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Abstract
Recently, Zheng and Lu [International Journal of Computer Mathematics, 96(1):1-17,

DOI: 10.1080/00207160.2017.1420179] constructed a parameterized matrix splitting (PMS)
preconditioner for the large sparse saddle point problems, and gave the corresponding the-
oretical analysis and numerical experiments. In this paper, based on the parameterized
matrix splitting, we generalize the PMS algorithms and further present the new parameter-
ized matrix splitting (NPMS) preconditioner for the saddle point problems. Moreover, by
similar theoretical analysis, we analyze the convergence conditions of the corresponding ma-
trix splitting iteration methods and preconditioning properties of the NPMS preconditioned
saddle point matrices. Finally, one example is provided to confirm the effectiveness.

Note to Practitioners:
This paper was motivated by different applications of scientific computing, such as con-

strained optimization, the finite element method for solving the Navier-Stokes equation, and
constrained least squares problems and generalized least squares problems. In recent years,
there has been a surge of interest in the saddle point problem of the form (1), and a large
number of stationary iterative methods have been proposed. In this paper, we will generalize
the existing algorithms and further present the new parameterized matrix splitting precon-
ditioner for the saddle point problems. Moreover, by similar theoretical analysis, we will
analyze the convergence conditions of the corresponding matrix splitting iterative methods
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and preconditioning properties of the new preconditioned saddle point matrices. In final,
one example is provided to confirm the effectiveness.
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1 Introduction

Consider the following 2× 2 block saddle point problems

A
(
x
y

)
≡

(
A B

−BT 0

)(
x
y

)
=

(
f
−g

)
= b, (1)

where A ∈ Rm,m is a symmetric positive definite matrix, B ∈ Rm,n,m ≥ n, is a matrix
of full column rank, BT ∈ Rn,m is the conjugate transpose of B, and f ∈ Cm, g ∈ Cn are
two given vectors. It appear in many different applications of scientific computing, such
as constrained optimization [55], the finite element method for solving the Navier-Stokes
equation [2, 27, 28, 29], and constrained least squares problems and generalized least squares
problems [1, 31, 35, 44, 45] and so on; see [9-17, 20,21,30,38,41-45,49-54] and references
therein.

In recent years, there has been a surge of interest in the saddle point problem of the
form (1), and a large number of stationary iterative methods have been proposed. For ex-
ample, Santos et al. [35] studied preconditioned iterative methods for solving the singular
augmented system with A = I. Golub et al. [32] presented SOR-like algorithms for solving
linear systems (1). Darvishi et al. [26] studied SSOR method for solving the augmented
systems. Bai et al. [3, 4, 25, 55] presented GSOR method, parameterized Uzawa (PU)
and the inexact parameterized Uzawa (PIU) methods for solving linear systems (1). Zhang
and Lu [46] showed the generalized symmetric SOR method for augmented systems. Peng
and Li [34] studied the unsymmetric block overrelaxation-type methods for saddle point.
Bai and Golub [5, 6, 7, 8, 9, 33, 38] presented splitting iteration methods such as Hermi-
tian and skew-Hermitian splitting (HSS) iteration scheme and its preconditioned variants,
Krylov subspace methods such as preconditioned conjugate gradient (PCG), preconditioned
MINRES (PMINRES) and restrictively preconditioned conjugate gradient (RPCG) iteration
schemes, and preconditioning techniques related to Krylov subspace methods such as HSS,
block-diagonal, block-triangular and constraint preconditioners and so on.

Recently, based on a parameterized matrix splitting, Zheng and Lu [56] constructed
a parameterized matrix splitting (PMS) preconditioner for the large sparse saddle point
problems, and gave the corresponding theoretical analysis and numerical experiments.

For large, sparse or structure matrices, iterative methods are an attractive option. In
particular, Krylov subspace methods apply techniques that involve orthogonal projections
onto subspaces of the form

K(A, b) ≡ span
{
b,Ab,A2b, ...,An−1b, ...}.

