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Abstract

In this paper, we investigate the number of small amplitude crossing limit
cycles bifurcated from a class of planar piecewise analytical systems defined
in two zones separated by an analytical curve y = ¢(x) with ¢(0) = 0.
Assume that the origin (0,0) is a pseudo-focus of the system. We propose
an extension of the classical polar coordinates for the subsystem with focus
contact, and an extension of the (R,#,1,2)-generalized polar coordinates
for the subsystem with parabolic contact. Then we present the method
on how to calculate the relevant Lyapunov constants. As applications, we
construct three planar piecewise quadratic systems, which have four, five and
five crossing limit cycles bifurcated from (0, 0), respectively.
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1 Introduction

Many practical problems involving switching, collision and friction are modeled by
piecewise smooth (PWS) systems. Thus in the last decades, a lot of works were
devoted to investigate the number of crossing limit cycles in planar PWS systems
defined in two zones Q) = {(z,y) € R?: y >0} and Q = {(z,y) e R*: y < 0}
separated by the switching line y = 0 given by the following form:

(&, 9)" = (XE(x,y), Vi)', if (z,9) € O, (1.1)
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where X*(z,y) and Y*(z,y) are real analytical functions. A crossing limit cycle
of system (1.1) refers to a limit cycle which intersects y = 0 transversally. In the
sequel, if not specified, all of the limit cycles mentioned are crossing limit cycles.

In particular, many researchers focused their attentions on finding a uniform
upper bound H;(n) of the maximum number of limit cycles of system (1.1) in the
case when X*(z,y) = X (z,y) and Y*(z,y) = Y5 (2, y) are real polynomials of
degree n. This is a difficult problem even for the simplest case of n = 1. Under the
continuity assumption, Lum and Chua conjectured in 1991 that system (1.1) with
n = 1 has at most one limit cycle [38], which was proved by Freire et al. in [14]. If
system (1.1) is discontinuous and n = 1, then Han and Zhang constructed examples
of (1.1) that have two limit cycles and conjectured that #H7(1) = 2 in [22], which
was disproved in [25] by showing that H; (1) > 3. Recently Carmona et al. proved
in [2] that there is a unform upper bound L* < 8 for the maximum number of limit
cycles of system (1.1) with n = 1. The problem of finding #;(2) is still open. To
our knowledge, the best result to date is H;(2) > 16 obtained by da Cruz et al.
in [10].

Another important problem for system (1.1) is finding the maximum number
of small amplitude limit cycles that can bifurcate from (0,0) through degenerate
Hopf bifurcation when (0, 0) is a pseudo-focus, which was first studied by Coll et al.
in their pioneering work [8]. According to [8], there are four types of pseudo-focus,
namely focus-focus (FF), focus-parabolic (FP), parabolic-focus (PF) and parabolic-
parabolic (PP) types. Since then, small amplitude limit cycles bifurcated from a
pseudo-focus of planar PWS quadratic systems defined in two zones separated by
a straight line have been extensively studied. To mention only a few of them,
see [4-6,8,12,15,18, 32,39, 44] and the references therein. More recently, Hopf
bifurcation for planar PWS near-Hamiltonian systems with a center of PP or FP
type was studied by Han and Liu in [23] by using the Melnikov method.

On the other hand, Braga and Mello showed in [11] that the shape of the
discontinuity sets of a PWS system can significantly affect the number of limit
cycles. Moreover, there are many problems arising from applications are modeled
by PWS systems whose discontinuity sets consist of multiple lines or nonlinear
curves. Consequently, limit cycle bifurcations of planar PWS systems defined in
two or multiple zones separated by multiple lines or nonlinear curves have been
extensively studied. For example, in [48,49], Kiipper etal. investigated limit cycles
arising from Hopf bifurcations emanated from a corner of PWS systems. In [24]
Hosham considerd bifurcation of sliding periodic orbits for n-dimensional PWS
systems by using invariant cones proposed in [45]. The number and distribution of
limit cycles in planar PWS systems defined in three zones separated by two parallel
lines were investigated in [27,34,35,41,46,47]. Cardin and Torregrosa studied the
number of limit cycles in planar piecewise linear (PWL) systems defined in two
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zones separated by a nonregular line formed by two rays started from (0,0) and
proved that the irregularity of the separation line can increase the number of limit
cycles in [3]. Limit cycles for PWS systems with a nonregular separation line were
also studied in [1,26,29,36,37,42]. In [30,31], Llibre et al. constructed PWL systems
with infinitely many limit cycles defined in infinitely many zones separated by the
straight lines |z| = 2n — 1 for n = 1,2,---. An example of PWL systems with
infinitely many limit cycles defined in two zones separated by an analytical curve
was given in [16].

Furthermore, there are many works considered systems with algebraic or smooth
separation curves. In [17], Gasull suggested to study £(n), the lower bound of the
maximum number of limit cycles of planar PWL systems with two zones separated
by a branch of algebraic curve of degree n. This problem was investigated by
Andrade et al. in [9] and Novaes in [40]. In particular, Novaes proved in [40] that
L(n) grows as fast as n?. The number of limit cycles bifurcated from a period
annulus of a class of planar piecewise C* systems defined in two zones separated by
a C* curve were studied in [21,43] by using the Melnikov method. In [33], Li and
Llibre studied the maximum number of planar piecewise polynomial Hamiltonian
systems of degree n with the switching boundary y = 2™ for m > 1 and n > 1 by
also calculating the Melnikov-like functions.

Although big progress has been made on the study of limit cycle bifurcations
of planar PWS systems, few attentions have been paid to the computations of
the Lyapunov constants of a PWS system when the discontinuity set consists of
nonlinear separation curves passing through (0,0) and (0,0) is a pseudo-focus of
the system. It is known that the Lyapunov constants are powerful tools to tackle
center-focus and cyclicity problems for both smooth and PWS systems. Thus in
this paper we aim to make some efforts on this issue.

More precisely, in this paper we investigate the number of small amplitude limit
cycles bifurcated from a class of planar piecewise analytical systems defined in two
zones separated by an analytical curve y = ¢(z) with ¢(0) = 0 by computing
Lyapunov constants. Assume that the origin (0, 0) is a pseudo-focus of the system.
The main difficulty here is that if one tries to write the subsystem with focus contact
in classical polar coordinates © = rcosf, y = rsinf, or to write the subsystem
with parabolic contact in the well known (R, 6,1, 2)-generalized polar coordinates
as described in [8], then for an orbit segment of the corresponding subsystem which
intersects the switching curve, the interval of # varies as the intersections move on
the switching curve. To overcome this difficulty, we propose an extension for each
of these two types of coordinates, so that the interval of 6 for any of such kind of
orbit segments is the same. Then we present the method on how to calculate the
relevant Lyapunov constants. As applications, we present three planar piecewise
quadratic systems. The first one is of PP type separated by y = sin? x which has
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four limit cycles bifurcated from (0,0). The second one is of FP type separated by
y = ¢” — 1 which has five limit cycles bifurcated from (0,0). The last one is of FF
type separated by y = sinx which has five limit cycles bifurcated from (0, 0).

Our presentation is organized as follows. In Section 2, we present basic assump-
tions and the main results of the paper. In Section 3, we discuss the properties of
the Lyapunov constants of planar piecewise smooth systems separated by an ana-
lytical curve. In Section 4, we discuss the number of limit cycles bifurcated from
(0,0) for three types of planar piecewise quadratic systems defined in two zones
separated by an analytical curve. Some concluding remarks are given in Section 5.

2 Preliminaries and the main results

Let H(z,y) =y — ¢(z), where y = ¢(x) is an analytical function. Without loss of
generality, we assume that:

(H1) y = ¢(x) is analytical. After translation and rescaling, we assume that
#(0) = 0 and there is an integer mg > 1 such that ¢(x) = x™ + O(z™ 1) :=
¢ O) + ¢(z), implying that ¢ (0) = 1 when moy = 1 or ¢'(0) = 0 when

> 2.
mo =

Then R? is split into two disjoint open sets O = {(z,y) € R*: H(z,y) > 0}
and O~ = {(z,y) € R*: H(z,y) < 0} by the switching curve 3 = {(z,y) € R?* :
H(z,y) =0}. Let X7 ={(z,y) € X: = >0}, ¥~ ={(z,y) € ¥: x < 0}. The
two zones 1, Q and the discontinuity set ¥ = T U X~ U {(0,0)} for mg > 2
even and for my > 1 odd are sketched in Fig. 1 (a) and (b) respectively.

Consider the following planar PWS system:

2\ _ [ Z%(x,y) = (XF(z,y), Y(zy)", if (z,y) € QF,
(y> N { Z=(x,y) = (X"(z,y), Y (z,9)", if (z,9) €Q7, (2.)

where X*(z,y) and Y*(xz,y) are analytical functions. The subsystem of (2.1) in
the region QF (resp. Q7) is called the upper (resp. lower) subsystem of (2.1).
Let (-,-) be the standard scalar product in R?. Following [12], for (z,y) € X,
let Z*H(z,y) = (VH(z,y), Z*(z,y)) be the derivative of H(x,y) in the direction
of the vector fields Z*(x,y), and (Z*)*H(x,y) = (V(Z*H(x,y)), Z*(x,y)). For
(z,y) € X, let

o(z,y) = Z'H(x,y) - Z H(z,y)
= (-4 @)X @y +Y @) (-0

!/

(#) X (a,y) + Y~ (2.9)



Lyapunov constants of PWS systems separated by an analytical curve )

y y
3 Z+ 2+
ot
Q_+
0 X 0 X
O a-
v-
(a) mgp > 2 is an even number. (b) mo > 1 is an odd number.

