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Abstract: In this work, we study an Ambrosetti-prodi type results for discrete Minkowski-mean cur-
vature operators with repulsive singularities

4

´

4upt ´ 1q
a

1´ p4upt ´ 1qq2

¯

` f puq4uptq ` gpt, uptqq “ s, t P r1,T sZ,

up0q “ upT q, 4up0q “ 4upT q,

where f : p0,`8q Ñ R is a continuous T -periodic function, g : r1,T sZˆp0,`8q Ñ R is a continuous
T -periodic function with a repulsive singularity at the origin, and s P R is a parameter, T ě 2 is integer.
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1. Introduction

The problems related to the Minkowski-mean curvature equation have been greatly developed in
differential geometry, relativity theory and in theory of relativity, being related to maximal and con-
stant mean curvature spacelike hypesurfaces, see [4, 5, 6, 7, 15]. These authors considered a class of
Minkowski-curvature equations with Dirichlet, Neumann and periodic boundary value problems are
investigated in [4, 7, 11, 15], [3, 21] and [2, 8], respectively. In particular, the mean curvature problem
with singularities has also been extensively studied, the types of singularity are divided into attractive,
repulsive and indefinite type, see [16, 18, 26], [8, 16, 23] and [19, 25], respectively.

In recent years, the multiplicity results of Ambrosetti-Prodi type have attracted attention of many
researchers, see [5, 12, 13, 14, 23, 24, 27] and the references therein. For the singular case, Fabry,
Mawhin and Nkashama[12] considered the Ambrosetti-Prodi type results of a class of regular Liénard
equation of the type

x2 ` f pxqx1 ` hpt, xq “ s,

where the nonlinear term h satisfies coercivity conditions

lim
|x|Ñ8

gpt, xq “ `8, uniformly on t P r0,T s, p1.1q
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a similar situation appeared in reference [5, 8, 13, 22]. In [23, 24], the authors considered the Ambrosetti-
Prodi type results in the weakened case, that is, the nonlinear term satisfies the local coercivity condi-
tions:

lim
xÑ0`

gpt, xq “ lim
xÑ`8

gpt, xq “ `8, uniformly on t P r0,T s. p1.2q

Yu et.al [26] established the Ambrosetti-Prodi type results for the second-order differential Liénard
equation with repulsive singularities in the case of degeneracy

x2 ` f pxqx1 ` hpt, xq “ s.

On the other hand, Bereanu and Thompson[6], Chen, Ma and Liang[10] extended the Ambrosetti-Prodi
type results with singular to the discrete mean curvature problem. For example, in [6], Bereanu and
Thompson established the Ambrosetti-Prodi type results for discrete Dirichlet problems

4

´

φp4xkq

¯

` fkpxkq “ s, k P r2, n´ 1sZ,

x1 “ xn, 4x1 “ 4xn´1,

where fk : RÑ R are continuous functions for k P r2, n´ 1sZ, and satisfy

lim
|x|Ñ8

fkpxkq “ `8, uniformly k P r2, n´ 1sZ.

Through a comparative study of continuous and discrete problems, it is concluded that the discretiza-
tion of problems provides an iterative scheme and theoretical guidance for the numerical solution of
continuous problems, see [1, 9, 20, 28].

Based on the above research results, we consider the Ambrosetti-Prodi type results of the discrete
mean curvature problem with repulsive singularity

4

´

4upt ´ 1q
a

1´ p4upt ´ 1qq2

¯

` f puq4uptq ` gpt, uq “ s, t P r1,T sZ,

up0q “ upT q, 4up0q “ 4upT q,
p1.3q

where g does not satisfy the coercivity conditions (1.1) or local coercivity conditions (1.2). It is worth
noting that the lack of uniformity lead to the constant lower functions no longer exist, thus, a new
method of constructing strict lower function is needed to prove the multiplicity results of Ambrosetti-
Prodi type.

2. Preliminaries

First, we introduce some notation that are used throughout the paper.

Let Z is the set of integer, a, b P Z and a ă b, ra, bsZ “ ta, a` 1, ¨ ¨ ¨ , b´ 1, bu,
b
ř

s“a
upsq “ 0 when

b ă a. 4uptq “ upt ` 1q ´ uptq is the forward difference operator. Denote rT
2 s to be the integer part of

T
2 .
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Let X “ tu : r0,T ` 1sZ Ñ Ru, E “ tu P X : |up0q “ upT q,4up0q “ 4upT qu are Banach spaces
with the norm }u}8 “ max

tPr0,T`1sZÑR
tuptqu. Obviously, E is a closed subset of the X. For u P X, set

}4u}8 “ max
tPr0,T`1sZ

|4uptq|, }4u}1 “

T
ÿ

t“1

|4uptq|, }4u} “ p
T
ÿ

t“1

|4uptq|2q
1
2 .

It is not difficult to verify that the norms } ¨ }8, } ¨ }1, } ¨ } are equivalent.
For u P E, we define

u :“
1
T

T
ÿ

t“1

uptq.

Next, let S is a set containing all possible positive T -periodic solutions of the problem (1.3), more
precisely, we set

S “ tu P E|}4u}8 ă 1u.

Definition 2.1 We say that the function g possesses a repulsive singularity at the origin, if there exists
a constant ε0 ą 0, and functions w : r1,T sZ Ñ p0,`8q, q : r1,T sZ ˆ p0,`8q Ñ r0,`8q is non-
increasing with respect to u, and satisfies

lim
tÑ0`

T
ÿ

t“1

qpt, uptqq “ `8, lim
tÑ`8

T
ÿ

t“1

qpt, uptqq “ 0, p2.1q

such that
gpt, uq ď ´qpt, uq ` wptq, for all t P r1,T sZ, u P p0, ε0s. p2.2q

Before formulating the main result, we give a list of technical conditions guaranteeing the existence
of positive T -periodic solution to the problem (1.3).