The conjugate gradient method (CG), minimum residual method (MINRES) and gen-
eralized minimal residual method (GMRES) are common Krylov subspace methods. The
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CG method is used for symmetric, positive definite matrices, MINRES for symmetric and
possibly indefinite matrices and GMRES for unsymmetric matrices [37].

In this paper, based on the parameterized matrix splitting by Zheng and Lu [56], we
generalize the PMS algorithms and further present the new parameterized matrix splitting
(NPMS) preconditioner for the saddle point problems. Moreover, by similar theoretical anal-
ysis, we analyze the convergence conditions of the corresponding matrix splitting iteration
methods and preconditioning properties of the NPMS preconditioned saddle point matrices.
In final, one example is provided to confirm the effectiveness.

2 New parameterized matrix splitting (NPMS) pre-

conditioner

Recently, for the coefficient matrix of the augmented system (1), Zheng and Lu [56] made
the following splitting

A =

(
βQ1 + αA αB
−αBT βQ2

)
−
(
βQ1 − βA −βB

βBT βQ2

)
,

= (βΩ + αA)− (βΩ− βA)
= PPMS −RPMS,

(2)

where Ω =

(
Q1 0
0 Q2

)
, α, β > 0, α + β = 1. Here, Q1 ∈ Rm,m, Q2 ∈ Rn,n are two symmetric

positive definite matrices. Based on the iteration methods studied in [56], we establish
the new parameterized matrix splitting (NPMS) of the saddle point matrix A, which is as
follows:

A =

(
βQ1 + αA αB
−αBT βQ2

)
−
(
βQ1 − (1− α)A −(1− α)B

(1− α)BT βQ2

)
,

= (βΩ + αA)− (βΩ− (1− α)A)
= PNPMS −RNPMS,

(3)

where Ω =

(
Q1 0
0 Q2

)
, α, β > 0. Here, Q1 ∈ Rm,m, Q2 ∈ Rn,n are two symmetric positive

definite matrices.

Remark 2.1. Since α, β > 0 and Q1, Q2 are two symmetric positive definite matrices,
we can see that PNPMS is a nonsingular matrix. Moreover, α, β are two unrestricted param-
eters in the new parameterized matrix splitting (NPMS).

By this special splitting, the new parameterized matrix splitting (NPMS) method can
be defined for solving the saddle point problem (1):

New parameterized matrix splitting (NPMS) method: Let Q1 and Q2 be two sym-
metric positive definite matrices. Give initial vectors x0 ∈ Rm, y0 ∈ Rn, and two relax-
ation factors α, β which satisfy α, β > 0. For k = 0, 1, 2, ... until the iteration sequence
{[(xk)T , (yk)T ]T} converges to the exact solution of the saddle point problem(1), compute(

βQ1 + αA αB
−αBT βQ2

)(
xk+1

yk+1

)
=

(
βQ1 − (1− α)A −(1− α)B

(1− α)BT βQ2

)(
xk

yk

)
+

(
f
−g

)
, (4)
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It is easy to see that the iteration matrix of the NPMS iteration is

Γ =

(
βQ1 + αA αB
−αBT βQ2

)−1(
βQ1 − (1− α)A −(1− α)B

(1− α)BT βQ2

)
. (5)

If we use a Krylov subspace method such as GMRES (Generalized Minimal Residual)
method or its restarted variant to approximate the solution of this system of linear equations,
then

PNPMS =

(
βQ1 + αA αB
−αBT βQ2

)
, (6)

can be served as a preconditioner. We call the preconditioner PNPMS the NPMS precondi-
tioner for the generalized saddle point matrix A.

In every iteration of the NPMS iteration (4) or the preconditioned Krylov subspace
method, we need solve a residual equation(

βQ1 + αA αB
−αBT βQ2

)
z = r (7)

needs to be solved for a given vector r at each step. Here, we may refer to Algorithm 2.1 in
[56] about the corresponding algorithmic version of the NPMS iteration method.

