∓ 4a2k2k3

√
−a3(a3 + 2a4) sin ξ2 cosh(ξ3 ± θ6)

(a2 cos ξ2 ∓
√
−a3(a3 + 2a4) sinh(ξ3 ± θ6))2

, a3 < 0, a3 +2a4 > 0,

(2.31)

where θ6 = ln
√
− a3
a3+2a4

.

(1.5) Combing a2 = a3 = 0 with Case 1, (1.3) has solution

u28(x, y, t) =
8a4a5k

2
4

(a4eξ4 + a5e−ξ4)2
. (2.32)

Then, in the condition of a4a5 > 0, one can obtain bell solitary wave solution

u29(x, y, t) = 2k24sech2(ξ4 + θ1). (2.33)

Similarly, as a4a5 < 0, it yields singular travelling wave solution

u30(x, y, t) = 2k24csch2(ξ4 + θ2). (2.34)

(1.6) In Case 1, if a2 = a4 = 0, yields solution of (1.3)

u31(x, y, t) =
2a23k

2
3 + 2a3a5

(
(k23 + k24) cosh ξ3 + 2k3k4 sinh ξ3

)
e−ξ4

(a3 cosh ξ3 + a5e−ξ4)2
. (2.35)

Moreover, as a3(2a5 + a3) > 0, ξ3 = ±ξ4, (2.35) becomes

u32(x, y, t) =
2a23k

2
3 + 4a3a5k

2
3

a3(2a5 + a3)
sech2(ξ3 ± θ3). (2.36)
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As a3(2a5 + a3) < 0, ξ3 = ±ξ4, solution u31 can reduce to

u33(x, y, t) =
2a23k

2
3 + 4a3a5k

2
3

a3(2a5 + a3)
csch2(ξ3 ± θ4). (2.37)

(1.7) Combing a2 = a5 = 0 with Case 1, yields solution of (1.3)

u34(x, y, t) =
2a23k

2
3 + 2a3a4

(
(k23 + k24) cosh ξ3 − 2k3k4 sinh ξ3

)
eξ4

(a3 cosh ξ3 + a4eξ4)2
. (2.38)

Moreover, as a3(2a4 + a3) > 0, ξ3 = ±ξ4, solution u34 can reduce to

u35(x, y, t) =
2a23k

2
3 + 4a3a4k

2
3

a3(2a4 + a3)
sech2(ξ3 ± θ5). (2.39)

As a3(2a4 + a3) < 0, ξ3 = ±ξ4, (2.38) can be rewritten as

u36(x, y, t) =
2a23k

2
3 + 4a3a5k

2
3

a3(2a4 + a3)
csch2(ξ3 ± θ6). (2.40)

(1.8) If a3 = a4 = 0 in Case 1, one gets solution of (1.3)

u37(x, y, t) =
−2a22k

2
2 + 2a2a5

(
(k24 − k22) cos ξ2 − 2k2k4 sin ξ2

)
e−ξ4

(a2 cos ξ2 + a5e−ξ4)2

=
−2a22k

2
2 + 2a2a5(k22 + k24) cos(ξ2 + θ7)e−ξ4

(a2 cos ξ2 + a5e−ξ4)2
, (2.41)

where θ7 satisfies tan θ7 = 2k2k4
k24−k

2
2

.

(1.9) Similar to case (1.8), if a3 = a5 = 0 in Case 1, one obtains

u38(x, y, t) =
−2a22k

2
2 + 2a2a5

(
(k24 − k22) cos ξ2 + 2k2k4 sin ξ2

)
e−ξ4

(a2 cos ξ2 + a4eξ4)2

=
−2a22k

2
2 + 2a2a4(k22 + k24) cos(ξ2 − θ7)eξ4

(a2 cos ξ2 + a4eξ4)2
. (2.42)

(1.10) When Case 1 with a4 = a5 = 0, yields

u39(x, y, t) =
−2a22k

2
2 + 2a23k

2
3 + 2a2a3

(
(k23 − k22) cos ξ2 cosh ξ3 + 4k2k3 sin ξ2 sinh ξ3

(a2 cos ξ2 + a3 cosh ξ3)2
. (2.43)

Especially, if k2 = ±k3, one gets the solution from (2.43)

u40(x, y, t) =
2k22(a23 − a22)± 4a2a3k

2
2 sin ξ2 sinh ξ3

(a2 cos ξ2 + a3 cosh ξ3)2
. (2.44)

(m) u-t (n) u-x-t with c2 = 2 (o) u-x-t with c2 = 1

Fig.5 u40 as a2 = 1, a3 = 2, k2 = k3 = c3 = 1, d2 = d3 = −1, y = z = 0.
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Solution u40 can be seen as the superposition of periodic solutions and hyperbolic function solutions.

