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Abstract: In this work, we study an Ambrosetti-prodi type results for discrete Minkowski-mean cur-
vature operators with repulsive singularities

A( Au(t—1)

V1= (au(t—1))
u(0) = u(T), 2u(0) = au(T),

)+ fwou) + glou(0) =, 1 [1,T]

where f : (0, +00) — R is a continuous 7-periodic function, g : [1, Tz x (0, +00) — R is a continuous
T-periodic function with a repulsive singularity at the origin, and s € R is a parameter, 7 > 2 is integer.
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1. INTRODUCTION

The problems related to the Minkowski-mean curvature equation have been greatly developed in
differential geometry, relativity theory and in theory of relativity, being related to maximal and con-
stant mean curvature spacelike hypesurfaces, see [4, 5, 6, 7, 15]. These authors considered a class of
Minkowski-curvature equations with Dirichlet, Neumann and periodic boundary value problems are
investigated in [4, 7, 11, 15], [3, 21] and [2, 8], respectively. In particular, the mean curvature problem
with singularities has also been extensively studied, the types of singularity are divided into attractive,
repulsive and indefinite type, see [16, 18, 26], [8, 16, 23] and [19, 25], respectively.

In recent years, the multiplicity results of Ambrosetti-Prodi type have attracted attention of many
researchers, see [5, 12, 13, 14, 23, 24, 27] and the references therein. For the singular case, Fabry,
Mawhin and Nkashama[12] considered the Ambrosetti-Prodi type results of a class of regular Liénard
equation of the type

X"+ f(x)x + h(t,x) = s,

where the nonlinear term / satisfies coercivity conditions

‘ 1|im g(t,x) = 400, uniformlyont e [0,T], (1.1)
X|—00
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a similar situation appeared in reference [5, 8, 13, 22]. In [23, 24], the authors considered the Ambrosetti-
Prodi type results in the weakened case, that is, the nonlinear term satisfies the local coercivity condi-
tions:

lim g(t,x) = lim g(f,x) = +o0, uniformlyonre [0,T]. (1.2)

x—0t x—+00
Yu et.al [26] established the Ambrosetti-Prodi type results for the second-order differential Liénard
equation with repulsive singularities in the case of degeneracy

X"+ f(x)x + h(t,x) = s.

On the other hand, Bereanu and Thompson[6], Chen, Ma and Liang[10] extended the Ambrosetti-Prodi
type results with singular to the discrete mean curvature problem. For example, in [6], Bereanu and
Thompson established the Ambrosetti-Prodi type results for discrete Dirichlet problems

A(gb(Axk)) v = s, kel2n— 1]

X1 = Xp, AX] = AXp—1,
where f; : R — R are continuous functions for k € [2,n — 1]z, and satisfy

lim fi(x) = 400, uniformly k € [2,n — 1]z.

|x]—00

Through a comparative study of continuous and discrete problems, it is concluded that the discretiza-
tion of problems provides an iterative scheme and theoretical guidance for the numerical solution of
continuous problems, see [1, 9, 20, 28].

Based on the above research results, we consider the Ambrosetti-Prodi type results of the discrete
mean curvature problem with repulsive singularity

Au(t—1)
A< V1= (au(t—1))?
u(0) =u(T), 2u(0) = ru(T),

> + f(u)au(t) + g(t,u) = s, t€ [1,T]z,
(1.3)

where g does not satisfy the coercivity conditions (1.1) or local coercivity conditions (1.2). It is worth
noting that the lack of uniformity lead to the constant lower functions no longer exist, thus, a new
method of constructing strict lower function is needed to prove the multiplicity results of Ambrosetti-
Prodi type.

2. PRELIMINARIES

First, we introduce some notation that are used throughout the paper.
b
Let Z is the set of integer, a,b € Zand a < b, |a,b]z = {a,a+ 1,--- ,b—1,b}, >, u(s) = 0 when

b < a. ru(t) = u(t + 1) — u(t) is the forward difference operator. Denote [£] to be the integer part of
T
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LetX = {u:[0,T+ 1]z >R}, E={ueX:|u0) =u(T),ru(0) = au(T)} are Banach spaces

with the norm |ul|,, = : ma)]( {u(r)}. Obviously, E is a closed subset of the X. For u € X, set
€0, +1]z—R

T T
2\ L
Al = max |au(d)], |auly =) |au(d)], |aul| = au(t)|?)2.
ol = _max, w0} lauly = Ylout), Jaul = (X [out)

L

It is not difficult to verify that the norms || - |, - | are equivalent.