Remark 2.2. On the new parameterized matrix splitting (NPMS) method method, when
α = 1

2
, Q1 = Q2 = γI(γ > 0), α + β = 1, the NPMS method reduces to the shift-splitting

(SS) method [21]; When α = 1
2
, Q1γI,Q2 = ξI(γ, ξ > 0), α + β = 1, the NPMS method

reduces to the generalized shift-splitting (GS) method [24]; When α = β = 1
2
, the NPMS

method reduces to the extended shift-splitting (ESS) method [57]; When α + β = 1, the
NPMS method reduces to the parameterized matrix splitting (PMS) method [56]. So, the
NPMS method is the generalization of existing iterative algorithm.

3 Covergence of NPMS method

Now, we turn to study the convergence of the NPMS iteration for solving saddle point prob-
lems (1). It is well known that the iteration method (4) is convergent for every initial guess
if and only if ρ(Γ) < 1, where ρ(Γ) denotes the spectral radius of Γ. In [56], based PMS
method, Zheng and Lu established the spectral properties of the iteration matrix and the
preconditioned matrix P−1

PMSA. In this section, by similar theoretical analysis, we will ana-
lyze the convergence conditions of the corresponding matrix splitting iteration methods and
preconditioning properties of the NPMS preconditioned saddle point matrices.

Lemma 3.1. Let A ∈ Rm,m be symmetric positive definite, and B ∈ Rm,n be of full column
rank, with m ≥ n. Q1 and Q2 are two symmetric positive definite matrices. If λ is an eigen-
value of the iteration matrix Γ of the NPMS iteration method, then λ ̸= 1 and λ ̸= 1− 1

α

Proof. Let λ be a nonzero eigenvalue of the iteration matrix and [u∗, v∗]∗ be the corre-
sponding eigenvector. Then we have(

βQ1 − (1− α)A −(1− α)B
(1− α)BT βQ2

)(
u
v

)
= λ

(
βQ1 + αA αB
−αBT βQ2

)(
u
v

)
, (8)
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or equivalently

(1− α + αλ)Au+ (βλ− β)Q1u+ (1− α + αλ)Bv = 0, (9)

and
(1− α + αλ)BTu+ (β − βλ)Q2v = 0. (10)

If λ = 1, then from (9) and (10) we can obtain{
Au+Bv = 0,
BTu = 0.

(11)

By assumptions, we know that the coefficient matrix of (11) is nonsingular. Hence u = 0
and v = 0, which contradicts with the assumption that [u∗, v∗]∗ is an eigenvector. So λ ̸= 1.
If λ = 1− 1

α
, then from (9) and (10) we have

−β

α
Q1u = 0 and

β

α
Q2v = 0.

Hence, we have u = v = 0 because Q1 and Q2 are symmetric positive definite matrices. This
also contradicts that [u∗, v∗]∗ is an eigenvector of Γ. So λ ̸= 1− 1

α
.

Lemma 3.2. [56] Let A ∈ Rm,m be symmetric positive definite, and B ∈ Rm,n be of full
column rank, with m ≥ n. Q1 and Q2 are two symmetric positive definite matrices. Assume
λ is an eigenvalue of the iteration matrix Γ of the NPMS method and z = [u∗, v∗]∗ ∈ Cm+n,
with u ∈ Cm and v ∈ Cn being two complex vectors, is the corresponding eigenvector. Then
u ̸= o. Moreover, if v = 0, then u ∈ null(BT ).