Fig.5 shows the properties of periodicity and hyperbolic function. Moreover, (n) and (o) in Fig.5 reflect

the impact of parameter perturbations on the behavior of solution.

Remark 2.3. In solutions u1 − u40,

ξ2 = k2x−
α

β
k2y +

α− β
β

k2z + c2t+ d2,

ξ3 = k3x−
α

β
k3y +

α− β
β

k3z + c3t+ d3,

ξ4 = k4x−
α

β
k4y +

α− β
β

k4z + c4t+ d4,

ai, ki, ci, di (i = 2, 3, 4) and a5 are free constants.

• Case 2

a3 = a4 = a5 = 0, l2 =
(k2 +m2)c2 − 4αk42

4βk22 − c2
,

or

a3 = a4 = a5 = 0, m2 =
α

β
k2 − k2, c2 = 4βk32,

or

a3 = a4 = a5 = 0, l2 = −α
β
k2, m2 =

α− β
β

k2.

Combing the conditions of Case 2 with (2.3), it gets the periodic solution of (3+1)-dimensional gBS

equation (1.3)

u41(x, y, t) = −2k22(1 + tan ξ22), (2.45)

where

ξ2 = k2x+
(k2 +m2)c2 − 4αk42

4βk22 − c2
y +m2z + c2t+ d2,

k2, m2, c2 and d2 are free constants, or

ξ2 = k2x+ l2y + (
α

β
k2 − k2)z + 4βk32t+ d2,

k2, l2 and d2 are free constants, or

ξ2 = k2x−
α

β
k2y +

α− β
β

k2z + c2t+ d2,

k2, c2 and d2 are free constants.

• Case 3

a2 = 0, a5 =
a23
4a4

, k3 = k4, c3 = c4 = − 8αk44 + 4βk34l4 + 4βk34l3
2k4 + l3 + l4 +m3 +m4

.

From condition of Case 3 and (2.3), yields the following two-soliton solution

u42(x, y, t) =
2a3(k23 + k24)(a4eξ4 +

a23
4a4

e−ξ4) cosh ξ3 − 4a3k3k4 sinh ξ3(a4eξ4 − a23
4a4

e−ξ4) + 2a23k
2
4 + 2a23k

2
3

(a3 cosh ξ3 + a4eξ4 +
a23
4a4

e−ξ4)2

= ±4k23
cosh ξ3 cosh(ξ4 + θ8)− sinh ξ3 sinh(ξ4 + θ8)± 1

(cosh ξ3 ± cosh(ξ4 + θ8))2

= ±4k23
cosh(ξ4 + θ8 − ξ3)± 1

(cosh ξ3 ± cosh(ξ4 + θ8))2
, (2.46)
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where θ8 = ln | 2a4
a3
|,

ξ3 = k4x+ l3y +m3z −
8αk24 + 4βk34l4 + 4βk34l3
2k4 + l3 + l4 +m3 +m4

t+ d3,

ξ4 = k4x+ l4y +m4z −
8αk24 + 4βk34l4 + 4βk34l3
2k4 + l3 + l4 +m3 +m4

t+ d4,

a3, a4, k2, k4, c2, li and mi (i = 2, 3, 4) are free constants. As a3a4 > 0, the sign of (2.46) takes positive.

Otherwise, it takes negative sign.

Solution u42 can be seen as the superposition of two hyperbolic function solutions. When taking the

positive and negative signs respectively, solution u42 shows different properties in Fig.6. When taking the

negative sign, the solution u42 reflects singularity properties in Fig.6(q).

(p) u42 with sign “-” (u-t) (q) u42 with sign “-” (u-y-t) (r) u42 with sign “+” (u-y-t)

Fig.6 a4 = k3 = k4 = −l3 = d3 = d4 = 1, c3 = c4 = −4, a3 = l4 = 2, x = z = 0.

• Case 4

a3 = 0, a22 = 4a4a5, k2 = c2 = 0,m2 = −βk
2
4l2 + c4l2
c4

, l4 = −α
β
k4, m4 =

α− β
β

k4.