Figure 1: The two zones QF, Q™ separated by the analytical curve y = ¢(z) = 2™ 4+ O(z™0 ).

Then according to [28], the crossing region ¥¢ C 3 and the sliding region ¥* C X
of system (2.1) are respectively given by:

Y ={(z,y) €X:0(zx,y) >0}, X°={(z,y)eX: o(z,y) <0}.

A point in ¥° (resp. X°) is called a sliding (resp. crossing) point of system (2.1).
A point (z,y) € X% with Z-H(xz,y) — ZTH(x,y) = 0 is called a singular sliding
point. The Filippov’s convention is assumed for the solutions of system (2.1) on X.
More precisely, according to [28], on the crossing region 3¢, the two vector fields
Z*(x,y) and Z~(x,y) have nontrivial normal components of the same sign. The
orbits from Q% and Q™ reaching the crossing region are concatenated to form an
orbit of system (2.1). For each of the nonsingular sliding points (hence it is not
isolated) (z,y) € X*, one associates the following convex combination gs(z,y) of
the two vector fields in Q* and Q:

_ 2" H(z,y)
Z_H(ZL’,y) - Z+H($,y>

9s(,y) = \ZH (2, y) + (1 = X)Z 7 (2,9), A

At any non-isolated singular sliding point, gs(z, y) and its derivatives can be defined
by continuity. We set gs(x,y) = 0 at any isolated singular sliding point on X°.
Consequently, we can define a scalar differential equation

(@,9)" = go(x,y), for (z,y) € ¥, (2.2)

which is smooth on one-dimensional sliding intervals of ¥°. Solutions of equation
(2.2) is called sliding solutions [28]. By this method, one can define the orbit of
system (2.1) with a sliding segment as described in [28]. In particular, a limit cycle
of system (2.1) which intersects the line of discontinuity ¥ only in crossing points
is called a crossing limit cycle, while a limit cycle which contains some sliding
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segments is called a sliding limit cycle. Again, all of the limit cycles mentioned in
the sequel, if not specified, are crossing limit cycles.

An equilibrium (7., ¢(24e)) € B° of system (2.2), where the vectors Z* are
transversal to X° and anti-collinear, is called a pseudo-equilibrium of system (2.1).
Thus a pseudo-equilibrium of system (2.1) is an internal point of the sliding region
¥ [28]. Let (ze,v.) € R? be a point with (X (2., y.), YT (xe, y.)) = (0,0) (resp.
(X (e, Ye), Y (e, 9)) = (0,0)). If (e, 5e) € QF (vesp. (e,yc) € Q7), then it is
called a real equilibrium of system (2.1). If (z¢,y.) € Q@ (resp. (ze,ye) € ), then
it is called a wvirtual equilibrium of system (2.1). If (z.,y.) € 3, then it is called a
boundary equilibrium of system (2.1). A point (zy,y;) € ¥ with ZTH (x,y,) =
—¢ () XH(zy) + Y (2 9) = 0 (vesp. Z H(x,y) = —¢ (20) X (21, 4) +
Y~ (z+,y:) = 0) is called a tangential point of the upper (resp. lower) subsystem of
system (2.1). If it is a tangential point for both of the upper and lower subsystem,
then it is called a double tangential point. A tangential point (z,v;) € X for the
upper (resp. lower) subsystem with (Z7)2H (zy,y;:) < 0 (vesp. (Z7)2H (x4, y;) > 0)
is called an invisible fold of the upper (resp. lower) system. It is called a wisible
fold it (Z¥)*H (zy,y;) > 0 (vesp. (Z7)*H(xs,y;) < 0). A point (zg,y0) € X is
called a singularity of system (2.1) if it is either a boundary equilibrium or a tan-
gential point of one of the subsystems. An invisible fold is also called a parabolic
singularity of system (2.1). A point (zg,y0) € X is called a stable (resp. unstable)
pseudo-focus of system (2.1) if all orbits in a neighborhood of (zo, yo) spiral around
and tend to it as time increases (resp. decreases) [8].

We remark here that a singular sliding point is a singularity of system (2.1),
but not vice versa. We further assume that:

(H2) (0,0) is a pseudo-focus of system (2.1). For each of the subsystems of system
(2.1), (0,0) is either a focus, namely, the linear part of the vector field at (0, 0)
has a pair of conjugate complex eigenvalues, or a parabolic singularity. The
flows of system (2.1) in a neighborhood of (0,0) cross ¥ counterclockwise.

Since X*(x,y) and Y*(z,y) are analytical functions, we assume that they can
be written as:

XH(z,y) =ag+ D aia’y’, Y@ y) =biy+ Y bia'y,
i+j=1 itj=1

where af?, bfj € R are constants. Similar to [8], a pseudo-focus of system (2.1)

satisfying (H1) and (H2) can be classified into four types, namely, FF, FP, PF
and PP types. Here a pseudo-focus of FF (resp. PP) type means that it is a
singularity of focus (resp. parabolic) type for both of the upper and the lower
subsystems. A pseudo-focus of FP (resp. PF) type means that it is a singularity of
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focus (resp. parabolic) type for the upper subsystem and a singularity of parabolic
(resp. focus) type for the lower subsystem. Clearly, a PF type critical point of
system (2.1) can be reduced to the FP type by applying the change of coordinates
(z,y,t) — (—z,—y,t). In this case, the switching curve y = ¢(z) is transformed
to y = —¢(—=x), which also satisfies the assumption (H1).

We remark here that, a parabolic type of singularity of the upper (resp. lower)
subsystem of (2.1) is a special case of a singularity of contact of multiplicity k (or
order k — 1) between the upper (resp. lower) subsystem and ¥ with & = 2 in terms
of the concept introduced by Novaes and Silva in [39]. Moreover, a pseudo-focus
of PP type corresponds to a (2k™*,2k™)-monodromic tangential singularity in [39]
with k% = 1.

We have the following results.

Proposition 2.1. Suppose that aly = bly = 0 (resp. agy = byy = 0) and (H1-H2)
hold. Then (0,0) is a singularity of focus type for the upper (resp. lower) subsystem
of (2.1) if and only if (aj, — bdy)? + 4ag,biy < 0 and by + ¢ (0)(bd; — afy —agy) > 0
(resp. (ary = boy)? + dag g < 0 and byy + 6'(0)(byy — ary — agy) > 0).

Proof. First, (0,0) is a focus of the upper (resp. lower) subsystem of system
(2.1) if and only if (af, —bg;)? +4agbfy < 0 (resp. (ajy—bgy)? +4ag;byy < 0). Then
under the assumptions (H1-H2), the orbits of system (2.1) cross ¥ counterclockwise
in a neighbourhood of (0, 0). Considering the upper subsystem, for sufficiently small
|z| > 0, we have

z (Y (r,y) = X (2,9)¢(x)) >0,

implying that
[0y + ¢/ (0)(bg) — afy — ag,¢(0))] 2* + O(%) > 0

for sufficiently small || > 0. Thus we have b}, + ¢'(0)(bg; — aiy — ad;¢'(0)) > 0. By
(H1), we have ¢/(0) = 0 or ¢'(0) = 1. Thus this is equivalent to b, + ¢'(0)(bg; —
ajy — agdy) > 0. Similarly, we have by, + ¢'(0)(by; — ajg — ag;) > 0 by considering
the lower subsystem.

The proof is complete. 0
Proposition 2.2. Suppose that (H1-H2) hold. Then:

(1) If ¢'(0) = 0, then (0,0) is of parabolic type for the upper (resp. lower)
subsystem of (2.1) if and only if ajy < 0, bfy = 0 and bfy — 6@ (0)ady > 0 (resp.
agy > 0, byy = 0 and byy — @ (0)ag, > 0).

(2) If ¢'(0) = 1, then (0,0) is of parabolic type for the upper (resp. lower)
subsystem of (2.1) if and only if ady = by < 0 and biy+bg; —afy—ad; — @ (0)agy > 0
(resp. agy = byy > 0 and by + by, — agy — ag; — 2 (0)ag, > 0).
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Proof. We only prove the results for the upper subsystem of (2.1). The proof
for the lower subsystem is similar. Under the assumptions (H1-H2), since the orbits
in a neighborhood of (0,0) of the upper subsystem cross ¥ counterclockwise, we
have agy, < 0. Moreover, (0,0) is a parabolic singularity of the upper subsystem if
and only if:

ZYH(0,0) = bfy — ¢'(0)ag, =0,
(Z+)2H(O, 0) = aoo( a10¢ (0) - ¢(2)( )+ ) + b&(—a0+1¢’(0) + b0+1) <0.