(H1) Assume that there exists a constant ξ ą 0 such that

gpt, uq ď g1pt, uq ´ g2pt, uq, for all t P r1,T sZ, u ą ξ, p2.3q

where g1, g2 : r1,T sZ ˆ p0,`8q Ñ r0,`8q are continuous function, non-decreasing with respect to
u, satisfying

lim
uÑ`8

ḡ2puq “ `8, lim
uÑ`8

ḡ1puq
u

“ 0. p2.4q

Further, assume that there exists a constant ς ą 0, such that

L :“ lim sup
uÑ`8

ḡ1puq
ḡ2pp1´ ςquq

ă 1. p2.5q

(H2) Assume that for any R ą 0, there exists positive continuous function wpt; Rq such that

gpt, uq ď ´qpt, uq ` wpt; Rq, for all t P r1,T sZ, u P p0,Rs, p2.6q

and wpt; R1q ď wpt; R2q, R1 ď R2, where q is introduced in Definition 2.1.
3



Assume that the continuous function f satisfies

T
ÿ

t“1

f puptqq4uptq “ 0, p2.7q

and let Fpuptqq “
t
ř

s“1
f pupsqq4upsq. According to the unbounded property of F, the following assump-

tions are satisfied, respectively.
(H3) Assume that supt|Fpuq| : u P p0, 1su “ `8.
(H4) Assume that supt|Fpuq| : u P p0, 1su ă `8, there holds

lim
uÑs`

s`r T
2 s

ÿ

τ“u

qpτ, τ´ sq ` lim
uÑs´

s`T
ÿ

τ“s`r T
2 s`1

qpτ, s` T ´ τq “ `8, s P r1,T sZ, p2.8q

where q is introduced in Definition 2.1.
Definition 2.2 A lower solution α of (1.3) is a function α P X such that }4α}8 ă 1, and satisfies

4

´

4αpt ´ 1q
a

1´ p4αpt ´ 1qq2

¯

` f pαptqq4αptq ` gpt, αq ě s, t P r1,T sZ,

αp0q “ αpT q, 4αp0q ě 4αpT q.
p2.9q

An upper solution β of (1.3) is a function β P X such that }4β}8 ă 1, and satisfies

4

´

4βpt ´ 1q
a

1´ p4βpt ´ 1qq2

¯

` f pβptqq4βptq ` gpt, βq ď s, t P r1,T sZ,

βp0q “ βpT q, 4βp0q ď 4βpT q.
p2.10q

Such a lower and upper solution is called strict if the first inequality of (2.9) and (2.10) are strict for
t P r1,T sZ.
Theorem 2.1 Assume (H1)-(H2) and (H3) or (H4) hold. Then there exists a constant s0 P R such that
(i) the problem (1.3) has no positive T -periodic solution if s ą s0;
(ii) the problem (1.3) has at least one positive T -periodic solution if s “ s0;
(iii) the problem (1.3) has at least two positive T -periodic solutions if s ă s0.

In addition, for any R0 ą 1, there exists sR0 P R such that problem (1.3) has two positive T -periodic
solutions u1ptq and u2ptq satisfying

mintu1ptq : t P r0,T ` 1sZu ą R0, mintu2ptq : t P r0,T ` 1sZu ă
1
R0
, for s ă sR0 . p2.11q

3. Existence of solutions

By the same argument of [5], define two operators P,Q : E Ñ E by

Puptq :“ up0q, Quptq :“
1
T

T
ÿ

s“1

upsq.
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Define Nemytskii operator Ng associated to g by

pNguqptq :“ ´ f puq4uptq ´ gpt, uptqq ` s, for t P r1,T sZ.

At this point, following [5], one has that u is a T -periodic solution to the problem (1.3), if and only
if u P S is a fixed point of the completely continuous operatorAs : E Ñ E defines as

As :“ Pu` QNgu` κNgu, u P E,

where κ is the map, associates the unique T -periodic solution uptq of the problem

4

´

φp4uptqq
¯

“ vptq ´
1
T

T
ÿ

t“1

vptq, up0q “ 0,

for any v P E.
Let us consider the periodic parameter-dependent problem

4

´

4upt ´ 1q
a

1´ p4upt ´ 1qq2

¯

` λ f puq4uptq ` λgpt, uptqq “ λs, t P r1,T sZ,

up0q “ upT q, 4up0q “ 4upT q,
p3.1q

where λ P r0, 1s.
Now, we introduce a continuation theorem of coincidence degree theory.

Lemma 3.1 ([14, Theorem 2.1]) Let Ω is an open bounded set in E such that the following conditions
hold:
(i) for every λ P p0, 1s, the equation (3.1) has no solution;

(ii) the equation gpτq “ 1
T

T
ř

τ“1
gpt, τq “ s has no solution.

Then degpI´Ng,S, 0q “ ´degpgpτq´s,S, 0q.Moreover, if the Brouwer degree degpgpτq´s,S, 0q ‰ 0,
then the problem (1.3) has a solution.
Lemma 3.2 ([17, Lemma 2.4]) Let u P E. Then

M ´ m ď
T
2
,

where

M “ maxtuptq, t P r1,T sZu, m “ mintuptq, t P r1,T sZu.

Proof For any u P E, there exists t0 P r1,T sZ and t1 P rt0 ` 1, t0 ` T ` 1sZ such that

upt0q “ upt0 ` T q “ m, upt1q “ M.