Following condition of Case 4 and (2.3), one gets the breather lump wave solution of Eq.(1.3)

u43(x, y, t) =
±4a2

√
a4a5

(
(k24 − k22) cosh(ξ4 + θ1) cos ξ2 + 2k2k4 sinh(ξ4 + θ1) sin ξ2

)
+ 2a22(k24 − k22)

(a2 cos ξ2 ± 2
√
a4a5 cosh(ξ4 + θ1))2

=
±2
(
(k24 − k22) cosh(ξ4 + θ1) cos ξ2 + 2k2k4 sinh(ξ4 + θ1) sin ξ2

)
+ 2(k24 − k22)

(cos ξ2 ± cosh(ξ4 + θ1))2
, (2.47)

where θ1 = ln
√

a4
a5

,

ξ2 = l2y −
βk24l2 + c4l2

c4
t+ d2,

ξ4 = k4x−
α

β
k4y +

α− β
β

k4z + c4t+ d4,

a4, a5, k4, l2, c4, d2 and d4 are free constants. As a2 > 0, the sign of u43 takes positive. Otherwise, it

takes the negative sign.

Especially, if k22 = k24, solution u43 can reduce to

u44(x, y, t) =
±4k2k4 sinh(ξ4 + θ1) sin ξ2
(cos ξ2 ± cosh(ξ4 + θ1))2

. (2.48)

• Case 5

a4 = 0, k2 = k3 = 0, l2 = −m2, l3 = −m3,
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c2 =
βk34m2

k4 + l4 +m4
, c3 =

βk34m3

k4 + l4 +m4
, c4 =

−αk44 − βk34l4
k4 + l4 +m4

.

Combing Case 5 with (2.3), one obtains the solution

u45(x, y, t) =
2a5k

2
4(a3 cosh ξ3 + a2 cos ξ2)e−ξ4

(a2 cos ξ2 + a3 cosh ξ3 + a5e−ξ4)2
, (2.49)

where

ξ2 = −m2y +m2z +
βk34m2

k4 + l4 +m4
t+ d2,

ξ3 = −m3y +m3z +
βk34m3

k4 + l4 +m4
t+ d3,

ξ4 = k4x+ l4y +m4z −
αk44 + βk34l4
k4 + l4 +m4

t+ d4,

a2, a3, a5, k4, l4, mi and di(i = 2, 3, 4) are free constants.

• Case 6

a5 = 0, k2 = k3 = 0, l2 = −m2, l3 = −m3,

c2 =
βk34m2

k4 + l4 +m4
, c3 =

βk34m3

k4 + l4 +m4
, c4 =

−αk44 − βk34l4
k4 + l4 +m4

.

Similar to Case 5, from (2.3), we obtain the solution

u46(x, y, t) =
2a4k

2
4(a3 cosh ξ3 + a2 cos ξ2)eξ4

(a2 cos ξ2 + a3 cosh ξ3 + a4eξ4)2
, (2.50)

where ξ2, ξ3 and ξ4 are similar to Case 5, a2, a3, a4, k4, l4, mi and di(i = 2, 3, 4) are free constants.

• Case 7

k2 = k3 = 0, c2 = c3 = 0, m4 =
α− β
β

k4,

l2 = − c4m2

βk34 + c4
, l3 = − c4m3

βk34 + c4
, l4 = −α

β
k4.

From condition of Case 7 and (2.3), as a4a5 > 0, we yield the following solution

u47(x, y, t) =
8a4a5k

2
4 ± 2k24

√
a4a5 cosh(ξ4 + θ1)(a2 cos ξ2 + a3 cosh ξ3)

(a2 cos ξ2 + a3 cosh ξ3 ±
√
a4a5 cosh(ξ4 + θ1))2

, (2.51)

where

ξ2 = − c4m2

βk34 + c4
y +m2z + d2,

ξ3 = − c4m3

βk34 + c4
y +m3z + d3,

ξ4 = k4x−
α

β
k4y +

α− β
β

k4z + c4t+ d4,

a2, a3, a4, a5, k4, c4, m2, m3 and di(i = 2, 3, 4) are free constants.