By substituting the condition ¢'(0) = 0 (resp. ¢/(0) = 1) into those conditions, we
obtain conditions given in (1) (resp. (2)).

The proof is complete. OJ

According to Propositions 2.1 and 2.2, after some invertible linear transforma-
tions and rescaling, a PP type of system (2.1) can be written into

—1+ajyr+ady + P (z,y) .
<—¢’( )+ 0% + by + Q" (x. y)) = o),

X
(?J - 1+ apz + agy + P~ (z,y) '
<¢/(0) +o x4+ byy+ Q_(x,y)> ,ify < o(x),

(2.3)

where o* = 4[1 — ¢/(0)] + ¢'(0)bi; and o* + ¢'(0) (b5, — atp — agy) + ¢ (0) > 0,
P*(z,y) and Q*(xz,y) are analytical functions given by

o0

P(x,y) = ) aga'y’, E:@ﬂm,

i+j=2 i+j=2

where a”, bf; € R are constants. A FP type of system (2.1) can be written into

Ao —y+ P (z,y) :
y L+ ayr + agy + P~ (2, 9) ) if y < o(x).
¢'(0) + 07 + by + Q@ (x,y) )7
A FF type of system (2.1) can be written into
Ao —y+ Pt (z,y) .
Y ANz —y+ P (z,y) . '
<x+Xy+QTLw iy < ole)

For the case that (0,0) is a singularity of focus type for the upper (resp. lower)
subsystem of (2.1), if one tries to write the subsystem in classical polar coordinates
by the transformation x = rcosf, r = rsin6, then for an orbit segment of the
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corresponding subsystem which intersects Y. transversally, the corresponding inter-
val for # varies as the intersections move on Y. This imposes additional difficulties
for the computations of the Lyapunov constants. For this reason, we extend the
classical polar coordinate transformation as following:

xz =71 [cosf — ¢'(0)sinb],
{ y =1[¢'(0) cosf + sin ] + & (r [cos @ — ¢'(0) sin 0]) . (2:6)

Clearly, the transformation (2.6) satisfies:

det @(ﬁg;) - [1 + (qs’(o»ﬂ r>0

for r > 0. Tt is easy to see that, by using transformation (2.6), for an orbit of the
upper (resp. lower) subsystem of (2.1) starting from a point on X (resp. ¥7) and
intersects X~ (resp. XT) without leaving QF (resp. Q7), 6 varies from 6§ = 0 to
6 = 7 (resp. from 6 = 7 to 6 = 2m).

Similar issue arises for the case in which the flow of system (2.1) has a parabolic
contact with ¥ at the singularity. Moreover, as in [8], this case presents more diffi-
culties, because if one tries to write the system in polar coordinates, it is not clear
if the return maps are analytical. For these reasons, we extend the aforementioned
(R,0,1,2)-generalized polar coordinates to the following form:

{ z = RCs(0) — ¢'(0)R*Sn(8), (2.7)

y = ¢'(0)RCs(f) + R*Sn(0) + ¢ (RCs(f) — ¢/(0)R? Sn(0)) ,
where Cs(#) and Sn(#) are the solution of the Cauchy problem:

Cs(9) = —Sn(f),  Sn(f) = Cs*(0),
Cs(0) =1, Sn(0) =0.

The transformation (2.7) satisfies:

det (gfi;?)) - [1 + (¢'<0)ﬂ R2>0

for R > 0. Let I'(s) be the usual Gamma function for s € (0, +o00). Then both
Cs(0) and Sn(#) are periodic functions with period 7" = 27 [7], where 7 is given by

TG N
e et
Clearly, Cs*() +2Sn*(#) = 1 for any 0 € R, Cs(0) =1, Cs(7) = —1, Cs(27) = 1,

Sn(0) = Sn(7) = Sn(27) = 0. It is easy to see that, by using transformation (2.7),
for an orbit of the upper (resp. lower) subsystem of (2.1) starting from a point
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on XT (resp. ¥7) and intersects X~ (resp. XT) without leaving Q* (resp. Q7), 6
varies from 6 = 0 to § = 7 (resp. from 6 = 7 to 6 = 27).

Let 2% = o* + ¢ (0) (b3, — aiy — afy) £ 0P (0) and A%() := Cs*(0) 4+ a* Sn(h),
where a* = £2[1 + ¢'(0)]/Z*. Then A(0) = A(7) = 1. Let

4 _[axe)”
A0 k) = [k Cs*(0)]

In the following we only need the value of A*(6,k) at # = 0 and 6 = 7, which are
well defined. We have the following result:

Lemma 2.1. Let n be a positive integer and v > 0 be a constant such that 2v —
2n — 3 >0, B be the positive real number f = 2v — 2n — 3. Then

g (e

where C' s the arbitrary integration constant.

We remark here that under the conditions of Lemma 2.1, we have n—i—v # —1
fori=20,1,---,n

Proof. Let 2 = a® Sn(f)/ Cs*(). Then by the definitions of Sn(6) and Cs(6)
and the identity Cs*(#) +2Sn*(#) = 1, we have:

Cs”(#) Sn™(6) B Cs”(#) Sn™(9) (o)D) " .
[ =wor - | o rasmar® = @ T

which can be computed by repeatedly applying the method of integration by parts.

The proof is complete. O

In the following, we take system (2.1) of FP type, namely, system (2.4), as an
example to explain the concept of the Lyapunov constants. The concepts of the
Lyapunov constants for the PP type and FF type, namely, system (2.3) and system
(2.5) respectively, are similar.

To simplify notations, let
REO) = —(=1% O {2 [3620) - 245 + 20, + 208 + 0 (0)(~X*6 0)
—2b3, + 2b%, + 2a7;)] cos® 0 + - [/\i¢(2 (0) + 2b, — 2b,
—2aE + ¢ (0)(3¢@(0) — 24, + 203, + 2611)] cos® 0sin 6

7 [F469(0) - 40, - ab; + 6 0)(3*62(0) — 9 (0) + 203,
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+6bg, — 2a7; + Gagy + 2b7; — 2b3,)] cos 6 — i [4@%2 + ¢ (0)(A*¢(0)
+02(0) + 20, — 665, — 20 + 20k, + 2% — 20%)] sin 6},

04(0) = —(~1) O [0 (0) + 2% — 2 — 2aty + 6 (036 (0) — 205,
+2a3, + 2b1i1)] cos®(0) + % [—3¢(2)(0) + 2a%, — 2a3, — 2b};
+¢ (0) (AP (0) + 203, — 2b% — Qaﬁ)] cos” 0 sin 6 + %1 [4at; — 4bg;
+6 (0)(=3XF¢P(0) — 3¢P(0) — 6ag, + 2bF, — 205, + 20, — 2%
+6b3;)] cos 6 + i [4@ + ¢ (0)(A @ (0) 4 362 (0) — 6aZ, — 203,
+2a%, — 20k + 2 — 2b%)] sme},

gi(0) = F[0(0)+1] C5%(0) + = Cs(0) Sn(0),

1
hi(0) = —3 [(2a%5 — b5)o® (0) F 6™ (0) — 265 + ¢/(0)(36'* (0)ay
+2af; + 2a3, — 265 + 2ad, — 2b5,)] Cs*(0) + [bE — 241,

—6/(0)(£362(0) + 33 + 3ah — af + 208,)| Cs(0) Sn ().

Let g=(0) = ¢F(0)/(E*A%(0)), h*(0) = hT(9)/(E*A*()). We transform the
upper system of (2.4) by using the transformation (2.6) and obtain:

dr ATr+ RY(0)r? + O(r?)
o 1+6T0)r+0(r?)

0 € 0,7 (2.8)

It is clear that system (2.8) is analytical for sufficiently small » > 0. Then we trans-

form the lower system of (2.4) to the following form by applying the transformation
(2.7) and obtain:

dR g ()R + O(R?)
49~ 1+ h (0)R+O(R?)’

0 € [r,27]. (2.9)

It is easy to prove that Sn(f) < 0 for § € [r,27]. Moreover, =~ > 0 by our
assumption. Thus =~A~(0) > 0 for 6 € [r,27], implying that system (2.9) is
analytical for sufficiently small R > 0.

We define the positive half-return map IIT : Rt — R~ of system (2.4) by
II7(p) = —r*(p,m), where r*(p,0) is the solution of (2.8) satistying r*(p,0) = p
with p > 0 sufficiently small. Clearly, we have —r*(p, 7) < 0. Note that under the
extended polar coordinates (2.6), (p, ¢(p)) € X and (—rT(p,7), p(—rT(p,7))) =
(IT*(p), p(IT*(p))) € X~ for p > 0 sufficiently small. Thus the map It : Rt —
R~ is well defined. Similarly, under the coordinates (2.7), (n,¢(n)) € X~ for
n < 0. Thus we can define the negative half-return map II- : R~ — R* of
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_Q+

\m*eo).qu*(pn

Figure 2: The construction of the positive and the negative half-return maps.

system (2.4) by II7(n) = R (—n,27), where R~ (—n,0) is the solution of (2.9)
satisfying R~ (—n,7) = —n > 0 with —n > 0 sufficiently small. Similarly, we have
(R~ (=n,27), (R (—n,27))) = (IT" (n), p(II"(n))) € . Please see Fig. 2 for the
construction of the positive and the negative half-return maps.