Then the following equality hold

M ´ m “
t1´1
ÿ

s“t0

4upsq,

M ´ m “
t0`T´1
ÿ

s“t1

4upsq.
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By using H:older inequality, we have that

M ´ m ď pt1 ´ t0q
1
2

´

t1´1
ÿ

s“t0

|4upsq|2
¯

1
2
,

M ´ m ď pt0 ` T ´ t1q
1
2

´

t0`T´1
ÿ

s“t1

|4upsq|2
¯

1
2
.

Then using the inequality AB ď 1
4pA` Bq2, we get that

pM ´ mq2 ď
T
4

T
ÿ

t“1

|4uptq|2.

Thus

M ´ m ď
T
2
.

For convenience, define Nλ as a set that contains all pairs pu, sq such that u is a solution to problem
(3.1) corresponding to s. Moreover, N1 expressed as all pairs pu, sq such that u is a solution to problem
(1.3) corresponding to s.

In this part, we consider the sequence tun, snu
`8

n“1 Ď Nλ and denote

Mn :“ maxtunptq, t P r0,T ` 1sZu, mn :“ mintunptq, t P r0,T ` 1sZu.

Lemma 3.3 Assume (H1) holds for any sequence tun, snu
`8

n“1 Ď Nλ satisfying

lim
nÑ`8

Mn “ `8, p3.2q

such that

lim
nÑ`8

mn

Mn
“ 1. p3.3q

Proof According to Lemma 3.2, we have that

M ´
T
2
ď m.

In view of Squeeze Theorem and (3.2), we infer that

lim
nÑ`8

mn “ `8.

Therefore, (3.3) is true.
Lemma 3.4 Assume (H1) holds and there exists a constant ρ ą 0 such that

upt; sq ă ρp1` sq, for t P r1,T sZ, pu, sq P Nλ, s ą 0. p3.4q

Proof Assume that there exists a consequence tun, snu
`8

n“1 Ď Nλ such that sn P p0,`8q and Mn ą

np1` snq for n P N. Then (3.3) is fulfilled. Therefore, there exists n0 ą 0 such that

mn ą p1´ ςqMn ą ξ, for n ą n0, p3.5q

where ς and ξ were introduced in (H1).
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Because of un is a positive T -periodic solution to problem (3.1) when s “ sn, it follows that

4

´

4unpt ´ 1q
a

1´ p4unpt ´ 1qq2

¯

` λ f punptqq4unptq ` λgpt, unptqq “ λsn,

unp0q “ unpT q, 4unp0q “ 4unpT q.
p3.6q

Summing the equation (3.6) from 1 to T, it yields that
T
ÿ

t“1

4

´

4unpt ´ 1q
a

1´ p4unpt ´ 1qq2

¯

`

T
ÿ

t“1

λ f punptqq4unptq `
T
ÿ

t“1

λgpt, unptqq “
T
ÿ

t“1

λsn.

Due to
T
ÿ

t“1

4

´

4unpt ´ 1q
a

1´ p4unpt ´ 1qq2

¯

“

T
ÿ

t“1

´

4unptq
a

1´ p4unptqq2
´

4unpt ´ 1q
a

1´ p4unpt ´ 1qq2

¯

“
4unpT q

a

1´ p4unpT qq2
´

4unp0q
a

1´ p4unp0qq2
“ 0.

p3.7q

Therefore, in view of (2.3), (2.7), (3.5), (3.7) and g1, g2 are nondecreasing with respect to u, it follows
that

0 ă T sn “

T
ÿ

t“1

gpt, unptqq

ď

T
ÿ

t“1

g1pt, unptqq ´
T
ÿ

t“1

g2pt, unptqq

ď Tḡ1pMnq ´ Tḡ2pmnq

ď Tḡ1pMnq ´ Tḡ2
`

p1´ ςqMn
˘

.

p3.8q

Dividing both sides of (3.8) by Tḡ2pp1´ ςqMnq, it follows that

0 ă
ḡ1pMnq

ḡ2
`

p1´ ςqMn
˘ ´ 1, for n ą n0.

Passing to the limit as n tends to `8, on account of (2.4) and (2.5), we arrive at

0 ă lim sup
nÑ`8

ḡ1pMnq

ḡ2pp1´ ςqMn
˘ ´ 1 “ L´ 1 ă 0, p3.9q

this is a contradiction.
Lemma 3.5 Assume (H1) holds, then there exists γ1 : p0,`8q Ñ p0,`8q such that

upt; sq ď γ1psq, for t P r1,T sZ, pu, sq P Nλ, s ď 0.

Moreover, the function γ satisfies

γ1ps1q ě γ1ps2q, when s1 ď s2 ď 0.

Proof First, we show that for every s0 ă 0 there exists pγ1ps0q such that

upt; sq ď pγ1ps0q, for t P r0,T ` 1sZ, pu, sq P Nλ, s P rs0, 0s.
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We assume that there exists tpun, snqu
`8

n“1 Ď Nλ, such that sn P rs0, 0s and Mn ą n. Obviously, (3.2) and
(3.3) are fulfilled. Hence there exists n1 ą 0 such that

mn ą p1´ ςqMn ą ξ, for n ą n1. p3.10q

Summing the equation (3.6) from 1 to T, in view of (2.3), (2.8), (3.7) and (3.10), it follows that

s0 ď sn ď ḡ1pMnq ´ ḡ2pp1´ ςqMnq.

Dividing both sides of the inequations stated-above by ḡ2pp1´ ςqMnq, we get that

s0

ḡ2pp1´ ςqMnq
ď

ḡ1pMnq

ḡ2pp1´ ςqMnq
´ 1, for n ą n1.