For u € E, we define

U= %iu(t)

Next, let S is a set containing all possible positive T-periodic solutions of the problem (1.3), more
precisely, we set
S ={uc€ E||au|, < 1}.

Definition 2.1 We say that the function g possesses a repulsive singularity at the origin, if there exists
a constant &y > 0, and functions w : [1,T]z — (0,4),q : [1,T]z x (0, +o0) — [0, +00) is non-
increasing with respect to u, and satisfies

T T
[Llr(g;q(f,u(f)) = +©, tilgnw;fJ(W(f)) =0, (2.1)

such that
g(t,u) < —q(t,u) + w(t), forallt e [1,T]z, u < (0,&)]. (2.2)

Before formulating the main result, we give a list of technical conditions guaranteeing the existence
of positive T-periodic solution to the problem (1.3).

(H1) Assume that there exists a constant & > 0 such that
g(t,u) < g1(t,u) — g2(t,u), forallre [1,T]z, u > &, (2.3)

where g1,8> : [1,T]z x (0, +00) — [0, +00) are continuous function, non-decreasing with respect to
u, satisfying

S &)
u1—1>Too & (u) = 400, uEer = 0. (2.4)
Further, assume that there exists a constant ¢ > 0, such that
Lo timsup— S (2.5)

usten G2((1 = ¢)u)
(H2) Assume that for any R > 0, there exists positive continuous function w(z; R) such that
g(t,u) < —q(t,u) + w(t;R), forall e [1,T]z, ue (0,R], (2.6)

and w(t; Ry) < w(t;Ry), Ry < R,, where ¢ is introduced in Definition 2.1.
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Assume that the continuous function f satisfies

> F(ut)su(t) =0, (2.7)

t=1

t
and let F(u(t)) = >, f(u(s))au(s). According to the unbounded property of F, the following assump-
s=1

tions are satisﬁed,‘respectively.
(H3) Assume that sup{|F(u)| : u € (0,1]} = +o0.
(H4) Assume that sup{|F(u)| : u € (0, 1]} < +o0, there holds

s+[%] s+T
lim q(t,7 — ) + lim Z q(r,s+T — 1) = +0, se [1,T]z, (2.8)
= e r=s+[L]+1

where ¢ is introduced in Definition 2.1.
Definition 2.2 A lower solution « of (1.3) is a function @ € X such that |A«||, < 1, and satisfies

A( ra(t—1) > + fla(t)ra(t) + g(t,a) = s, t€ [1,T]z,

V1= (sa(t—1))? (2.9)
a(0) = a(T), ra(0) = ara(T).
An upper solution 3 of (1.3) is a function B € X such that |AB|, < 1, and satisfies
a8 1)
A + NaB(t) + g(t,B) < s, te[l,T]z,
() */es80) +a(ep) < s 12 [1LTLe 210

B(0) = B(T), sB(0) < ap(T).
Such a lower and upper solution is called strict if the first inequality of (2.9) and (2.10) are strict for
te|l,T]z.
Theorem 2.1 Assume (H1)-(H2) and (H3) or (H4) hold. Then there exists a constant s, € R such that
(1) the problem (1.3) has no positive T-periodic solution if s > sp;
(11) the problem (1.3) has at least one positive 7T-periodic solution if s = sp;
(iii) the problem (1.3) has at least two positive 7T-periodic solutions if s < 5.
In addition, for any R, > 1, there exists sg, € R such that problem (1.3) has two positive 7T-periodic
solutions u; (¢) and u,(¢) satisfying

1
min{u,(¢) : t € [0,T + 1]z} > Ry, min{uy(z) : t € [0,T + 1]z} < R for s < sg,- (2.11)
0

3. EXISTENCE OF SOLUTIONS

By the same argument of [5], define two operators P, Q : E — E by

Z u(s).

s=1

N =

Pu(t) := u(0), Qu(t) :=
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Define Nemytskii operator N, associated to g by

(Ngu)(t) := —f(u)au(t) — g(t,u(t)) + s, forze[1,T]z.