In addition, as a4a5 < 0, we can get the solution

u48(x, y, t) =
8a4a5k

2
4 ± 2k24

√
−a4a5 sinh(ξ4 + θ2)(a2 cos ξ2 + a3 cosh ξ3)(

a2 cos ξ2 + a3 cosh ξ3 ±
√
−a4a5 sinh(ξ4 + θ1)

)2 . (2.52)

As a4 > 0, the sign of u47 and u48 takes positive. Otherwise, it takes the negative sign.

• Case 8

k2 = k4 = 0, c2 = c4 = 0,
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l2 = − c3m2

βk33 + c3
, l4 = − c3m4

βk33 + c3
, l3 = −α

β
k3, m3 =

α− β
β

k3.

From condition of Case 8 and (2.3), as a4a5 > 0, one gets the following multi-wave solution

u49(x, y, t) =
2a3k

2
3 + 2a3k

2
3(a2 cos ξ2 ±

√
a4a5 cosh(ξ4 + θ1)) cosh ξ3

(a2 cos ξ2 + a3 cosh ξ3 ±
√
a4a5 cosh(ξ4 + θ1))2

, (2.53)

where

ξ2 = − c3m2

βk33 + c3
y +m2z + d2,

ξ3 = k3x−
α

β
k3y +

α− β
β

k3z + c3t+ d3,

ξ4 = − c3m4

βk33 + c3
y +m4z + d4,

a2, a3, a4, a5, k3, c3, m2, m4 and di(i = 2, 3, 4) are free constants.

In addition, as a4a5 < 0, we can get the multi-wave solution

u50(x, y, t) =
2a3k

2
3 + 2a3k

2
3(a2 cos ξ2 ±

√
−a4a5 sinh(ξ4 + θ1)) cosh ξ3

(a2 cos ξ2 + a3 cosh ξ3 ±
√
−a4a5 sinh(ξ4 + θ1))2

. (2.54)

As a4 > 0, the sign of u49 and u50 takes positive. Otherwise, it takes the negative sign.

Solutions u49 and u50 can be seen as the interaction of three waves. When the positive and negative

signs are taken in the solution u49, the solution exhibits different properties. When taking the positive

sign, the solution u49 shows periodicity and hyperbolic function properties in Fig.7(s). Otherwise, u49 has

periodicity and singularity properties in Fig.7(t).

(s) u49 with sign “+” (u-y-t) (t) u49 with sign “-” (u-y-t)

Fig.7 u49 as a2 = a3 = a4 = 1, k3 = 1, c3 = 1, l3 = −1, l2 = l4 = − 1
2 , x = z = 0.

• Case 9

k3 = k4 = 0, c2 = 0, l2 = −α
β
k2,

l3 = −m3 =
c3(m2 − α−β

β
k2)

βk32
, l4 = −m4 =

c4(m2 − α−β
β
k2)

βk32
.

From condition of Case 9 and (2.3), one obtains multi-wave solution

u51(x, y, t) =
2a2k

2
2 − 2a2k

2
2(a3 cosh ξ3 ±

√
a4a5 cosh(ξ4 + θ1)) cos ξ2

(a2 cos ξ2 + a3 cosh ξ3 ±
√
a4a5 cosh(ξ4 + θ1))2

, a4a5 > 0, (2.55)

where

ξ2 = k2x−
α

β
k2y +m2z + d2,
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ξ3 = c3(
m2 − α−β

β
k2

βk32
y −

m2 − α−β
β
k2

βk32
z + t) + d3,

ξ4 = c4(
m2 − α−β

β
k2

βk32
y −

m2 − α−β
β
k2

βk32
z + t) + d4,

a2, a3, a4, a5, k2, m2, c3, c4 and di(i = 2, 3, 4) are free constants.

In addition, as a4a5 < 0, we can get the solution

u52(x, y, t) =
2a2k

2
2 − 2a2k

2
2(a3 cosh ξ3 ±

√
−a4a5 sinh(ξ4 + θ1)) cos ξ2

(a2 cos ξ2 + a3 cosh ξ3 ±
√
−a4a5 sinh(ξ4 + θ1))2

. (2.56)

As a4 > 0, the sign of u51 and u52 takes positive. Otherwise, it takes the negative sign.

• Case 10

k2 = l2 = m2 = c2 = 0, k3 = 0, c4 = 0,

l3 = −m3 = −
c3(m4 − α−β

β
k4)

βk34
, l4 = −α

β
k4.