Passing to the limit as n tends to `8, on account of (2.4) and (2.5), we arrive at

0 ď L´ 1 ă 0,

this is a contradiction. Choose

γ1psq :“ inft pγ1pτq : τ ď su, for s ď 0.

Then
upt; sq ď γ1psq, for t P r1,T sZ, pu, sq P Nλ, s ď 0.

Let γ : RÑ p1,`8q defined by

γpsq :“

#

ρp1` sq ` 1, for s ą 0,

γ1psq ` 1, for s ď 0.
p3.11q

Hence the following conclusion holds.
According to (H1), for any given c ě 0, the following equation holds

ḡpγpsq ` cq ă s, for s P R. p3.12q

Lemma 3.6 Assume (H1) holds. Then

uptq ď γpsq, for t P r1,T sZ, pu, sq P Nλ, s P R. p3.13q

Further, the function γ satisfies

γp|s1|q ď γp|s2|q, |s1| ď |s2|. p3.14q

Now, we shall show that the solution of problem (1.3) has the lower bounds.
In view of the assumption of (H2), there exists a positive continuous function wpt; sq such that

gpt, uq ď ´qpt, uq ` wpt; sq, for t P r1,T sZ, u P p0, γpsqs, s P R. p3.15q
8



According to (H2), wpt; sq is non-decreasing and satisfies

wpt; s1q ď wpt; s2q, for t P r1,T sZ, s1 ď s2. p3.16q

For any given s P R, we define

Qpsq :“ tu ą 0 : q̄puq “ |s| ` w̄psqu, p3.17q

and
Fpsq :“ maxt|Fpuq| : u P rinfQpsq, γpsqsu ` Tw̄psq ` T |s|.

According to the function q̄ is non-increasing, (3.16) and (3.17), it follows that infQpsq is non-
increasing with respect to |s|, thus

infQp|s1|q ě infQp|s2|q, provided |s1| ď |s2|. p3.18q

Therefore, Fpsq satisfies

Fp|s1|q ď Fp|s2|q, provided |s1| ď |s2|. p3.19q

Next, we discuss the cases where F is bounded or unbounded near the origin, separately.
Lemma 3.7 Assume (H1)-(H2) and (H3) hold. Then there exists γ0 : RÑ p0,`8q such that

upt; sq ą γ0psq, for t P r1,T sZ, pu, sq P Nλ, s P R. p3.20q

Moreover, the function γ0 satisfies

γ0p|s1|q ě γ0p|s2|q, provided |s1| ď |s2|. p3.21q

Proof From the assume condition (H3), for s P R, there exists pγ0psq P p0, 1q such that

|Fp pγ0psqq| ą Fpsq. p3.22q

We shall show that

upt; sq ě pγ0psq, for t P r1,T sZ, pu, sq P Nλ, s P R. p3.23q

We assume that there exists pu0, s0q P Nλ such that mintu0ptq : t P r1,T sZu ă pγ0ps0q. Let tM P r1,T sZ
be such that

u0ptMq “ maxtu0ptq : t P r1,T sZu “ M0, p3.24q

then

4u0ptMq “ u0ptM ` 1q ´ u0ptMq ď 0, 4u0ptM ´ 1q “ u0ptMq ´ u0ptM ´ 1q ě 0. p3.25q

Due to u0 is a T -periodic solution of problem (3.1) with s “ s0, there holds

4

´

4u0pt ´ 1q
a

1´ p4u0pt ´ 1qq2

¯

` λ f pu0ptqq4u0ptq ` λgpt, u0ptqq “ λs0, t P r1,T sZ. p3.26q

Summing (3.26) from 1 to T, we have
T
ÿ

t“1

4

´

4u0pt ´ 1q
a

1´ p4u0pt ´ 1qq2

¯

`

T
ÿ

t“1

λ f pu0ptqq4u0ptq `
T
ÿ

t“1

λgpt, u0ptqq “
T
ÿ

t“1

λs0. p3.27q
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According to (2.7), (3.15), (3.24) and q is non-increasing with respect to u, it follows that

s0 “
1
T

T
ÿ

t“1

gpt, u0ptqq

ď
1
T

T
ÿ

t“1

`

´ qpt, u0ptqq ` wpt; s0q
˘

“ ´
1
T

T
ÿ

t“1

qpt, u0ptqq ` w̄pt; s0q

ď ´q̄pM0q ` w̄ps0q,

then
q̄pM0q ď w̄ps0q ` |s0|.

In view of lim
uÑ`8

T
ř

t“1
qpt, uptqq “ 0 and (3.17), it follows that

M0 ě infQps0q. p3.28q

According (3.22), there exists pγ0ps0q P p0,mint1, infQps0quq such that |Fp pγ0ps0qq| ą Fps0q.
Firstly, in the case of Fp pγ0ps0qq ą Fps0q, there exists t1 P rtM ´ T, tMsZ, such that

Fpu0pt1 ´ 1qq ě Fp pγ0ps0qq, 4u0pt1 ´ 1q ě 0.

Summing (3.26) from t1 and tM, it follows that
tM
ÿ

t“t1

4p
4u0pt ´ 1q

a

1´ p4u0pt ´ 1qq2
q `

tM
ÿ

t“t1

λ f pu0ptqq4u0ptq `
tM
ÿ

t“t1

λgpt, u0ptqq “
tm
ÿ

t“t1

λs0. p3.29q

In view of (3.15) and (3.25), the equality (3.29) leads to

0 ě
tM
ÿ

t“t1

4p
4u0pt ´ 1q

a

1´ p4u0pt ´ 1qq2
q

“ λp´
tM
ÿ

t“t1

f pu0ptqq4u0ptq ´
tM
ÿ

t“t1

gpt, u0ptqq `
tM
ÿ

t“t1

s0q

“ λp´FpM0q ` Fpu0pt1 ´ 1qq ´
tM
ÿ

t“t1

gpt, u0ptqq ` ptM ´ t1qs0q

ě λp´FpM0q ` Fp pγ0ps0qq ´

tM
ÿ

t“t1

gpt, u0ptqq ` ptM ´ t1qs0q

ě λp´FpM0q ` Fp pγ0ps0qq ´ Tw̄ps0q ´ T |s0|q.