At this point, following [5], one has that u is a T-periodic solution to the problem (1.3), if and only
if u € S is a fixed point of the completely continuous operator A, : E — E defines as

Ay = Pu+ ONyu + kNyu, uek,

where « is the map, associates the unique 7'-periodic solution u(¢) of the problem

a(9(aue)) = vie) = 5 Dv(0).  ul0) =0,

=1
foranyve E.
Let us consider the periodic parameter-dependent problem

() st + dea(0) = s 1< [T,

u(0) = u(T), aru(0) = Au(T),

where A € [0, 1].
Now, we introduce a continuation theorem of coincidence degree theory.

(3.1)

Lemma 3.1 ([14, Theorem 2.1]) Let Q is an open bounded set in E such that the following conditions
hold:
(i) for every A € (0, 1], the equation (3.1) has no solution;

(ii) the equation g(7) = 7 Z g(t,7) = s has no solution.

Then deg(I—N,,S,0) = —deg( (1)—s,S,0). Moreover, if the Brouwer degree deg(g(7)—s, S, 0) # 0,
then the problem (1.3) has a solution.
Lemma 3.2 ([17, Lemma 2.4]) Let u € E. Then

ﬂ

M—m< =,
ms3

where
M = max{u(t), te [1,T]z}, m = min{u(z), t€[1,T]z}.
Proof For any u € E, there exists ty € [1,T]z and 1, € [ty + 1,7p + T + 1]z such that
u(ty) =u(to+T)=m, u(t;) =M.

Then the following equality hold

t—1

M—m= Z Au(s)
s=to
to+T—1
M—m= Z Au(s).

5=
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By using Holder inequality, we have that

n—1 1

M-—m<(n —10)%(2 ]Au(s)]z)z,

S=1y

to+T—1 1

M—m<(f+ T—tl)%( 3 \Au(s)\2>2.

S=1

Then using the inequality AB < %(A + B)?, we get that

(M —m) < 22 au(o)2.

Thus

M <T
_m\_.
2

For convenience, define 9, as a set that contains all pairs (u, s) such that u is a solution to problem

(3.1) corresponding to s. Moreover, 9, expressed as all pairs (i, s) such that u is a solution to problem

(1.3) corresponding to s.
In this part, we consider the sequence {u,, s,}/% < 9, and denote

M, := max{u,(t), t€ [0, T + 1]z}, my, := min{u,(z), t€ [0,T + 1]z}.

Lemma 3.3 Assume (H1) holds for any sequence {u,, s,} % < 9N, satisfying

n=1 —

lim M, = +o0,

n——+0o0
such that
Jm g
Proof According to Lemma 3.2, we have that
M — Z < m.
2

In view of Squeeze Theorem and (3.2), we infer that

lim m, = +o0.
n—+00

Therefore, (3.3) is true.
Lemma 3.4 Assume (H1) holds and there exists a constant p > 0 such that

u(tys) < p(1+s), forte [1,T]z, (u,s) €N, s> 0.

(3.4)

Proof Assume that there exists a consequence {u,, s,} ] < N, such that s, € (0,+00) and M, >

n(1+ s,) for n € N. Then (3.3) is fulfilled. Therefore, there exists ny > 0 such that
m, > (1 —¢)M, > &, for n > ny,

where ¢ and & were introduced in (H1).

(3.5)



Because of u, is a positive T-periodic solution to problem (3.1) when s = s,, it follows that

Aun(t —1)
a( NI ) o A (1)) dan (1) + g1, 0(1)) = A, e
u,(0) = u,,(T), Au,(0) = A, (T).
Summing the equation (3.6) from 1 to 7, it yields that
g Aun(t —1) g g
(¢1 — ) Zu 10, (1)) At (1) + ;/lg(t, (1)) = ;/ls,,.
Due to
Au,(t — 1) B Auy(t Au,(t— 1)
;A<\/1 Aunt—l)>_;<«/l— Gu,(0)? /1 Aunt—l))> (57

Au,(T) Au, (0)

VT uMP VT (w07
Therefore, in view of (2.3), (2.7), (3.5), (3.7) and g4, g, are nondecreasing with respect to u, it follows
that