Lemma 3.3. Let A ∈ Rm,m be symmetric positive definite, and B ∈ Rm,n be of full column
rank, with m ≥ n. Q1 and Q2 are two symmetric positive definite matrices. Assume λ is
an eigenvalue of the iteration matrix Γ of the NPMS method and z = [u∗, v∗]∗ ∈ Cm+n, with
u ∈ Cm and v ∈ Cn being two complex vectors, is the corresponding eigenvector. Denote

a =
u∗Au

u∗u
, b =

u∗Q1u

u∗u
and c =

u∗BQ−1
2 BTu

u∗u
, (12)

where a, b, c are real numbers. Then ¦Ë satisfies the following quadratic equation:

λ2 −
[
1− aβ(1− α)− bβ2 − c(1− α)2 + c

aαβ + bβ2 + cα2

]
λ+

bβ2 + c(1− α)2 − aβ(1− α)

aαβ + bβ2 + cα2
. (13)

Proof. From Lemma 3.1 we can obtain that λ ̸= 1. Solving v from (10) and substituting
v = 1−λ+αλ

βλ−β
Q−1

2 BTu into (9), we have

(1− α + αλ)Au+ (βλ− β)Q1u+
(1− α + αλ)2

βλ− β
BQ−1

2 BTu = 0. (14)

From Lemma 3.2, we also know that u ̸= 0. Multiplying (βλ − β) u∗

u∗u
on both sides of (14)

and using the notation (12), we obtain the following complex quadratic equation of λ

(βλ− β)(1− α + αλ)
u∗Au

u∗u
+ (βλ− β)2

u∗Q1u

u∗u
+ (1− α + αλ)2

u∗BQ−1
2 BTu

u∗u
= 0, (15)
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which can be rewritten as

a(βλ− β)(1− α + αλ) + b(βλ− β)2 + c(1− α + αλ)2 = 0 (16)

⇐⇒

λ2 −
[
1− aβ(1− α)− bβ2 − c(1− α)2 + c

aαβ + bβ2 + cα2

]
λ+

bβ2 + c(1− α)2 − aβ(1− α)

aαβ + bβ2 + cα2
. (17)

The above two lemmas characterize the property of the eigenvalues and the eigenvectors
of the iteration matrix T of the NPMS method. Moreover, from Lemma 3.3, we can get the
following result.

Corollary 3.4. From Equation (13) in Lemma 3.3, we can give the specific expression
of the eigenvalue λ for the iteration matrix Γ of the NPMS method when the conditions of
Lemma 3.3 are satisfied. That is

λ =
bβ2 + c(1− α)2 − aβ(1− α)− c±

√
a2β(1− α)− 4bcβ(1− α)

aαβ + bβ2 + cα2
. (18)

Lemma 3.5. [36, 58] Both roots of the real quadratic equation x2 − px + q = 0 are
less than 1 in modulus if and only if |q| < 1 and |p| < 1 + q.

With Lemmas 3.3 and 3.5, we can get the following important theorem which shows the
convergence of the NPMS iteration method.

Theorem 3.6. Assume A ∈ Rm,m be symmetric positive definite, and B ∈ Rm,n be of
full column rank, with m ≥ n. Q1 and Q2 are two symmetric positive definite matrices.
Then the NPMS method is convergent if the following conditions are satisfied:

λmin(Q1) ≥
1− α

β
λmax(A), α ≥ 1

2
, α+ β ≥ 1. (19)

Here, λmax(A) and λmin(Q1) are the largest and the smallest eigenvalues of A and Q1, re-
spectively.
Proof. Assume λ is an eigenvalue of the iteration matrix Γ of the NPMS method and
z = [u∗, v∗]∗ ∈ Cm+n, with u ∈ Cm and v ∈ Cn being two complex vectors, is the corre-
sponding eigenvector. Then from Lemma 3.3, we know that λ satisfies the real quadratic
equation (13).

By making use of Lemma 3.5, both roots ¦Ë of the real quadratic equation (11) satisfy
|λ|!‘1 if and only if ∣∣∣∣bβ2 + c(1− α)2 − aβ(1− α)

aαβ + bβ2 + cα2

∣∣∣∣ < 1 (20)

and ∣∣∣∣1− aβ(1− α)− bβ2 − c(1− α)2 + c

aαβ + bβ2 + cα2

∣∣∣∣ < 1 +
bβ2 + c(1− α)2 − aβ(1− α)

aαβ + bβ2 + cα2
. (21)
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When α > 0, β > 0, c > 0, inequalities (20) and (21) hold true if and only if the following
conditions are satisfied:

aβ + (2α− 1)c > 0,
a(2α− 1)β + 2bβ2 + c[(1− α)2 + α2] > 0,
a(2α− 1)β + 4bβ2 + c(2α− 1)2 > 0.