From condition of Case 10 and (2.3), one gets the two-soliton solution

u53(x, y, t) =
±2k24

√
a4a5 cosh(ξ4 + θ1)(a3 cosh ξ3 + a2 cos ξ2) + 8a4a5k

2
4

(a2 cos ξ2 + a3 cosh ξ3 ±
√
a4a5 cosh(ξ4 + θ1))2

, a4a5 > 0, (2.57)

where

ξ2 = d2,

ξ3 = c3(−
c3(m4 − α−β

β
k4)

βk34
y +

c3(m4 − α−β
β
k4)

βk34
z + t) + d3,

ξ4 = k4x−
α

β
k4y +m4z + d4,

a2, a3, a4, a5, k2, m2, c3, c4 and di(i = 2, 3, 4) are free constants.

In addition, as a4a5 < 0, we can get the solution

u54(x, y, t) =
±2k24

√
−a4a5 sinh(ξ4 + θ1)(a3 cosh ξ3 + a2 cos ξ2) + 8a4a5k

2
4

(a2 cos ξ2 + a3 cosh ξ3 ±
√
−a4a5 sinh(ξ4 + θ1))2

. (2.58)

As a4 > 0, the sign of u51 and u52 takes positive. Otherwise, it takes the negative sign.

Remark 2.4. Moreover, if α = β in Remark 2.3, we can get solutions u1−u40 for the (2+1)-dimensional

generalized breaking soliton (gBS) equation

∂x−1(uxt + uyt) + αuxxx + αuxxy + 6αuux + 3αuuy + 3αux∂x
−1uy = 0. (2.59)

In α = β in the third condition of Case 2, Case 4, Case 7, Case 8, Case 9, Case 10 with m2 = m3 = m4 = 0,

yields the periodic solutions, breather lump wave solutions, hyperbolic function solitary solutions u41, u43,

u44 and u47 − u54 of Eq.(2.59).

If m2 = 0 in the first condition of Case 2, k2 = − β
α

in the second condition of Case 2, m3 = m4 = 0

in Case 3, m2 = m3 = 0 in Case 5 and Case 6, yields the periodic solution u41, two-soliton solution u42,

bell soliton solutions u45 and u46 of (2+1)-dimensional generalized breaking soliton (gBS) equation

∂x−1(uxt + uyt) + αuxxx + βuxxy + 6αuux + 3βuuy + 3βux∂x
−1uy = 0. (2.60)

In (2.59) and (2.60), u(x, y, t) : R × R × R → R is the real functions of the variables x, y and t, real

constants α and β are hyper-parameters of the system, ∂x−1 presents integral operator of x.
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2.2 Application of other methods

In this section, we will analyze other three methods for obtaining exact solutions.

Firstly, for the three-wave method, we can set the second form of f with exp-function, trigonometric

function and hyperbolic function{
f2 = a2 sin ξ2 + a3 sinh ξ3 + a4eξ4 + a5e−ξ4 ,

ξi = kix+ liy +miz + cit+ di, i = 2, 3, 4,
(2.61)

where ai, ki, li, mi, ci, di and a5 are some constants to be determined below. Taking (2.61) into (2.1), we

let the coefficients of sin ξ2 sinh ξ3, eξ4 sin ξ2, e−ξ4 sin ξ2, eξ4 sinh ξ2, e−ξ4 sinh ξ2, cos ξ2 cosh ξ3, eξ4 cos ξ2,

e−ξ4 cos ξ2, eξ4 cosh ξ2, e−ξ4 cosh ξ2 and the constant term are zero, and then yield a system of determining

equations about parameters ai, ki, li, mi, ci, di and a5 which is the same as (2.4). Similarly, the following

conclusion can be drawn.

Theorem 2.2. Let f2 be given by (2.61). If f2 is the solution of bilinear equation (2.1), then combing

u = 2(ln f2)xx, we get the following form of solutions for (3+1)-dimensional gBS equation (1.3)

u(x, y, t) = 2
−a2k22 sin ξ2 + a3k

2
3 sinh ξ3 + a4k

2
4eξ4 + a5k

2
4e−ξ4

a2 sin ξ2 + a3 sinh ξ3 + a4eξ4 + a5e−ξ4

− 2(
a2k2 cos ξ2 + a3k3 sinh ξ3 + a4k4eξ4 − a5k4e−ξ4

a2 sin ξ2 + a3 sinh ξ3 + a4eξ4 + a5e−ξ4
)2, (2.62)

where ξi = kix+ liy +miz + cit+ di, ki, li, mi, ci, di, ai (i = 2, 3, 4) and a5 are some constants.