T
0<Ts, = Z (t, u,(t

T r
Zgl t, u,(t 2 (¢, u,(t (3.8)
=1 =1

g_l( n) - TgZ(mn)
TG (M)~ Tg((1 - )M,).
Dividing both sides of (3.8) by T¢>((1 — ¢)M,,), it follows that

(M,
0< g1(M,) — 1, forn > ny.
&((1=¢)M,)
Passing to the limit as n tends to +00, on account of (2.4) and (2.5), we arrive at
- (M,
0 <limsup— Sy (3.9)

n—-+oo g_z((l — g‘)Mn>
this is a contradiction.
Lemma 3.5 Assume (H1) holds, then there exists y; : (0, +00) — (0, +0) such that

u(tys) < vyi(s), forte [1,T]z, (u,s) €Ny, s <O.
Moreover, the function y satisfies
Yi(s1) = y1(s2), when s; < 5, < 0.
Proof First, we show that for every sy < O there exists ¥ (sp) such that

u(t;s) < yi(so), fort e [0,T + 1]z, (u,s) € Ny, s € [50,0].
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We assume that there exists {(uy, s,)}/%, < Ny, such that s, € [s9,0] and M, > n. Obviously, (3.2) and
(3.3) are fulfilled. Hence there exists n; > 0 such that

m, > (1 —¢)M, > &, forn > ny. (3.10)
Summing the equation (3.6) from 1 to 7, in view of (2.3), (2.8), (3.7) and (3.10), it follows that
So < sp < §1(M) — £((1 — ¢)M,).

Dividing both sides of the inequations stated-above by g, ((1 — ¢)M,,), we get that

50 & (M)
£((1=¢)M,) = &((1-¢5)M,)
Passing to the limit as n tends to +00, on account of (2.4) and (2.5), we arrive at

-1, forn > ny.

0<L-1<0,
this is a contradiction. Choose
yi(s) :=inf{y;(7) : 7 < s}, for s < 0.

Then
u(t;s) < yi(s), forte [1,T]z, (u,s) eN,, s <0.

Lety : R — (1, +0) defined by

o(1+5)+ 1, for s > 0,
y(s) := (3.11)
yi(s) + 1, for s < 0.
Hence the following conclusion holds.
According to (H1), for any given ¢ > 0, the following equation holds
g2(y(s) +c) <s, forseR. (3.12)
Lemma 3.6 Assume (H1) holds. Then
u(t) < yl(s), forre [1,T]z, (u,s) eN,, seR. (3.13)
Further, the function vy satisfies
Y(sil) <v(s2)), 51l < [s2f- (3.14)

Now, we shall show that the solution of problem (1.3) has the lower bounds.
In view of the assumption of (H2), there exists a positive continuous function w(z; s) such that

g(t,u) < —q(t,u) + w(t; s), forte [1,T]z, ue (0,y(s)], seR. (3.15)
8



According to (H2), w(t; s) is non-decreasing and satisfies

w(t; s1) < w(t; s2), forte [1,T]z, 51 < 5. (3.16)
For any given s € R, we define

Q(s) :={u>0:g(u) =|s| +w(s)}, (3.17)
and
&(s) := max{|F(u)| : u e [inf Q(s),y(s)]} + Tw(s) + Ts|.

According to the function g is non-increasing, (3.16) and (3.17), it follows that inf Q(s) is non-
increasing with respect to |s|, thus

inf Q(|s1|) = inf Q(|s7]), provided |s;| < |s2]. (3.18)
Therefore, F(s) satisfies
S(ls1]) < &(s2])s provided |s;| < |s2]. (3.19)

Next, we discuss the cases where F is bounded or unbounded near the origin, separately.
Lemma 3.7 Assume (H1)-(H2) and (H3) hold. Then there exists y, : R — (0, +00) such that

u(t; s) > yo(s), forre [1,T]z, (u,s) €Ny s€R. (3.20)

Moreover, the function vy, satisfies

Yo(|si]) = yo(ls2

Proof From the assume condition (H3), for s € R, there exists y(s) € (0, 1) such that

[E(vo(s))] > S(s). (3.22)

), provided |s;| < |s2]. (3.21)