The return map IT : R™ — R* for (2.4) is given by II(p) := II" (IT*(p)). The
displacement function d : RT — R is defined by d(p) = II(p) — p for p > 0 small
enough, which can be expanded as [8]:

d(p) = Vip+ Vap® + Vip® + - (2.10)

V. is called the k-th Lyapunov constant of system (2.4). Similar results can be
obtained for the PP type system (2.3) and FF type system (2.5), respectively, by
following the above process.

Clearly, it is only necessary to compute Vi, when V), = Vo =--- =V, ; =0. It
is known that for smooth systems, for the first nonzero Lyapunov constant Vi, k
must be an odd number. But in general this is not true for non-smooth systems,
see e.g. [8,15]. In fact, it has been proved in [13,39] that for a planar PWS system
with a (2k™,2k™)-monodromic tangential singularity, in particular for a critical
point of PP type, defined in two zones separated by the straight line y = 0, the
index of the first nonzero Lyapunov constant is always an even number. Similarly,
for system (2.3), we have the following result:

Theorem 2.1. The ideal generated by all Lyapunov constants of system (2.3) is
equal to the ideal generated by the Lyapunov constants of even order i.e. Va,11 =0
if Vie = 0 for every k = 2,--- ,2n. Thus the index of the first nonzero Lyapunov
constant of system (2.3) is always an even number. Moreover, we have the following
results for system (2.3):
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(1) If ¢'(0) = 0, then Vo = v — v, where

L [8£3¢3(0)] by + ¢ (0) + Bay £ 20y,

v +£12 + 3¢(0)

(2) If ¢ (0) = 1, then Vo = (k* /yT — k= /v7)/6, where

Wi = ¢(2)(0) + (bﬁ) + b a10 a(;_Ll)

KT = —6(ag)’ + (T8 + 6by, + 8by, — 10ayy £ 8)ag, — 2(by,)* — (v*)°
+(£8yF — 2b%, + 6afy F 8)bE + dafbl, — 4(aiy)? + 4yF £ 4bT £ 4b5
TdaZ, + 403, 4 263 (0) F 4aT, F 4ad,.

Novaes and Silva proved the following result in [39]. Let Z, be an f-parameter
family of planar PWS systems defined in two zones separated by the straight line
y = 0 having a (2k*, 2k~ )-monodromic tangential singularity at (0,0), A € U C R’
be the parameter vector, where & C R is an open set. Let Vo;(A) be the 2i-th
Lyapunov constant for i = 1,2,--- £+ 1. Let V, = (Vo, V4, -+, Vay) : U +— RE.
If for some Ay € U, Vi(Ag) = 0, det(DVy(Ao)) # 0 and Vopya(Ag) # 0, then ¢
hyperbolic limit cycles can bifurcate from (0, 0). It is easy to see that, by Theorem
2.1, this result is also true for system (2.3).

However, for the the FP type system (2.4) and FF type system (2.5), as can be
seen from the following results, the index of the first nonzero Lyapunov constant
can be either even or odd. Thus for system (2.4) and system (2.5) it is possible to
generate k limit cycles only from Vi, V4, -+, Viiq. For system (2.4) and system
(2.5), we have the following result which will be proved in Section 3:

Proposition 2.3. For system (2.4), we have V| = X' ™ — 1. For system (2.5), we
have V; = eXT AT 1 = A m(Atr _ omATm),

By Proposition 2.3, for system (2.4), V; = 0 implies that A* = 0. Thus to
compute higher order Lyapunov constants for system (2.4), we assume that AT = 0.
For system (2.5), V3 = 0 implies that AT + A\~ = 0. In the sequel, to simplify
computations, to compute higher order Lyapunov constants for system (2.5), we
further assume that AT = A~ = 0. In fact, our computations show that the
expressions of V5 and V3 for system (2.5) are very complicated even when AT+ " =

0 and ATA™ #£ 0. Let

wt = :I:aﬁ(aé + a2io) + béto(blil + 2a2i0> + b0i2(2a§2 - blil)
+b5, + 3b3; + ai, £ 3a3,,
Ci = 5a§t0 + bi - bg:o + a(j)t2 5boiz a11

We have the following results:
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Theorem 2.2. Assume that At = 0 in system (2.4), then V3 = 0. Moreover, we
have the following results for system (2.4):

(1) If ¢ (0) = 0, then
2
Vo = g(aﬁ + by + 2b5,) — v,

where v~ s the same as that given in Theorem 2.1. If Vo = 0, then we have

Vs = Zwt.

(2) If ¢'(0) = 1, then

¢P(0) 1 K
Vo=t = o = —
2 2 3C 6=’

where kK~ and vy~ are the same as those given in Theorem 2.1. If Vo = 0, then we
have V3 = Zw™.

Theorem 2.3. Assume that A\t = A\~ = 0 in system (2.5), then Vi = 0. Moreover,
we have the following results for system (2.5):

(1) If ¢'(0) = 0, then
2 _ _ —
Vo= §(a;r1 + b3g + 200, — apy — byy — 2bgp)-
If Vo =0, then we have

Vy= 2w —w)
(2) If ¢'(0) = 1, then
V=5 - ¢)
If Va = 0, then we have
Va= (W —w)

As applications, and by using Lemmas 4.1 and 4.2 given in Section 4, in the
following we present three examples of planar PWS quadratic systems of FF, FP
and PP types respectively.

Proposition 2.4. Consider the following planar PWS quadratic systems of PP
type:

—Ltary blyz) if 4 > sin®x

(x) - Az + c1 22

= 2

Y <1 +469lcl—x|—yg+x{1y ) , ify < sin?u.
1

(2.11)

System (2.11) has four limit cycles bifurcating from the origin.
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It is easy to see that for system (2.11), we have y = ¢(v) = sin®z = (1 —

cos(2z)) with ¢/(0) = 0. In fact, we have

1
2

y=o(x)=1" - Sty (—1)’”1—2%_13:% T
4l (2K)! '
Proposition 2.5. Consider the following planar PWS quadratic systems of FP
type:

AT — Y + asxy + boy? . .
B ( T+ Ay — asz? o iy >et =1,

&
()= i e .
1+ + gy + hoy? )’ y '

System (2.12) has five limit cycles bifurcating from the origin.

For system (2.12), we have y = e — 1 with ¢/(0) = 1:

2 k

T i

Proposition 2.6. Consider the following planar PWS quadratic systems of FF
type:

AT — y + azzy + bsy?
T+ Ay + c3x? + dsxy + f3y?

i ) , ify > sinx,
(y) N ( Az —y + gswy + hgy?

(2.13)

x + )\y + l3{[’2 + maxy + n3y2 ) if Yy <sinx.

System (2.13) has five limit cycles bifurcating from the origin.

For system (2.13), we have y = sinz with ¢/(0) = 1:

I‘3 I2k+1

y=¢(5€):1’—§+“'+(—1)km+'“

3 On the Lyapunov constants

In this section, we prove Theorems 2.1 and 2.2 by considering the Lyapunov con-
stants of system (2.3) and (2.4), respectively. The proof of Theorem 2.3 is similar.
Thus it is omitted for brevity.

We first consider system (2.3). To prove Theorem 2.1, we need the following
result, which was proved in [39]:
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Lemma 3.1. Let I C R be an interval with 0 € I and ¢ is a positive integer. Let
0,0 I = R be C**1 involutions around 0. If ©(0) = 1(0) and @ (0) = @ (0)
fori=1,2,--- 20, then o2+ (0) = Z+1(0).

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. We transform the upper system of (2.3) by applying
the transformation (2.7) and obtain:

dR  g*(0)R+ O(R?)
d9 1+ ht(0)R+ O(R?)’

Again, it is easy to prove that system (3.1) is analytical for sufficiently small R > 0.
We assume that for small R > 0, system (3.1) can be expanded as

d—]; S BHO)R. e for (3.2)

0 € 0,7]. (3.1)

Similarly, the lower system of (2.3) can be transformed to (2.9) by applying the
transformation (2.7) and assume that for small R > 0, it can be expanded as

% - i P (O)RF, 0 ¢ [r,27], (3.3)
where 1 (Ai)'(Q)
PO =555

Now we focus our attention on (3.2), the discussions for (3.3) are similar. By
the change of variables:

0 1
R = Rexp (—/ Pf(s)ds) = [AT(0)]° R,
0
system (3.2) can be transformed to:
AR & -
5 = 2 QLR (34)
k=2
where for k > 2, we have
o +
Q10 =ex (k-1 [ preos) i) = 0
0 [A*(0)] =

Let R*(p,0) be the solution of (3.4) with R*(p,0) = p for sufficiently small
p > 0. It can be expanded as:

R*(p,0) = p+ Y uf(0)p", (3.5)
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with uf(0) = 0 for all & > 2. Let R"(p,0) be the solution of (3.2) satisfying
R*(p,0) = p. Then

_p—|—Zwk AJF %

/H—Zuk ]

Furthermore, for all £ > 2, we have

1

wi(0) = [AT(O)] 7 =1, wi(6) = [A7(0)]
Note that w; (1) = 0, we have
T (p) = R*(p,7) = p+ w; (7)p* + 1wy (7)p" + -+
Since A (1) = 1, we have w (1) = u; (1) for any k > 2.