(22)

If α ≥ 1
2
, then we can obtain that Equation (22) holds true. So we have |λ| < 1.

For the case α > 0, β > 0, c = 0, from the result of Corollary 3.4, we can obtain

λ1 =
bβ2 − aβ(1− α) + a

√
β(1− α)

aαβ + bβ2
, λ1 =

bβ2 − aβ(1− α)− a
√

β(1− α)

aαβ + bβ2
. (23)

First, |λ1| < 1 if and only if∣∣∣∣∣bβ2 − aβ(1− α) + a
√

β(1− α)

aαβ + bβ2

∣∣∣∣∣ < 1. (24)

⇐⇒
−aαβ − bβ2 < bβ2 − aβ(1− α) + a

√
β(1− α) < aαβ + bβ2. (25)

So, the following conditions are satisfied{
−aαβ − bβ2 < bβ2 − aβ(1− α) ⇒ a(1− 2α) < 2bβ,

−aβ(1− α) + a
√

β(1− α) ≤ aαβ ⇒ α + β ≥ 1.
(26)

Since α ≥ 1
2
, then we have 1− 2α ≤ 0, so the first equation of formula (26) is valid.

Next, |λ2| < 1 if and only if∣∣∣∣∣bβ2 − aβ(1− α)− a
√

β(1− α)

aαβ + bβ2

∣∣∣∣∣ < 1. (27)

⇐⇒
−aαβ − bβ2 < bβ2 − aβ(1− α)− a

√
β(1− α) < aαβ + bβ2. (28)

So, the following conditions are satisfied{
−aαβ − bβ2 < bβ2 − aβ(1− α)− a

√
β(1− α) ⇒ aβ(1− 2α) < 2bβ2 − a

√
β(1− α),

bβ2 − aβ(1− α)− a
√

β(1− α) < aαβ + bβ2 ⇒ −a
√

β(1− α) < aαβ.
(29)

Obviously, the second equation of formula (29) is valid. On the first equation of formula
(29), since α + β ≥ 1, then we have −a

√
β(1− α) ≥ −aβ. So, the following conditions are

satisfied
aβ(1− 2α) ≤ 2bβ2 − aβ. (30)

This implies

a(1− α) ≤ bβ ⇒ b ≥ 1− α

β
a. (31)

If λmin(Q1) ≥ 1−α
β
λmax(A), then b ≥ bmin ≥ 1−α

β
amax ≥ 1−α

β
a. Hence, the first equation of

formula (29) holds true. So |λ| < 1.
Remark 3.1. On the one hand, the NPMS method is the generalization of the PMS

method. On the other hand, when the appropriate parameters are selected, the NPMS
method will have better convergence than the PMS method.
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4 Numerical examples

In this section, we give numerical experiments to demonstrate the conclusions drawn above.
The numerical experiments were done by using MATLAB 7.1 and the matrix of the numerical
experiments were generated based on a two-dimensional time-harmonic Maxwell equations
in mixed form, respectively. In all our runs we used as a zero initial guess and stopped the
iteration when the relative residual had been reduced by at least six orders of magnitude
(i.e, when ∥b−Axk∥2 ≤ 10−6∥b∥2).