We shall show that
u(tys) = yo(s), forte [1,T]z, (u,s) € Ny, s€R. (3.23)

We assume that there exists (uo, so) € N, such that min{ug(7) : £ € [1,T]z} < yo(s0). Let tyy € [1, Tz
be such that

Mo(lM) = max{uo(t) te [1, T]Z} = M(), (324)
then

Aug(ty) = up(ty + 1) —up(ty) <0, Aug(tyy — 1) = up(ty) — uo(tyy — 1) = 0. (3.25)
Due to u is a T-periodic solution of problem (3.1) with s = s, there holds
Aug(t — 1)
< V1= (aup(t — 1
Summing (3.26) from 1 to 7, we have

Z <¢1 Au(t — 1) ) Z/lf o (t Auo(t)+;/lg(t,u0(t)) Z;/lso. (3.27)

(Aup(r — 1))

= )+ Af (o) o (1) + Ag (1, 10(1)) = Aso, 1€ [1,T]z. (3.26)

9



According to (2.7), (3.15), (3.24) and ¢ is non-increasing with respect to u, it follows that

N
4
s
_l_
=

:

then

T
In view of lim )] g(z,u(r)) = 0 and (3.17), it follows that

u—>+oo =1

According (3.22), there exists yo(so) € (0, min{1,inf Q(s0)}) such that |F(yy(s0))| > &(s0)-
Firstly, in the case of F(yy(so)) > &(so), there exists t; € [tyy — T, ty]z, such that

Fluo(t; — 1)) = F(o(s0)), uo(ty — 1) = 0.

Summing (3.26) from #; and #,,, it follows that

M Auo(t — 1 M L
> a( Z Af (uo (1)) aug () + > Ag(tuo(t)) = Y| Aso. (3.29)
=1 \/1 AMO r— 1 1=t 1=t 1=t

In view of (3.15) and (3.25), the equality (3.29) leads to

O>i A Aug(t — 1) )

V1= (bug(t —1))?
—§f<uo<t>>Auo<t> - ggu, () + Z )
— A(~F(Mo) + Fluo(ti — 1)) - 2 tuo(0) + (1 — 1)s0)
> A(~F(Mo) + F(jalso)) — 2 gt uo(0) + (1 — 1)s0)

> A(—F(Mo) + F(yo(s0)) — Tw(so) — T'[so])-
Due to 4 > 0, we have
F(y0(s0)) < F(Mo) + Tw(so) + T|so|
< max{|F(u)| : u € [inf Q(s0),y(s0))]} + Tw(so) + T|so| = F(s0),

this is a contradiction.
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Secondly, in the case of F(yy(so)) < —&(s0), there exists t, > t,; such that

F(uo(r2)) < F(o(s0)),  Aup(tz) <O.
Summing (3.26) from ), and £,, it follows that

Zzl ( \/1 AMO(I - 1 Z f uo Al/t()(t) + 22: /lg(l‘, Lto(t)) = Zz ASg.

t=ty t - 1 t=ty t=ty t=ty

According to Lemma 3.6, (3.15) and (3.25), we have that

Aug(t — 1)
g Z — (up(t — 1))? )

5]

= A(—F(uo(t2)) + Fuo(tss = 1) = Y g(t,u(1)) + (12 = tar) 50)

= A(=F(o(s0)) + F(uo(ty — 1)) — TW(s0) — T|s0l),
which implies
F(¥0(s0)) = F(uo(ty — 1)) = Tw(s0) — T|so]
> —max{|F(u)| : u e [inf Qs0),¥(50))]} — Tw(so0) — T|so| = —F(50),

this is a contradiction. Therefore, the conclusion holds by yo(s) := 27(s).
Based on the above arguments and (3.19), it is not difficult to verify that

Yo(|s1]) = vo(|s2]), provided |s;| < |s5]

1S true.

Lemma 3.8 Assume (H1)-(H2) and (H4) hold, then there exists a function y, : R — (0, +00) such that
(3.20) and (3.21) hold.