For (3.3), we can similarly define the functions wy () and wuy (6), w, (0) for
0 € [1,27] and k > 2. Moreover, we have

wy (0) = [A™(0)]

Consequently, we have

1

— 1, wp(0) = [AT(O)] *u (0).

N

I (p) = p+wy (27)p* + w3 (27)p° +
In particular, we have w, (27) = u,, (27) for any k > 2.

From the above analysis, we obtain the displacement function of system (2.3)
given by d(p) = II"(IT*(p)) — p for p > 0 small enough, which can be expanded as

d(p) = Vap® + Vap® + - -

Hence we have V; = 0. Furthermore, by using the same method as in the proof of
Proposition 3 of [13], we can prove that the half maps II™ and I~ of system (2.3)
are proper analytical involutions at the origin. Thus by Lemma 3.1, the index of
the first nonzero Lyapunov constant of system (2.3) is always an even number.

To compute V5, substituting (3.5) into (3.4) and comparing the coefficient of p?
yields

-/ 05 (s)ds = THB) = T* (0).

Here the integral can be computed by using Lemma 2.1. Similarly, we have u, (6) =

T-(0) — YT (7), where:
(1) For ¢'(0) = 0, we have

TE@) = iyi+M{[—3Ai<e,—g)+3(iAi(9,—%) ~1)
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1 3 3 4
62 (0) + 12A% (9, ——) + 8] bE + 2 (Ai (e, ——) + —) (¢<3>(0)
2 4 2 3
18t + 2b§5) }
Thus wy (1) = ug (1) = vT, wy (27) = uy (27) = —v~. Hence we obtain V5 =
wy (T) + wy (27) = v — v~ as given in Theorem 2.1.
(2) For ¢'(0) = 1, we have
/@i 1
T3(0) = +—
_(5(1):1) + (FAE 7" = bio + 3age)byy + (75)? + 20igaty — 2(agp)” +
3
29" F 207, F 203, * 2by; + 2by £ 205, F 2ap; + ¢(3)(0)] A (0’ _§>

{3[ 3(a )2 + (4 F 7F + 3b% + 4bE — 5a)ag

+12(a))? [ 16 F 1603 + (16 T 3A* (9, —1>>*yi + 12bF + 20af0}
i+ 4(05)2 + |16+ (£34% (6, —%) —16) 7 & 4bf, F 1205 | v +
44— 37 (9, -1)

2
8bi — 8b, — 8, + 8aih F 469(0) }.

(Vi)2 + SVi + 8aic0bf0 + 8(@:0)2 + Sai + 86@% -

Thus wy (1) = ud (1) = &1/(67), wy (27) = u; (27) = —k~/(67y7). Hence we
obtain Vo = wy (1) + wy (27) = (kT/y" — k7 /77)/6 as given in Theorem 2.1.

The proof is complete. OJ
Before proving Theorem 2.2, we first prove Proposition 2.3.

Proof of Proposition 2.3. For the upper subsystem of (2.4), from (2.8), we
have

dr

do

which is analytic for sufficiently small r > 0. Let 7(p,0) = v1(0)p + O(p*) be the
solution of (3.6) with r(p,0) = p > 0. Substituting it into (3.6) yields

dvy(0)/d0 = XTv1(0), v1(0) = 1.

Hence we have vy (f) = e*"?. Thus, II*(p) = r(p,7) = e* "p+O(p®). For the lower
subsystem of (2.4), from the proof of Theorem 2.1, we obtain I~ (p) = p + O(p?).
Consequently, we have I1(p) = II-(II* (p)) — p = (e} ™ — 1)p+O(p?), implying that
Vi = e — 1 for system (2.4).

= N7+ 0(r?), (3.6)

Similarly, for the upper subsystem of (2.5), we have ITT(p) = e* ™p + O(p?);
for the lower subsystem , we have I17(p) = e* "p + O(p?). Thus we have II(p) =
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[e()‘++’\7)” - 1] p+ O(p?), implying that V; = A7 1 = A7 7(AT7 — =27)
for system (2.5).

The proof is complete. OJ
In the following we prove Theorem 2.2.

Proof of Theorem 2.2. As explained in Secton 2, when AT = 0, we can
transform the upper system of (2.4) to (2.8) by using the transformation (2.6),
which is analytic for sufficiently small » > 0. Assume that it can be expanded as:

dr RT(0)r*+ O(r .
d6d 1+ 6+(6) r—i—O ZT € [0, ] (3.7)

for sufficiently small » > 0. The solution 7 (p,0) of (3.7) satisfying r*(p,0) = p
can be expanded as

=Y uf )", 0o (3.8)

k=1

Substitute (3.8) into (3.7) and compare the coefficients of p*, we obtain v; (0) = 1

and v} (0) = 0 for k > 2 and
v (0) =T, of(0) =T +(T3)?

)
where for any function f(6), we use the notation f = f(6) for

- /0 " f(s)ds

H+(p) = T+(p77T) = p—l—’U;(ﬂ')pQ =+ U;(ﬂ')pg 4.

By direct computation, when ¢ (0) = 0, we get

Moreover, we have

F(r) = S + b+ 200), o () = T+ (u ()
when ¢'(0) = 1, we get
2
i@ =2+ 0 ) = T 1 0 )

The half-return map of the lower subsystem of (2.4) can be computed as that
for the lower subsystem of (2.3) as given in the proof of Theorem 2.1 above, and
again we have

I (p) = R (p,27) = p +uy (27)p? +u§(27)p3 SR
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where when ¢ (0) = 0, we have
uz (27) = —v7, uz(21) = (V)%

when ¢'(0) = 1, we have

w (27) = —%, s (27) = <%)2

Thus for system (2.4) with AT = 0, we have
Vo= (1) +uy (27), Vs =0 (m) +us (27) + 205 (7)uy (27). (3.9)
In particular, when ¢ (0) = 0, we have

2
Vy = 3(all+b +Qb) ”

when ¢ (0) = 1, we have

If Vo = 0, then from (3.9), we get vy (1) +uy (2 ) = 0. Thus V3 = vj (7 ( ) — (vy ().

Consequently, if V5 = 0, then when ¢ (0) = = fw"; when $(0) =1,V =
Zwt.
The proof is complete. OJ

4 Limit cycles

In this section, we consider limit cycles bifurcated from planar PWS quadratic
systems by proving Propositions 2.4, 2.5 and 2.6.

In general, it is very difficult to solve the center-focus and cyclicity problems
of system (2.1) because this involves in finding the common zeros of the Lyapunov
constants. To tackle this problem, in [19] and [20, p. 45-46], Han presented a result
for planar smooth systems which allows one to estimate the number of limit cycles
by considering the linear terms of the Lyapunov constants. In [44], Tian and Yu
generalized this result to planar PWS systems defined in two zones separated by
the straight line y = 0 whose critical point is of FF type given the following form:

@\ _ [ 0z —y+P(z,y,p), o+0y+Q%(z,y,p)", ify>0, (4.1)
y 0z —y+ P (z,y,pn), +0y+Q (x,y,p)", ify <0, '

where p = (p1,- -+, pm) € R™ is a parameter vector with 1 = §. The following
result was proved in [44] (see Lemma 4 in [44]):
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Lemma 4.1. Assume that there exists a sequence of Lyapunov constants of (4.1
with 1 =iy <y < -+ < iy, such that V; = O(||(Viy, -+, Vi,)|

)
|

‘/7207 %1)"'7 ‘/im7 )
for any iy < j < igp1. If for system (4.1) at the critical point p = po, Viy = Vi, =
o=V, =0,V #0, and
0 ‘/l y Vg © 7‘/; -
rank < 0 1 m 1><,U/0) — m’

a(:“’h o 7ﬂm)

then m limit cycles can appear near the origin of system (4.1) for some p near .

From the proof of Lemma 4 in [44], one can see that Lemma 4.1 can be naturally
extended to be applicable to system (2.4) and (2.5). For system (2.3), it is easy
to see that Theorem E of [39] can be easily generalized to be applicable to system
(2.3). Namely, we have the following result:

Lemma 4.2. Let A € U C R’ be the parameter vector of system (2.3), where
U C R is an open set. Let Voi(A) be the 2i-th Lyapunov constant for i =
1,2, A+1. LetVy= (Vo, Vi, -+, Vag) : U — R If for some Ao € U, Vi(Ag) =0,
det(DVy(Ao)) # 0 and Vapia(Ag) # 0, then there exists an neighborhood W C U of
Ao such that system (2.3) has € hyperbolic limit cycles for every A € W. Moreover,
as A — Ay, all of the limit cycles converge to the origin.