Due to λ ą 0, we have

Fp pγ0ps0qq ď FpM0q ` Tw̄ps0q ` T |s0|

ď maxt|Fpuq| : u P rinfQps0q, γps0qqsu ` Tw̄ps0q ` T |s0| “ Fps0q,

this is a contradiction.
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Secondly, in the case of Fp pγ0ps0qq ă ´Fps0q, there exists t2 ą tM such that

Fpu0pt2qq ď Fp pγ0ps0qq, 4u0pt2q ď 0.

Summing (3.26) from tM and t2, it follows that
t2
ÿ

t“tM

4p
4u0pt ´ 1q

a

1´ p4u0pt ´ 1qq2
q `

t2
ÿ

t“tM

λ f pu0ptqq4u0ptq `
t2
ÿ

t“tM

λgpt, u0ptqq “
t2
ÿ

t“tM

λs0.

According to Lemma 3.6, (3.15) and (3.25), we have that

0 ě
t2
ÿ

t“tM

4p
4u0pt ´ 1q

a

1´ p4u0pt ´ 1qq2
q

“ λp´Fpu0pt2qq ` Fpu0ptM ´ 1qq ´
t2
ÿ

t“tM

gpt, u0ptqq ` pt2 ´ tMqs0q

ě λp´Fp pγ0ps0qq ` Fpu0ptM ´ 1qq ´ Tw̄ps0q ´ T |s0|q,

which implies

Fp pγ0ps0qq ě Fpu0ptM ´ 1qq ´ Tw̄ps0q ´ T |s0|

ě ´maxt|Fpuq| : u P rinfQps0q, γps0qqsu ´ Tw̄ps0q ´ T |s0| “ ´Fps0q,

this is a contradiction. Therefore, the conclusion holds by γ0psq :“ 1
2 pγ0psq.

Based on the above arguments and (3.19), it is not difficult to verify that

γ0p|s1|q ě γ0p|s2|q, provided |s1| ď |s2|

is true.
Lemma 3.8 Assume (H1)-(H2) and (H4) hold, then there exists a function γ0 : RÑ p0,`8q such that
(3.20) and (3.21) hold.
Proof First, we show that (3.23) is true. From (2.8), there exists pγ0psq ą 0 such that for all u P
p0, pγ0psqq, s P R, there holds

T pwpsq ` |s|q ă
tm`r T

2 s
ÿ

t“tm

qpt, u` pt ´ tmqq `

tm`T
ÿ

t“tm`r T
2 s

qpt, u` ptm ` T ´ tqq. p3.30q

Suppose on the contrary that there exists pu0, s0q P Nλ such that m0 :“ mintu0ptq : t P r1,T sZu ă
pγ0ps0q. Obviously, u0 P E and (3.26) holds. Moreover, there exists tm P r1,T sZ such that u0ptmq “ m0.

Summing (3.26) from tm ` 1 to t, we have that
t
ÿ

τ“tm`1

4

´

4u0pτ´ 1q
a

1´ p4u0pτ´ 1qq2

¯

`

t
ÿ

τ“tm`1

λ f pu0pτqq4u0pτq `
t
ÿ

τ“tm`1

λgpτ, u0pτqq “
t
ÿ

τ“tm`1

λs0.

Because of u0ptmq “ m0, it yields that
t
ÿ

τ“tm`1

4

´

4u0pτ´ 1q
a

1´ p4u0pτ´ 1qq2

¯

“
4u0ptq

a

1´ p4u0ptqq2
´

4u0ptmq
a

1´ p4u0ptmqq
2
“

4u0ptq
a

1´ p4u0ptqq2
.
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Then

4u0ptq
a

1´ p4u0ptqq2
“ λ

´

´ Fpu0ptqq ` Fpm0q ´

t
ÿ

τ“tm`1

gpτ, u0pτqq ` pt ´ tmqs0

¯

. p3.31q

In view of (3.13), (3.15) and q is nonnegative, we get that

t
ÿ

τ“tm`1

pgpτ, u0pτqq ´ wpτ; s0qq ď

t
ÿ

τ“tm`1

gpτ, u0pτqq ď
t
ÿ

τ“tm`1

wpτ; s0q.

According to gpt, uq ´ wpt; sq ď ´qpt, uq ď 0, we have that

´T |s0| ´ Tw̄ps0q ď

t
ÿ

τ“tm`1

gpτ, u0pτqq ď Tw̄ps0q.

Since u P S, it follows that

´1 ă 4upt ´ 1q ă 1, for t P r0,T ` 1sZ. p3.32q

Summing (3.32) from t ` 1 to tm ` T and from tm ` 1 to t respectively, which implies

u0ptq ă m0 ` tm ` T ´ t, for t P rtm ` r
T
2
s, tm ` T sZ,

u0ptq ă m0 ` t ´ tm, for t P rtm, tm ` r
T
2
ssZ.

p3.33q

Summing (3.26) from 1 to T , in view of (3.15), we have that

T s0 ď

T
ÿ

t“1

gpt, u0ptqq ď ´
T
ÿ

t“1

qpt, u0ptqq ` Tw̄ps0q. p3.34q

In view of (3.33), (3.34) and q is non-increasing, it follows that

T |s0| ` Tw̄ps0q ě

T
ÿ

t“1

qpt, u0ptqq “
tm`T
ÿ

t“tm

qpt, u0ptqq

ě

tm`r T
2 s

ÿ

t“tm

qpt,m0 ` t ´ tmq `

tm`T
ÿ

t“tm`r T
2 s`1

qpt,m0 ` tm ` T ´ tq,

this contradicts (3.30).