Proof First, we show that (3.23) is true. From (2.8), there exists yo(s) > 0 such that for all u €
(0,70(s)), s € R, there holds

tm+[g] tm+T
T(W(s)+[s)) < ) qltu+(t—t)+ D, qltou+ (ty+T —1)). (3.30)
1=ty t=lm+[%]

Suppose on the contrary that there exists (ug, so) € N, such that my := min{uy(z) : ¢t € [1,T]z} <
Yo(s0). Obviously, iy € E and (3.26) holds. Moreover, there exists t,, € [1, Tz such that uy(t,) = mo.
Summing (3.26) from t,, + 1 to ¢, we have that

t t

3 <¢1 Aug(T — 1) >+ D1 Afuo(r)aug(r) + ) Ag(r.uo(r Z 50

T=ty+1 AMO T 1)) T=tp+1 T=tp+1 T=tp+1

Because of ug(t,) = my, it yields that

t

Z < Aug(t — 1) ) _ A (1) Aug(t,) Aug (1)
V1 - ))? V1= (auo(0)? A1 = (su(t, ))2 A1 — (up(t
1

T=tp+1 AMO T—1



Then

t

- a( — Fluo(t) + Fmo) — Y gl(ruo(x)) + (t — tm)s()). (3.31)

1 - (Auo(t))z T=tp+1

In view of (3.13), (3.15) and ¢ is nonnegative, we get that

Al/t()(l‘)

t t t

Y, (gmuo(@) —wlmso) < D) g(muo(r)) < Y, wlrsso).

T=t,+1 T=t,+1 T=t,+1
According to g(t,u) — w(t;s) < —q(t,u) < 0, we have that

t

—T|so| — Tw(so0) < >, g(ruo(r)) < T(s0)-

T=typ+1

Since u € S, it follows that
—l<oaut—1) <1, forte [0, T + 1]z. (3.32)

Summing (3.32) from ¢ + 1 to t,, + T and from t,, + 1 to ¢ respectively, which implies

T
up(t) <mo+t,+T —1t, fort e [ty + [=] tm + Tz,

2 (3.33)
T
uo(t) < my +t — t, fort € [ty t, + [5]]2.
Summing (3.26) from 1 to 7, in view of (3.15), we have that
T
Tso < ). g(t.uo(t)) < = > q(t.uo(t)) + Tw(so). (3.34)
=1 =1
In view of (3.33), (3.34) and ¢ is non-increasing, it follows that
T tm+T
Tlso| + Tw(s0) = ), q(tuo(t)) = Y qlt, uo(?))
t=1 =ty
tm+[%] tm+T
> q(t,mg +1t—t,) + Z q(t,my+t, + T — 1),
I=tm t:tm+[%]+l

this contradicts (3.30).

According to the above Lemma 3.6-3.8, there exist positive functions yy,y : R — (0, +0) satisfy
(3.21) and (3.14), respectively, such that

vo(s) < u(t) <y(s), forte [1,T]z, (u,s) €N, sER,

provided (H1)-(H2),and (H3) or (H4) are fulfilled.
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4. PROOF OF MAIN RESULTS

The following Lemmas are introduced before proving the main result, all of which satisfy the as-
sumptions (H1)-(H2), and (H3) or (H4).
Lemma 4.1 Let () is a strict lower function of the problem (1.3), moreover, Ay(-; s) is the completely
continuous operator associates with (1.3). Let

Q,:={ucE:a(t) <u(t) <y(s)+ |a|w |ou()| <1, forte[1,T]z},
then deg(I — A(+; 5), Q4. 0) is well-defined, and the following conclusion holds
deg(I — Ay(+;5),Q4,0) = 1. (4.1)

Proof Assume that «(¢) is a strict lower solution of the problem (1.3), then we get that

ra(t—1)

a( N 1)>2> + fla(n)salt) + g(r.alr) > s,

a(0) = a(T), ra(0) = ara(T).

(4.2)

Let B(t) = y(s) + ||/ «. Obviously, in view of Lemma 3.6, we have that 3(¢) is the strict upper
solution to problem (1.3), it follows that u(z) < S(z).
Let w(u(t)) : R — R(z € [1,T]z) be a continuous function defined in the following form

Y(s) + [alleo, Bt) < ult),
@(u(t)) = u(t), alt) < u(?) < B), (4.3)
a(t), u(t) < a(t),
and define ¥ (1, @w(u(1))) = f(w(u(t))rw(u(t)) + g(t,w(u(t)) — s, t€ [1,T]z.