Proof of Propositions 2.4. By Theorem 2.1, the index of the first nonzero
Lyapunov constant of system (2.11) is an even number. Thus in the following we
only need to consider V;, Vj, - -+ for system (2.11). With the help of the computer
algebra system Maple, we have

1
‘/2 = —(Cl — 391)
6
Solving V5 = 0, we obtain ¢; = 3g;. Substituting it into system (2.11), we obtain
4
V= —(27 9d; + 10g1).
4 135( ay +9d; + 10g;)

Thus from V5 =V, = 0, we obtain:

10
C1 = 391, d1 = —ggl - 3@1. (42)
Substituting (4.2) into system (2.11), yields
1 424 194 1
Vo = ——g) — ——¢° — —ay19° + ——— (46844 + 32439b, — 31185
6 36091 245791 231@191 + 93555( + 1 f)a
+256

—Aa.
135

Assume that g; # 0 and solve Vg = 0 for by, we have

1
by = ——— (27027¢° + 8171280a,g? + 167904047 + 3243240 f, 9, —
! 33736564, ( gt 191 + gt hgn
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18450432a; — 4871776¢;) . (4.3)

Substituting (4.2) and (4.3) into system (2.11), we obtain

1
Vs = [165137170287375g; — 351916907995422004

715661137808416800¢g;
+(—94727187283528800 f; + 83336453755389120) g}

—152271601441759800a, g7 + 1135640927894649696a, g°
+(5389558992166078080a? + 16669563275439360
—171546908182374400) g — 18475277635129835520a?
+(2193427181107768320 f; — 5529393871686397440)a, g1 ] -

Assume that
gl(—158245395gf + 366420412a, + 278471440g,) # 0, (4.4)

and solve Vg = 0 for f;, we have
—1
ho= 5986094409, (—158245395g3 + 366420412a, + 2784714404, )
(1651371702873759? — 152271601441759800a, g7 — 351916907995422004°
+538955899216607808a1g? 4 1135640927894649696a, g°
+83336453755389120¢g] — 18475277635129835520a2
—5529393871686397440a, g1 — 171546908182374400gf) . (4.5)

Thus under conditions (4.2-4.5), we have Vo =V, = V5 = Vg = 0.

In particular, let & = (a1, by, c1,dy, f1,91) € R be the vector of the parameters
of system (2.11) and let

g = 527745075055 3 10 24647401611248021 1) e Rre
07\ 745593840672° 77 97 14393689094172960

be a point in the parameter space of system (2.11) satisfying conditions (4.2-4.5).
Then from the computations given above, we have

80758974634867270018827085047016621
80411072152726343238482369622096000

Vo=---=W=0, Vig= # 0.

Let & = (ay,b1,é,d, f1,51) be a vector such that €]l < 1. Consider a small
perturbation of &, given by & = @ + £. Then the Jacobian matrix J; of Vo, Vj, Vg,
Vs with respect to ay,--- ,g1 at £ =0 is

Jl - ()\h )\2; )\3; )\4)T7
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which is a 4 x 6 matrix, and Ay, Aa, A3, Ay are column vectors given by

1 1"
)\1 - (07()’_70707__) 3

9 3
4 8 4 r
Do = (S’O’§I’13’0’0> ,
N (1417 083 189701719038651299 73 1
2970 2835’ 906802412932806480° 378" 3’
120748062512414321\ "
_'100755823659210720) ’
N = (162687940585448017 72896  6620205901221563449
40482250577361450 ’ 243243 14690199089512922976

47T7158672409854143 319 221850483179743417 ’
340050904849836180" 1701°  429537985073477280 )

It is easy to see that the rank of J; is 4. Thus by Lemma 4.2, system (2.11) has
four limit cycles in a small neighbourhood of (0,0) with ||§ — &|| sufficiently small
for any ¢ € RS,

The proof is complete. OJ

_ (1 _ 442362579251 1 61864231085488417 6
Take the parameters §, = ( 3> T 34115214663648° 5> T 0’ — G50173048231724640° 1) eR

in (2.11). Then we have V5 =--- = V5 =0 and
~19122055839425899781546410850094369209
~ 1180510155085693449929022903725165232000

Let & = (0,0.000845320239,2 x 10710, —1.188889 x 10~7,0.000851146957, 0) and
consider the perturbation of & given by & = & + & Then we can numeri-
cally find that the displacement function d(p) has four positive zeros given by
p1 ~ 0.030738372395, py ~ 0.063566620254, ps ~ 0.105505091439 and ps ~
0.179670968383, corresponding to the four limit cycles I'V" (1 < k < 4) bifur-
cated from (0,0). The two outer limit cycles I')F and I')” are shown in Fig. 3 (a).
The two inner limit cycles I'V” and T')P are shown in Fig. 3 (b).

~ 0.016198129052.

10

Proof of Propositions 2.5. From Theorem 2.2, for system (2.12), V; = 0 if
and only if A = 0. Thus in the following we assume that A = 0.

With the help of Maple, we have

1 1
V2:§(—52+d2+f2—92—h2)+§-

Solving V5 = 0 for by, we obtain

3
b2:d2+f2—g2—h2+§. (46)
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(b) PP and T'PP in the boxed area of
Fig. 3 (a).

PP PP
(a) T, and T, 7.

Figure 3: The four limit cycles of system (2.11) corresponding to the parameters & = &y + £.

Substituting (4.6) into system (2.12), yields

xg:g@@@+2h—2@—2@+3y

Assume that as # 0 and solve V3 = 0 for f,, we obtain

3
f2:—d2+h2+92—§~ (4.7)

Substituting (4.6) and (4.7) into system (2.12), we obtain

1
Vi = 155 (43g2 + 4hy — 8dy — 61).

Solving V; = 0 for hsy, we have

h2:z(

Substituting (4.6-4.8) into system (2.12), we obtain V5 = 0 and

—43g, + 61) + 2d. (4.8)

Vs = 10080[3216d2 (—41076g> + 59963) ds + 10436495 — 30563092 + 223420] .
Solving ds from Vi = 0 yields
3423 59963
dy = 34469928092 — 994456056, + 721486489 — ——— . (4.9
2= F3p 2T 6432\/ 93 - g2+ o132 (49

Substituting (4.6-4.9) into system (2.12) with ay # 0 and A = 0, we obtain V; =
Vo=---=V;=0and

/34469928092 — 9944560569, + 721486489

Vs 125730290810880
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2920546057 4
—6024124 2 1843332529, — 1045721 —_—
(—60 80095 + 8184333252¢, — 1045721975) — R19014621 9

+1821683207663 41633473539689 n 413048449542637
201042339840 72~ 5238762117120 V2 T 125730290810880

Now let n = (A, ag, b, da, fo, go, ha) € R” be the vector of the parameters of
system (2.12) and let

|
o = (0, 2,0, 432( 18887 + V71729713 ) (6841+\/7172971 )

1 7
Lo ( —4415 + V71720713 )) eR (4.10)
be a point in the parameter space of system (2.12) satisfying conditions (4.6-4.9)
with as # 0 and A = 0. Then we have V; =--- =V; =0 and
1114486477/ 71729713 — 1055913159323 40
T 125730290810880

Let 7 = (X, @y, by, ds, f2, G, he) be a vector such that ||| << 1. Consider a small
perturbation of 1y given by n = 1y + 7. Then the Jacobian matrix J; of Vi, V5, V3,
Vi, Vg with respect to X, G, ba, da, fo, Go, he at 7 =0 is

e O1x6
J2_<a J2 )7

where O ¢ is the 1 x 6 zero matrix, a € R?* is a column vector, J, = (ay, as, as, ay)”
is a 4 x 6 matrix, and oy, as, as, ay are column vectors given by

1 T
ap = ( 7_5) )

1

3

1 1 1\"
Qo = Yo o) o )

33 3

1

3
N <O 143 5 63967  T\/71729713 76831 < Tv/71729713
3 = T an

8"

11
73737

T
0. —— — =
) 27

" 192960 - 192960 * 192960 N 192960 ’

T
7687 TVT1T29713 70399 7V/T1729713
192960 192960 192960 192960 ’

30240 384 8687831040 * 1737566208

4644406637 n 1207531/ 71729713 5708245769
8687831040 8687831040 " 8687831040

T
938191V 71729713 2842079837 670459/ 71729713)

N <O 321757 1463 1039753037  199055+/71729713
4 = ) T

8687831040 8687831040 8687831040
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Figure 4: The five limit cycles of system (2.12) corresponding to the parameters n = ng + 7.

Hence the rank of J; is 5. Thus by Lemma 4.1, system (2.12) has five limit cycles
in a small neighbourhood of (0,0) with || — n|| sufficiently small for any n € R”.