According to the above Lemma 3.6-3.8, there exist positive functions γ0, γ : R Ñ p0,`8q satisfy
(3.21) and (3.14), respectively, such that

γ0psq ă uptq ă γpsq, for t P r1,T sZ, pu, sq P Nλ, s P R,

provided (H1)-(H2),and (H3) or (H4) are fulfilled.
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4. Proof of main results

The following Lemmas are introduced before proving the main result, all of which satisfy the as-
sumptions (H1)-(H2), and (H3) or (H4).
Lemma 4.1 Let αptq is a strict lower function of the problem (1.3), moreover,Asp¨; sq is the completely
continuous operator associates with (1.3). Let

Ωs :“ tu P E : αptq ă uptq ă γpsq ` }α}8, |4uptq| ă 1, for t P r1,T sZu,

then degpI ´Asp¨; sq,Ωs, 0q is well-defined, and the following conclusion holds

degpI ´Asp¨; sq,Ωs, 0q “ 1. p4.1q

Proof Assume that αptq is a strict lower solution of the problem (1.3), then we get that

4

´

4αpt ´ 1q
a

1´ p4αpt ´ 1qq2

¯

` f pαptqq4αptq ` gpt, αptqq ą s,

αp0q “ αpT q, 4αp0q ě 4αpT q.
p4.2q

Let βptq “ γpsq ` }α}8. Obviously, in view of Lemma 3.6, we have that βptq is the strict upper
solution to problem (1.3), it follows that uptq ď βptq.

Let $puptqq : RÑ Rpt P r1,T sZq be a continuous function defined in the following form

$puptqq “

$

’

&

’

%

γpsq ` }α}8, βptq ď uptq,
uptq, αptq ă uptq ă βptq,
αptq, uptq ď αptq,

p4.3q

and define F pt, $puptqqq “ f p$puptqq4$puptqq ` gpt, $puptqq ´ s, t P r1,T sZ.
Let us consider the auxiliary problem

4φp4upt ´ 1qq ` F pt, $puptqqq ´ ruptq ´$puptqqs “ 0, t P r1,T sZ,

up0q “ upT q, 4up0q “ 4upT q.
p4.4q

Clearly, uptq is a solution of the auxiliary problem (4.4) and satisfies uptq ě αptq, then uptq is also
a solution to problem (1.3). By the similar arguments of section 3, we can define compact operator
rAsp$puptqqq “ P$puptqq`QNg$puptqq`κNg$puptqq. Then ĂAs : Ωs Ñ Ωs is a completely continuous

operator. According to Schauder fixed-point theorem, we have that rAsp$puptqqq “ u has at least one
fixed point, that is, the problem (4.4) has at least one solution.

Suppose by contradiction that there exists t P r0,T ` 1sZ, such that αptq´ uptq ě 0, then there exists
t˚ P r0,T ` 1sZ, such that αpt˚q ´ upt˚q “ max

tPr0,T`1sZ
pαptq ´ uptqq ě 0. The following only needs to

prove that αptq ă uptq ă γ1psq ` }α}8.
When t˚ P r1,T sZ, we infer that

αpt˚ ` 1q ´ αpt˚q ď upt˚ ` 1q ´ upt˚q, αpt˚q ´ αpt˚ ´ 1q ě upt˚q ´ upt˚ ´ 1q.

That is,
4αpt˚q ď 4upt˚q, 4αpt˚ ´ 1q ě 4upt˚ ´ 1q.

13



Apply φ to both sides of the above inequalities, since φ is monotonically increasing, we have that

4φp4αpt˚ ´ 1qq ď 4φp4upt˚ ´ 1qq

“ ´F pt˚, $pupt˚qqq ` rupt˚q ´$pupt˚qqs

ď ´ f pαpt˚qq4αpt˚q ´ gpt˚, αpt˚qq ` s

ă 4φp4αpt˚ ´ 1qq,

this is a contradiction.
When t˚ “ 0, we get that αpt˚q ´ upt˚q “ αp0q ´ up0q “ αpT q ´ upT q, therefore, the results are

consistent when t˚ “ 0 and t˚ “ T.
When t˚ “ T ` 1, that is

αpt˚q ´ upt˚q “ αpT ` 1q ´ upT ` 1q “ max
tPr0,T`1sZ

pαptq ´ uptqq. p4.5q

By the periodic boundary value conditions of problems (4.2) and (4.4), we obtain that

up0q “ upT q, up1q “ upT ` 1q, αp0q “ αpT q, αp1q ě αpT ` 1q.

(i) If αp1q “ αpT ` 1q, then αp1q ´ up1q “ αpT ` 1q ´ upT ` 1q, this means that when t˚ “ T ` 1,
we have that uptq ą αptq.

(ii) If αp1q ą αpT ` 1q, then αp1q ´ up1q ą αpT ` 1q ´ upT ` 1q, which contradicts (4.5).
Therefore, uptq ą αptq holds, moreover, αptq ă uptq ă βptq, which means uptq is a solution of

problem (1.3).
Set ρ0psq :“ 1

2 mintαptq : t P rt1, t2sZu and

rΩs :“ tu P E : ρ0psq ă uptq ă γpsq ` }α}8, |4uptq| ă 1, t P r1,T sZu.