Let us consider the auxiliary problem
ap(su(t = 1)) + F (@ (u(1))) = [u(t) —@(u(@)] =0, 1e[1,T],

(4.4)
u(0) = u(T), ru(0) = au(T).

Clearly, u(t) is a solution of the auxiliary problem (4.4) and satisfies u(z) > «a(t), then u(¢) is also
a solution to problem (1.3). By the similar arguments of section 3, we can define compact operator
A (@ (1)) = Po(u(t))+ONyw (u(t))+cNyw(u(t)). Then Aj : Q; — Q, is a completely continuous
operator. According to Schauder fixed-point theorem, we have that A(@(u(r))) = u has at least one
fixed point, that is, the problem (4.4) has at least one solution.

Suppose by contradiction that there exists ¢ € [0, T + 1]z, such that () — u(t) > 0, then there exists

t* € [0,T + 1]z, such that a(r*) — u(r*) = [max] ((t) — u(t)) = 0. The following only needs to
te|0,T+1]z

prove that (1) < u(t) < yi(s) + ||@|e-
When ¢* € [1, T]z, we infer that

a(t* + 1) — () <u(t + 1) — u(t*), a(t*) — a(t* — 1) = u(r*) — u(r* — 1).

That is,
ra(t®) < Au(t), Aa(t* — 1) = au(t* —1).



Apply ¢ to both sides of the above inequalities, since ¢ is monotonically increasing, we have that
Ap(La(t — 1)) < Ap(au(t* — 1))
= —F (" @ (u(r))) + [u(t®) — @(u(r))]
—fla(r))aa(r®) — (%, (%) + s
< ag(aa(r” - 1)),

N

this is a contradiction.
When r* = 0, we get that a(r*) — u(t*) = a(0) — u(0) = a(T) — u(T), therefore, the results are
consistent when t* = Qand t* = T.
When t* = T + 1, that is
o) —u(t*)=a(T +1)—u(T +1) = max (a(r) — u(r)). (4.5)

te [O,T-‘r l]Z

By the periodic boundary value conditions of problems (4.2) and (4.4), we obtain that
u(0) = u(T), u(1) =u(T +1),2(0) = «(T), a(1) = a(T + 1).

O Ife(l) =a(T +1),thena(l) —u(l) = a(T + 1) —u(T + 1), this means that when r* = T + 1,
we have that u(t) > a(1).

() Ife(l) > a(T + 1), then (1) — u(1) > a(T + 1) — u(T + 1), which contradicts (4.5).

Therefore, u(t) > «(t) holds, moreover, a(t) < u(t) < B(t), which means u(z) is a solution of
problem (1.3).

Set po(s) := 3 min{a(t) : t € [t), 1]z} and

Q, = {uecE:pys) <ult) <y(s)+ |alw |au@)| <1, te[1,T]}.

Obviously, Q, < £~23. Moreover, according to Lemma 3.6 and 3.7, we have that deg(/ — %(u; s), Qy,0)
and deg(I — A, (u; s),Q;, 0) are well-defined, and

~ ~

deg(I — A, (u; 5), Q,,0) = deg(I — A, (u; 5), Q,, 0) = deg(I — A, (u; 5), Qy, 0).

On the other hand, from (3.12), (4.2) and (4.3), it follows that

g@(po(s))) =5 >0>2(y(s) + |afo) =5 = &@(y(s) + |a]0)) —s.

In view of Lemma 3.1, we have that

deg(I — A (u; 5), Qy,0) = —deg(3(w) — 5,Q, " R,0) = 1.
Hence, (4.1) is fulfilled.
Lemma 4.2 There exists s* > 0 such that the problem (1.3) with s > s* has no positive T-periodic
solution.
Proof Assume on the contrary that there exists {(u,, s,)}, % < 90, and s, > 0 satisfying

lim s, = +00. (4.6)

n——+0oo
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Obviously, u, € E and satisfies
Au,(t—1)
V1 = (au,(t —1))2
On account of (H2), we can find a positive continuous function w(z; ¢) such that
g(t,u,(t)) < w(t; ), forre [1,T]z, uc (0,&]. (4.8)
According to (H1), we have that
g(tu, (1) < g1(t,u, (1)) — ga(t, un (1)) < g1(t, u, (1)), forte [1,T]z, u > &

Summing (4.7) from 1 to 7, in view of (2.7), (3.7), (4.8) and the above inequality, we infer that

Tsnzz (¢, u, (1 Zgltun (1)) +

t=1 t=1

A( )+ f(un(2)) Aun (1) + g(t, un(2)) = Sps forre [1,T]z. (4.7)

=

w(t; &), ne N.