The proof is complete. U

Let the parameters 1y of (2.12) be the same as given in (4.10). Then we have
Vi ==V, =0and Vg =~ 0.066674873834. Let 7 = (—2.7 x 10713,0,5.05 x
1078, —0.001138865772, —0.001036813772, 0, —0.002175731542). Consider the per-
turbation of ng given by n = 1y + 7. Then we can numerically find that the dis-
placement function d(p) has five positive zeros given by p; ~ 0.002922111610, py ~
0.005410494609, p3 ~ 0.018614104731, ps ~ 0.049598511581, p5 ~ 0.102896889137,
corresponding to the five limit cycles I')F (1 < k < 5) bifurcated from (0,0). The
two outer limit cycles F/ip and FII)’;P are shown in Fig. 4 (a). The three inner limit
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cycles TTF, TP and T'/F are shown in Fig. 4 (b). Note that the amplitudes of the
limit cycles in 2~ are so small that those limit cycles in 2~ are almost overlapped
with the switching curve . Thus we also present the enlargements for specific

areas of the limit cycles in Fig. 4.

Proof of Propositions 2.6. By Theorem 2.3, for system (2.13), V; = 0 if and
only if A = 0. In the following we assume that A = 0.

With the help of Maple, we obtain

Vo == (=bs + 5f3 + as — ds + c3 + hg — 5ng — gs + ms — ls) .

W =

Solving V5 = 0 for b3, yields
b3:5f3—|—a3—d3+03+h3—5n3—g3+m3—13. (411)
Substituting (4.11) into system (2.13), yields

T 1 a
VE; = —§ |:—§a§+5([3—7f3—h3+5n3+d3—03+g3—mg)—5][3

3
+(lg—h3+5n3+§d3—03+gg—m3) f3+%(l3+n3)

h 1
_33(93 + 2n3) + 503653] :

In order to simplify the computations, we further assume that
a3 = fz3=m3 =0, c3= —hs. (4.12)
Substituting (4.12) into (4.11) and the expression of V3, yields
by = —d3 — 5ns — g3 — I3, (4.13)
and
%:%@m+%+@ﬁ&
Assume that hs # 0 and solve d3 from V3 = 0, we obtain
d3 = —2n3 — g3. (4.14)

Substituting (4.12-4.14) into system (2.13), yields

1
Vi, = 5 [—Sng + 4(2h3 + 593 — 2l3)n§ + (—15 + 1Qg§ +4(hs — 53)93) n3

—5(hs + g3+ 13)] .
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Solving V; = 0 for hsz, we obtain

12g3n3 + 20n3gs — 4gansls — 8nj — 8nily — 5gz — 15n3 — bl3

hs = — 4.15
3 4g3ns + 8n3 -5 ( )
Substituting (4.12-4.15) into system (2.13), yields
nsm 2 9
Vi = (12 20n2gs — Agsnsls — 8nd — 8n
T OGgamy + 19202 — 120\ 98 T 2005 T Agsnals s — Sl
55 — 1505 — 513) <2n3 v 93) (2n3 n 1193>.
It’s clear that V5 = 0 under the condition of
11
Substituting (4.12-4.16) into system (2.13), we have
11gs 872
Vo = — (161975672320 — 25977712640g315 + 804136960 I3
¢ 9520(44g3 — 1)3 93 9ts ¥ 93

—56650070400g5 + 167899987209 15 — 1580705280512 + 492518404513
—1093842464495 + 168286272g513 — 67724804515 + 4276247245

—9802616g315 + 7593609213 — 19840gsl3 — 344492 + 672gsl5 — 35).

Now let ¢ = (A, as,bs,cs,ds, f3,93, hs, l3,m3,n3) € R be the vector of the
parameters of system (2.13) and let

62 173 11
= —~,-1,0,10,1,1, —.0, — e R!
CO (0707 9 ) 707 07 5 Ly 18 705 9 >

be a point in the parameter space of system (2.13) satisfying conditions (4.12-4.16).
Then we have

1118267051
Vi=.=V;=0, Vog=—-———#0
! =00 Vo= s 7
Let C_' = (/_\ (_13753,53,d_37 fg,gg, 71371_3,772,3,7_13) be a vector such that ||<_'|| < 1. Con-
sider a small perturbation of ¢y given by ¢ = (y + . Then the Jacobian matrix .Js
of Vi, - -+, Vi with respect to A, as, bs, &3, ds, fs, Gs, hs, ls, ms, 7g at ( =0 is

where Ojy1 is the 1 x 10 zero matrix, v € R*, Js = (71,72, 73, 74)" is a 4 x 10
matrix, and vy, Y2, Y3, Y4 are column vectors given by

B 1 1 11 5\"
7= 3 37 37373 )

OJI»—
OJIOT

1
"3’

OOlH
QJI»—
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/322 31m 322 57 322 7 32 177 1610 57 322
2= <8_1’E_g’_T_ﬁ’ZJFS_l’ﬁ_W’_?_S_l’
T 322 322 37m 322 1 1610\
z+8—1’8—1’—%—8—1’§+w> >
957 43555 114657 734347 21257 37253 122557
o= <_ 2 14580 436 7200 0 24 729 ' 216
188647 8907 999067 21257 84955 12557 43507

3645~ 243 * 3645 7 54 i 1458 7 216 1458’
20m 27245 33835m 272813 9657 146275)T

12 720 1044 3645 54 729
3857 26760343 155 , 2165651r 882314543 75
"= ( o T iisoos 12" T T a3ma T Tsooae0 0 4
3211857 35804171 15 , 1275837 182472373 85 ,
T 648 59049 8" T 1206 T 205245 127
48001337 993262433 75 , 3211851 86748043 15
17496 295245 ' 4 648 118098 ' 8 "
049137 26690791 3857 21302579 185 , 116925837
T 006 T I18008 9 T 50049 ' 24" 34992

304428907 15 , N 207773 m n 121075345
—_—, — T .
295245 7 4 648 59049

Hence the rank of J; is 5. Thus by Lemma 4.1, system (2.13) has five limit cycles
in a small neighbourhood of (0,0) with ||¢ — (|| sufficiently small for any ¢ € R

The proof is complete. OJ
Take the parameters (o = (0,0, 2, —25,1,0, 75, 25,2,0,—5) € R in (2.13).
Then we have V; =--- = V5 =0 and
1185371
Vo = ———— =~ —0.000719977527.

1646400000

Let ¢ = (7.5 x 107'2,0.159992943255, 0, 0, 0.25634299, 0, 0, 0.0519, 0, 0, —0.00889)
and consider the perturbation of (y given by ¢ = (y 4+ ¢. Then we can numerically
find that the displacement function d(p) has five positive zeros given by p; =
0.005281640247, p, ~ 0.010086776800, ps ~ 0.033533743005, ps ~ 0.105475265409,
ps ~ 0.347350801466, corresponding to the five limit cycles FEkF (1 <k <5
bifurcated from (0,0). The two outer limit cycles I'"F and '} ' are shown in Fig,
5 (a). The two inner limit cycles I')F" and T'JF" are shown in Fig. 5 (b). The inner
limit cycle T'HF is shown in Fig. 5 (c).
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Figure 5: The five limit cycles of system (2.12) corresponding to the parameters ¢ = (o + C.
5 Concluding remarks

In this paper we consider the number of limit cycles bifurcated from a class of
planar piecewise analytical systems defined in two zones separated by an analytical
curve y = ¢(z) with ¢(0) = 0, namely, system (2.1), which has a pseudo-focus
at (0,0). We extended the classical polar coordinates to the form (2.6) for focus
contact, and the (R, 6,1,2)-generalized polar coordinates given in [8] to the form
(2.7) for parabolic contact. Under those transformations, for any orbit segment
of system (2.1) which intersects the switching curve, the interval of  is the same.
Consequently, we are able to present a systematic procedure to compute the rele-
vant Lyapunov constants, which can be easily implemented in the computer algebra
system Maple. In particular, we show that, similar to system with a straight sepa-
ration line given in [39], the index of the first nonzero Lyapunov constant of system
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(2.1) of PP type is an even number.

To illustrate our theoretical results, we present three concrete planar piecewise
quadratic systems. The first one is of PP type separated by y = sin® 2 which has
four limit cycles bifurcated from (0, 0), namely, system (2.11). The four limit cycles
are obtained by linear perturbations of parameters satisfying Vo = V4 = Vg = 15 =
0 and Vip # 0. The second one is of FP type separated by y = e* — 1 which has
five limit cycles bifurcated from (0, 0), namely, system (2.12). The five limit cycles
are obtained by linear perturbations of parameters satisfying V} = --- = V; =0
and Vg # 0. The last one is of FF type separated by y = sinx which has five
limit cycles bifurcated from (0, 0), namely, system (2.13). The five limit cycles are
obtained by linear perturbations of parameters satisfying V;, = --- = V5 = 0 and
Ve # 0.

It is worth mentioning that, for systems (2.11) and (2.13), by using linear
perturbations, we have obtained the maximum numbers of small amplitude limit
cycles bifurcated from (0,0). However, for system (2.12), by using higher order
perturbations up to the seventh order, we still get five limit cycles, which is less
than the possible maximum number, namely, seven. Thus in our opinion, the
maximum number of limit cycles bifurcated from (0,0) of system (2.12) is five.
However, due to computational difficulties, we are unable to verify this in this

paper.