Obviously, Ωs Ď rΩs. Moreover, according to Lemma 3.6 and 3.7, we have that degpI´ĂAspu; sq,Ωs, 0q
and degpI ´ ĂAspu; sq, rΩs, 0q are well-defined, and

degpI ´Aspu; sq,Ωs, 0q “ degpI ´ ĂAspu; sq,Ωs, 0q “ degpI ´ ĂAspu; sq, rΩs, 0q.

On the other hand, from (3.12), (4.2) and (4.3), it follows that

ḡp$pρ0psqqq ´ s ą 0 ą ḡpγpsq ` }α}8q ´ s “ ḡp$pγpsq ` }α}8qq ´ s.

In view of Lemma 3.1, we have that

degpI ´ ĂAspu; sq, rΩs, 0q “ ´degpḡp$q ´ s, rΩs X R, 0q “ 1.

Hence, (4.1) is fulfilled.
Lemma 4.2 There exists s˚ ą 0 such that the problem (1.3) with s ą s˚ has no positive T -periodic
solution.
Proof Assume on the contrary that there exists tpun, snqu

`8

n“1 Ď N1 and sn ą 0 satisfying

lim
nÑ`8

sn “ `8. p4.6q
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Obviously, un P E and satisfies

4p
4unpt ´ 1q

a

1´ p4unpt ´ 1qq2
q ` f punptqq4unptq ` gpt, unptqq “ sn, for t P r1,T sZ. p4.7q

On account of (H2), we can find a positive continuous function wpt; ξq such that

gpt, unptqq ď wpt; ξq, for t P r1,T sZ, u P p0, ξs. p4.8q

According to (H1), we have that

gpt, unptqq ď g1pt, unptqq ´ g2pt, unptqq ď g1pt, unptqq, for t P r1,T sZ, u ą ξ.

Summing (4.7) from 1 to T, in view of (2.7), (3.7), (4.8) and the above inequality, we infer that

T sn “

T
ÿ

t“1

gpt, unptqq ď
T
ÿ

t“1

g1pt, unptqq `
T
ÿ

t“1

wpt; ξq, n P N.

In view of Lemma 3.4 and g1 is nondecreasing, it follows that

sn ď ḡ1pρp1` snqq ` w̄pξq, n P N. p4.9q

Dividing both sides of the inequality (4.9) by sn, we arrive at

1 ď
ḡ1pρp1` snqq

sn
`

w̄pξq
sn

“
ḡ1pρp1` snqq

ρp1` snq
¨
ρp1` snq

sn
`

w̄pξq
sn

.

Passing to the limit as n tends to `8, on account of (2.4) and (4.6), we arrive at 1 ď 0 ¨ ρ` 0 “ 0, this
is a contradiction. Therefore (4.6) does not hold, which means sn is bounded.
Lemma 4.3 Let ε ą 0 is a constant, denote

Gpεq :“ mintgpt, εq : t P r1,T sZu. p4.10q

Then the problem (1.3) has at least one positive T -periodic solution uptq with s ă Gpεq, that satisfies

uptq ą ε, for t P r1,T sZ.

Proof Let s P R such that s ă Gpεq and αptq “ ε, for t P r1,T sZ, then4αptq “ 0 and4p 4αpt´1q?
1´p4αpt´1qq2

q “

0. Therefore

4p
4αpt ´ 1q

a

1´ p4αpt ´ 1qq2
q ` f pαptqq4αptq ` gpt, αptqq “ gpt, εq ě Gpεq ą s, for t P r1,T sZ.

This implies α ” ε is a strict lower solution of the problem (1.3). Set

Ωspεq :“ tu P E : ε ă uptq ă γpsq ` ε, |4uptq| ă 1, t P r1,T sZu. p4.11q

According to Lemma 4.1 and degpI ´Aspu; sq,Ωspεq, 0q “ 1, the conclusion follows.
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According to Lemma 4.2 and 4.3, the problem (1.3) has no or at least one positive T -periodic solution
with s ą s˚ or s ă Gpεq, respectively. The following proves the existence of critical point s˚.

Lemma 4.4 There exists s˚ P R such that the problem (1.3) with s ą s˚ or s ă s˚ has no or at least
one positive T -periodic solution, respectively.
Proof Let s˚ P R such that us˚

ptq is a T -periodic solution of the problem (1.3). Then for any given
s ă s˚, we have that

4p
4upt ´ 1q

a

1´ p4upt ´ 1qq2
q ` f puptqq4uptq ` gpt, uptqq “ s˚ ą s, for t P r1,T sZ.

This implies us˚
ptq is a strict lower solution to (1.3) with s ă s˚. Therefore, it follows from Lemma

4.1 that the conclusion holds.

Lemma 4.5 The problem (1.3) with s “ s˚ has at least one positive T -periodic solution.
Proof According to Lemma 4.4, define a set of S by

S :“ ts0 P R, problem (1.3) has at least one a positive T-periodic solution for everys ă s0u. p4.12q

Obviously, by Lemma 4.3, there exists s˚ “ Gpεq P S , thus S is nonempty. On the other hand,
according to Lemma 4.2, there exists a constant s˚ ě s˚ such that the problem (1.3) has no positive
T -periodic solution with s ą s˚. Then the set S is bounded. Set

s˚ :“ sup S . p4.13q

Let a sequence tun, snu
`8

n“1 be such that

sn ă s˚, lim
nÑ`8

sn “ s˚. p4.14q

On account of (4.12)-(4.14), there exists a sequence unptq “ usnptq is the positive T -periodic solution
to (1.3). According to Lemma 3.6-3.8, there exist constants K1 and K2, such that

K1 ď unptq ď K2, for t P r1,T sZ, n P N,

which combining }4uptq} ă 1, it’s easy to see that the sequence tun, snu
`8

n“1 is uniformly bounded and
equicontinuous, thus, according to Arzela-Ascoli theorem, we can assume that there exists u0ptq P E
such that

lim
nÑ8

unptq “ u0ptq, uniformly on t P r1,T sZ. p4.15q

Because of the solution unptq satisfies

unptq “ Asnpun; snq, for n P N.