Example 1. In this section, to further assess the effectiveness of the iterative matrix
P−1

NPMSRNPMS, we present a sample of numerical examples which are based on a two-
dimensional time-harmonic Maxwell equations in mixed form in a square domain (−1 ≤ x ≤
1,−1 ≤ y ≤ 1). For the simplicity, we take the generic source: f = 1 and a finite element
subdivision such as Figure 1 based on uniform grids of triangle elements. Three mesh sizes
are considered: h =

√
2
8
,
√
2

12
,
√
2

18
. The solutions of the preconditioned systems in each itera-

tion are computed exactly. Information on the sparsity of relevant matrices on the different
meshes is given in Table 1, where nz(A) denote the nonzero elements of matrix A.

Figure 1: A uniform mesh with h =
√
2
4

Since the new preconditioners have two parameters, in numerical experiments we will
test different values. Numerical experiments show the spectrum of the iterative matrix
P−1

NPMSRNPMS when choosing different parameters, which coincides with theoretical analy-
sis.

In Figures 2, 3 and 4 we display the eigenvalues of the iteration matrix P−1
NPMSRNPMS

in the case of h =
√
2
8
, h =

√
2

12
and h =

√
2

18
for different parameters. In Table 2 we show

Spectral radius of iterative matrix P−1
NPMSRNPMS when choosing different parameters.

Remark 4.1. Figures 2 ∼ 4 show that the distribution of eigenvalues of the iteration
matrix confirm our above theoretical analysis.
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Figure 2: The eigenvalue distribution for the NPMS iteration matrix Γ = P−1
NPMSRNPMS when

α = 0.8, β = 0.5(the first), α = 0.9, β = 0.3(the second),α = 0.95, β = 0.1(the third) and α =

0.98, β = 0.03(the fourth), respectively. Here, h =
√
2
8 .
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Figure 3: The eigenvalue distribution for the NPMS iteration matrix Γ = P−1
NPMSRNPMS when

α = 0.8, β = 0.5(the first), α = 0.9, β = 0.3(the second),α = 0.95, β = 0.1(the third) and α =

0.98, β = 0.03(the fourth), respectively. Here, h =
√
2
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Figure 4: The eigenvalue distribution for the NPMS iteration matrix Γ = P−1
NPMSRNPMS when

α = 0.8, β = 0.5(the first), α = 0.9, β = 0.3(the second),α = 0.95, β = 0.1(the third) and α =

0.98, β = 0.03(the fourth), respectively. Here, h =
√
2

18 .
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Table 1: datasheet for different grids
Grid m n nz(A) nz(B) nz(W ) order of A
8× 8 176 49 820 462 217 225
16× 16 736 225 3556 2190 1065 961
32× 32 3008 961 14788 9486 4681 3969
64× 64 12160 3969 60292 39438 19593 16129

Table 2: Spectral radius of iterative matrix P−1
NPMSRNPMS when choosing different param-

eters. Here, h =
√
2
8
, h =

√
2

12
, h =

√
2

18
denote the size of the corresponding grid, respectively.

ρ denotes spectral radius of iterative matrix P−1
NPMSRNPMS.

α β ρ(h =
√
2
8
) ρ(h =

√
2

12
) ρ(h =

√
2

18
)

0.8 0.5 0.9832 0.9961 0.9990
0.9 0.3 0.9449 0.9875 0.9971
0.95 0.1 0.6786 0.8992 0.9764
0.98 0.03 0.2608 0.5176 0.8039

5 Conclusion

In this study, we introduced a new parameterized matrix splitting (NPMS) preconditioner
for addressing large sparse saddle point problems. This method generalizes existing param-
eterized matrix splitting (PMS) approaches by incorporating additional flexibility through
unrestricted parameters, which enhance the convergence properties of the iterative meth-
ods. Through rigorous theoretical analysis, we established the convergence conditions and
eigenvalue distribution for the NPMS method, demonstrating its superiority over traditional
PMS techniques under specific parameter settings. Numerical experiments validated the
theoretical findings, showing that the NPMS preconditioner achieves a significant reduction
in spectral radius compared to other preconditioners, leading to faster convergence in solving
saddle point problems. The results highlight the NPMS method’s potential for applications
in constrained optimization, finite element methods, and other computational problems in-
volving saddle point structures.
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