References

[1] J. L. R. Bastos, C. A. Buzzi and J. Torregrosa, Cyclicity near infinity in piecewise linear
vector fields having a nonregular switching line, Qual. Theory Dyn. Syst. 22 (2023), 125, 11

pages.
[2] V. Carmona, F. Ferndndez-Sénchez and D. D. Novaes, Uniform upper bound for the number

of limit cycles of planar piecewise linear differential systems with two zones separated by a
straight line, Appl. Math. Lett. 137 (2023), 108501, 8 pages.

[3] P. T. Cardin and J. Torregrosa, Limit cycles in planar piecewise linear differential systems
with nonregular separation line, Phys. D 337 (2016), 67-82.

[4] T. Chen, L. Huang and P. Yu, Center condition and bifurcation of limit cycles for quadratic
switching systems with a nilpotent equilibrium point, J. Differ. Equ. 303 (2021), 326-368.

[5] X. Chen, V. G. Romanovski and W. Zhang, Degenerate Hopf bifurcations in a family of
FF-type switching systems, J. Math. Anal. Appl. 432 (2015), 1058-1076.

[6] T. Chen and J. Llibre, Nilpotent center in a continuous piecewise quadratic polynomial
hamiltonian vector field, Internat. J. Bifur. Chaos 32 (2022), 2250116, 23 pages.

[7] B. Coll, A. Gasull and R. Prohens, Differential equations defined by the sum of two quasi-
homogeneous vector fields, Canad. J. Math. 49 (1997), 212-231.

[8] B. Coll, A. Gasull and R. Prohens, Degenerate Hopf bifurcations in discontinuous planar
systems, J. Math. Anal. Appl. 253 (2001), 671-690.



32

[9]

[23]
[24]

[25]

[28]

Q. Zhang and Z. Du

K. da S. Andrade, O. A. R. Cespedes, D. R. Cruz and D. D. Novaes, Higher order Melnikov
analysis for planar piecewise linear vector fields with nonlinear switching curve, J. Differ.
Equ. 287 (2021), 1-36.

L. P. C. da Cruz, D. D. Novaes and J. Torregrosa, New lower bound for the Hilbert number
in piecewise quadratic differential systems, J. Differ. Equ. 266 (2019), 4170-4203.

D. de Carvalho Braga and L. F. Mello, More than three limit cycles in discontinuous piecewise
linear differential systems with two zones in the plane, Internat. J. Bifur. Chaos 24 (2014),
1450056, 10 pages.

D. de Carvalho Braga, A. F. da Fonseca, L. F. Gongalves and L. F. Mello, Lyapunov coeffi-
cients for an invisible fold-fold singularity in planar piecewise Hamiltonian systems, J. Math.
Anal. Appl. 484 (2020), 123692, 19 pages.

M. Esteban, E. Freire, E. Ponce and F. Torres, On normal forms and return maps for
pseudo-focus points, J. Math. Anal. Appl. 507 (2022), 125774, 31 pages.

E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise linear
systems with two zones, Internat. J. Bifur. Chaos 8 (1998), 2073-2097.

A. Gasull and J. Torregrosa, Center-focus problem for discontinuous planar differential e-
quations, Internat. J. Bifur. Chaos 13 (2003), 1755-1765.

A. Gasull, J. Torregrosa and X. Zhang, Piecewise linear differential systems with an algebraic
line of separation, Electron. J. Differential Equations 2020 (2020), Paper No. 19, 14 pages.

A. Gasull, Some open problems in low dimensional dynamical systems, SeMA J. 78 (2021),
233-2609.

L. F. S. Gouveia and J. Torregrosa, Local cyclicity in low degree planar piecewise polynomial
vector fields, Nonlinear Anal.-Real World Appl. 60 (2021), 103278, 19 pages.

M. Han, Liapunov constants and Hopf cyclicity of Liénard systems, Ann. Differential Equa-
tions 15 (1999), 113-126.

M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.

M. Han and J. Yang, The maximum number of zeros of functions with parameters and
application to differential equations, J. Nonlinear Modeling and Analysis 3 (2021), 13-34.

M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differ. Equ.
248 (2010), 2399-2416.

M. Han and S. Liu, Hopf bifurcation in a class of piecewise smooth near-Hamiltonian systems,
Bull. Sci. Math. 195 (2024), 103471, 30 pages.

H. A. Hosham, Bifurcation of periodic orbits in discontinuous systems, Nonlinear Dynam.
87 (2017), 135-148.

S. Huan and X. Yang, On the number of limit cycles in general planar piecewise linear
systems, Discrete Contin. Dyn. Syst. 32 (2012), 2147-2164.

S. Huan and X. Yang, Limit cycles in a family of planar piecewise linear differential systems
with a nonregular separation line, Internat. J. Bifur. Chaos 29 (2019), 1950109, 22 pages.

A. Ke, M. Han and W. Geng, The number of limit cycles from the perturbation of a quadratic
isochronous system with two switching lines, Commun. Pure Appl. Anal 21 (2022), 1793-
1809.

Yu. A. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filip-
pov systems, Internat. J. Bifur. Chaos 13 (2003), 2157-2188.



[29]

[30]

[31]

[43]

[44]

[45]

[46]

[47]

Lyapunov constants of PWS systems separated by an analytical curve 33

F. Liang, V. G. Romanovski and D. Zhang, Limit cycles in small perturbations of a planar
piecewise linear Hamiltonian system with a non-regular separation line, Chaos Solit. Fract.
111 (2018), 18-34.

J. Llibre and E. Ponce, Piecewise linear feedback systems with arbitrary number of limit
cycles, Internat. J. Bifur. Chaos 13 (2003), 895-904.

J. Llibre, E. Ponce and X. Zhang, Existence of piecewise linear differential systems with
exactly n limit cycles for all n € N, Nonlinear Anal. 54 (2003), 977-994.

J. Llibre and A. C. Mereu, Limit cycles for discontinuous quadratic differential systems with
two zones, J. Math. Anal. Appl. 413 (2014), 763-775.

T. Li and J. Llibre, Limit cycles in piecewise polynomial Hamiltonian systems allowing
nonlinear switching boundaries, J. Differ. Equ. 344 (2023), 405-438.

S. Liu and M. Han, Limit cycle bifurcations near double homoclinic and double heteroclinic
loops in piecewise smooth systems, Chaos Solit. Fract. 175 (2023), 113970, 11 pages.

S. Liu and M. Han, Homoclinic and heteroclinic bifurcations in piecewise smooth systems
via stability-changing method, Comput. Appl. Math. 43 (2024), 274, 24 pages.

H. Liu, Z. Wei and 1. Moroz, Limit cycles and bifurcations in a class of planar piecewise
linear systems with a nonregular separation line, J. Math. Anal. Appl. 526 (2023), 127318,
25 pages.

X. Liu, X. Yang and S. Huan, Existence of four-crossing-points limit cycles in planar sector-
wise linear systems with saddle-saddle dynamics, Qual. Theory Dyn. Syst. 21 (2022), Paper
No. 63, 31 pages.

R. Lum and L. O. Chua, Global properties of continuous piecewise linear vector fields, part
I: Simplest case in R?, Int. J. Circuit Theory Appl. 19 (1991), 251-307.

D. D. Novaes and L. A. Silva, Lyapunov coefficients for monodromic tangential singularities
in Filippov vector fields, J. Differ. Equ. 300 (2021), 565-596.

D. D. Novaes, On the Hilbert number for piecewise linear vector fields with algebraic dis-
continuity set, Physica D 441 (2022), 133523, 15 pages.

C. Pessoa and R. Ribeiro, Bifurcation of limit cycles from a periodic annulus formed by a
center and two saddles in piecewise linear differential system with three zones, Nonlinear
Anal.-Real World Appl. 80 (2024), 104171, 17 pages.

L. Sun and Z. Du, Crossing limit cycles in planar piecewise linear systems separated by a
nonregular line with node-node type critical points, Internat. J. Bifur. Chaos 34 (2024),
2450049, 23 pages.

H. Tian and M. Han, Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems
with a switching curve, Discrete Contin. Dyn. Syst. Ser. B 26 (2021), 5581-5599.

Y. Tian and P. Yu, Center conditions in a switching Bautin system, J. Differ. Equ. 259
(2015), 1203-1226.

D. Weiss, T. Kiipper and H. A. Hosham, Invariant manifolds for nonsmooth systems with
sliding mode, Math. Comput. Simulation 110 (2015), 15-32.

Y. Xiong and M. Han, Limit cycle bifurcations in discontinuous planar systems with multiple
lines, J. Appl. Anal. Comput. 10 (2020), 361-377.

L. Xiong, K. Wu and S. Li, Global dynamics of a degenerate planar piecewise linear differ-
ential system with three zones, Bull. Sci. Math. 184 (2023), 103258, 27 pages.



34 Q. Zhang and Z. Du

[48] Y. Zou and T. Kiipper, Generalized Hopf bifurcation emanated from a corner for piecewise
smooth planar systems, Nonlinear Anal. 62 (2005), 1-17.

[49] Y. Zou, T. Kiipper and W.-J. Beyn, Generalized Hopf bifurcation for planar Filippov systems
continous at the origin, J. Nonlinear Sci. 16 (2006), 159-177.