Passing to the limit as n tends to `8, on account of (4.14) and (4.15), we arrive at

u0ptq “ As˚
pu0; s˚q,
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thus, u0ptq P Ωs and it’s a positive T -periodic solution of problem (1.3) with s “ s˚.
Lemma 4.6 The problem (1.3) with s ă s˚ has at least two positive T -periodic solutions.
Proof Let s ă s˚ is arbitrary. Set

Ω :“ tu P E : mintγ0psq, γ0ps˚ ` 1qu ă uptq ă maxtγpsq, γps˚ ` 1qu, |4uptq| ă 1, for t P r1,T sZu

in view of Lemma 3.6-3.8, degpI ´ Aspu; sq,Ω, 0q is well-defined with s P rs, s˚ ` 1s. On account
of Lemma 4.2 and 4.4, the problem (1.3) has no positive T -periodic solution in Ω for s “ s˚ ` 1.
Combining with the homotopy invariance of topological degree, we get

degpI ´Aspu; s̄q,Ω, 0q “ degpI ´Aspu; s˚ ` 1q,Ω, 0q “ 0.

Let ε P p0, s˚ ´ s̄q, from Lemma 4.4, the problem (1.3) has at least one positive T -periodic solution
usptq with s “ s˚ ´ ε. Further, usptq is a strict lower solution of the problem (1.3) with s “ s. Set

Ω1 :“ tu P E : usptq ă uptq ă maxtγps̄q, γps˚ ` 1qu, |4uptq| ă 1, for t P r1,T sZu.

Obviously, Ω1 Ď Ω, and in view of Lemma 4.1, we have that degpI ´ Aspu; s̄q,Ω1, 0q “ 1. Set
Ω2 :“ ΩzΩ̄1. According to the additivity property of topological degree yields

degpI ´Aspu; s̄q,Ω2, 0q “ degpI ´Aspu; s̄q,ΩzΩ1, 0q

“ degpI ´Aspu; s̄q,Ω, 0q ´ degpI ´Aspu; s̄q,Ω1, 0q

“ 0´ 1 “ ´1.

Consequently, there exists another positive T -periodic solution to problem (1.3) with s “ s in Ω2.

Since s̄ is arbitrary, the conclusion follows.
Lemma 4.7 There exists sR0 P R such that the problem (1.3) for any R0 ą 1 has at least two positive
T -periodic solutions u1ptq and u2ptq satisfying (2.11).
Proof Let ε ą 0. Ωspεq is defined by (4.11). Set

xΩs :“ tu P E : mintγ0psq,
1
2
εu ă uptq ă γpsq ` ε, |4uptq| ă 1, for t P r1,T sZu.

Then, in view of Lemma 4.3 and 4.5, the problem (1.3) has at least two positive T -periodic solutions
u1ptq P Ωspεq and u2ptq P xΩs{Ω̄spεq, this implies

mintu1ptq : t P r1,T sZu ą ε, mintu2ptq : t P r1,T sZu ă ε

Thereby, since ε is arbitrariness, the conclusion hold by setting sR0 “ mintGpR0q,Gp 1
R0
qu.

Proof of Theorem 2.1 The conclusion follows immediately from Lemma 4.4-4.7.
Here is an examples to illustrate our conclusion:

Example 1 Let us consider the Ambrosetti-Prodi type results of the following periodic boundary value
problem

4p
4upt ´ 1q

a

1´ p4upt ´ 1qq2
q `

1
2

uptq4uptq ´ uptq ´ 4 “ s, t P r1, 8sZ,

up0q “ up8q, 4up0q “ 4up8q,

where f puptqq “ 1
2uptq gpt, uptqq “ ´uptq ´ 4.
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Let g1pt, uptqq “
a

uptq, g2pt, uptqq “ uptq, qpt, uptqq “ 1
10u2ptq , wpt; Rq “ | sin π

2 t| ` 1.

Fix ε0 “
1
4 , it is easy to verify that lim

uÑ0`

T
ř

t“1

1
10uptq “ 8, lim

uÑ`8

T
ř

t“1

1
10uptq “ 0, and ´uptq ´ 4 ď ´ 1

10uptq `

| sin π
2 t| ` 1, for u P p0, 1

4s. Which means the function gpt, uptqq has a repulsive singularity at the

origin. Obviously, for ξ “ 1
4 , we have that ´uptq ´ 2 ď

a

uptq ´ uptq, for u ě 1
4 , lim

uÑ`8

8
ř

t“1
uptq “

`8, lim
uÑ`8

8
ř

t“1

?
uptq

uptq “ 0, and L “ lim sup
uÑ`8

8
ř

t“1

?
uptq

8
ř

t“1
p1´ 1

10 quptq
ă 1, for ς “ 1

10 , hence (H1) holds. When

wpt; Rq “ 2, it follows that ´uptq ´ 4 ď ´ 1
10uptq ` 1 ` 2, for u P p0, 1

4s. it means that (H2) holds. At

the same time, we get that
8
ř

t“1

1
2uptq4uptq “ 0 holds. According to Theorem 2.1, there exists a constant

s0 P R, such that the above problem has no positive solution, at least one positive solution or at least
two positive solutions with s ą s0, s “ s0, or s ă s0, respectively.
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