Similar to Cases 1-10, we can obtain 54 kinds of exact solutions.

Secondly, applying the extended homoclinic test method, we set an auxiliary function of the following

form {
f3 = 1 + b1eξ2 cos ξ1 + b2e2ξ2 + b3eξ2 cosh ξ1,

ξi = kix+ liy +miz + cit+ di, i = 1, 2,
(2.63)

where ξi = kix + liy + miz + cit + di, bi, ki, li, mi, ci, di (i = 1, 2) and b3 are some constants to be

determined below. We can see the forms of f1e
ξ4 and f3 are similar. Then, taking (2.63) into (1.3), we

get the system of coefficients

b1(α(k41 + k42 − 6k21k
2
2) + β(k31l1 + k32l2 − 3k21k2l2 − 3k1l1k

2
2) + c2(k2 + l2 +m2)− c1(k1 + l1 +m1)) = 0,

b1(−α(4k1k
3
2 − 4k31k2)− β(k32l1 − k31l2 − 3k21l1k2 + 3k1k

2
2l2)− c2(k1 + l1 +m1)− c1(k2 + l2 +m2)) = 0,

b3(α(k41 + k42 + 6k21k
2
2) + β(k31l1 + k32l2 + 3k21k2l2 + 3k1l1k

2
2) + c2(k2 + l2 +m2) + c1(k1 + l1 +m1)) = 0,

b1(α(4k1k
3
2 − 4k31k2) + β(k32l1 + k31l2 + 3k21l1k2 + 3k1k

2
2l2) + c2(k1 + l1 +m1) + c1(k2 + l2 +m2)) = 0,

b1b3(−4αk41 − 4βk31l1) = 0,

b1b3(c1(k1 + l1 +m1)) = 0,

b2(16αk42 + 16βk32l2 + 4c2(k2 + l2 +m2)) + b21(4αk41 + 4βk31l1 − c1(k1 + l1 +m1)) + b23(4αk41 + 4βk31l1

+c1(k1 + l1 +m1)) = 0.

(2.64)

With the solution u(x, t) = 2
f3xxf3−f23x

f23
and the relation between f1 and f3, we get the solution same as

u(x, t) = 2
f1xxf1−f21x

f21
, which just make some changes to the coefficients.

Finally, if assuming (2.63) as{
f4 = 1 + b1eξ2 sin ξ1 + b2e2ξ2 + b3eξ2 sinh ξ1,

ξi = kix+ liy +miz + cit+ di, i = 1, 2
(2.65)
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and carrying (2.65) into Eq.(1.3), we yield a system of determining equations about parameters ki, li, mi,

ci, bi (i = 1, 2) and b3 same as (2.64).

3 Conclusion

In this paper, we derive a series of new traveling wave solutions of (3+1)-generalized breaking solition

equation by two types of three-wave methods and two types of the extended homoclinic test methods.

These solutions contain bell solitary solutions, singular solitary solutions, periodic-solitary solutions and

many interaction solutions between periodic waves and hyperbolic solutions. Our work contains the

breather lump wave solutions [23] and multi-wave soluions [24]. If α, β, m2, m3 and m4 take appropriate

values, we can obtain many solutions of (2+1)-dimensional generalized breaking soliton (gBS) equation

(2.59) and (2.60). We also analyze other three methods which can be used to study solutions and obtain

more traveling wave solutions. Our results greatly enrich and expand the existing results. From our

research process, we find that three wave method and extended homoclinic test method are two convenient,

feasible, and efficient methods for solving exact solutions of nonlinear partial differential equations.

Moreover, we investigate several wave patterns for the free parameter values and also show the in-

teraction of two waves propagation with various 2D and 3D graphs. Fig.3, Fig.4 and Fig.6 show the

interaction of periodic waves and hyperbolic waves. Fig.1, Fig.2 and Fig.5 describe the interaction be-

tween two hyperbolic waves. The obtained results are very helpful in the study of interaction phenomena

in mathematical physics, fluid dynamics, engineering and many other various areas of scientific fields.

In the future, we will apply three-wave method to study exact solutions for four-component nonlinear

Schrödinger integrable models and novel nonlocal nonlinear Schrödinger equations. Moreover, we will

attempt to explore traveling wave solutions of (3+1)-dimensional gBS equation by other methods.
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