In view of Lemma 3.4 and g; is nondecreasing, it follows that
sn < G1(p(1 + s,)) + w(é), neN. (4.9)

Dividing both sides of the inequality (4.9) by s,, we arrive at
Glp(l +5))  w(E)

I <
Sn Sy
() pllrs)
p(1+ s,) Sn Sn

Passing to the limit as » tends to +c0, on account of (2.4) and (4.6), we arrive at 1 < 0-p + 0 = 0, this
is a contradiction. Therefore (4.6) does not hold, which means s, is bounded.
Lemma 4.3 Let € > 0 is a constant, denote

G(e) := min{g(t,€) : t € [1,T]z}. (4.10)
Then the problem (1.3) has at least one positive T-periodic solution u(¢) with s < G(€), that satisfies
u(t) > e, forz e [1,T]sz.

Proof Let s € Rsuchthat s < G(e€) and a(t) = ¢, fort € [1,T]z, then Aa(f) = 0 and A(%) =
0. Therefore
ra(t—1)
\/1 (aa(t—1))?

This implies @ = € is a strict lower solution of the problem (1.3). Set

Qi(€):={uecE:e<u(t) <y(s)

)+ fla(t)ra(t) + g(t,a(t)) = g(t.€) = G(e) > s, forr e [1,T]z.

au(t)| < 1, te[1,T]z}. (4.11)

According to Lemma 4.1 and deg(I — A,(u; s), Q (€),0) = 1, the conclusion follows.
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According to Lemma 4.2 and 4.3, the problem (1.3) has no or at least one positive T-periodic solution
with s > s* or s < G(e), respectively. The following proves the existence of critical point s..

Lemma 4.4 There exists s, € R such that the problem (1.3) with s > s, or s < s, has no or at least
one positive T-periodic solution, respectively.
Proof Let s, € R such that u,, () is a T-periodic solution of the problem (1.3). Then for any given
s < §., we have that

Au(t—1)
V1= (au(t—1))
This implies u;, (¢) is a strict lower solution to (1.3) with s < s,. Therefore, it follows from Lemma
4.1 that the conclusion holds.

A(

2) + f(u(t))su(t) + g(t,u(t)) = sy > s, fort € [1,T]z.

Lemma 4.5 The problem (1.3) with s = s, has at least one positive T-periodic solution.
Proof According to Lemma 4.4, define a set of S by

S := {50 € R, problem (1.3) has at least one a positive T-periodic solution for everys < so}. (4.12)

Obviously, by Lemma 4.3, there exists s, = G(e€) € S, thus S is nonempty. On the other hand,
according to Lemma 4.2, there exists a constant s* > s, such that the problem (1.3) has no positive
T-periodic solution with s > s*. Then the set S is bounded. Set

Sy = supS. (4.13)
Let a sequence {u,, s,},; be such that
Sp < 8%, lim s, = s, (4.14)
n—+00

On account of (4.12)-(4.14), there exists a sequence u,(f) = u;, () is the positive T-periodic solution
to (1.3). According to Lemma 3.6-3.8, there exist constants K; and K, such that

K < u,(t) < Ks, forte [1,T]z, neN,

which combining |Au(z)|| < 1, it’s easy to see that the sequence {u,, s,} '] is uniformly bounded and

equicontinuous, thus, according to Arzela-Ascoli theorem, we can assume that there exists uy(t) € E
such that
lim u,(t) = uy(1), uniformly on 7 € [1,T]z. (4.15)

n—0o0
Because of the solution u,(¢) satisfies
un(t) = Ay, (U $n), forn € N.

Passing to the limit as n tends to +00, on account of (4.14) and (4.15), we arrive at

I/lo([) = ﬂs* (uO; s*)a
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thus, uy(f) € Q, and it’s a positive T-periodic solution of problem (1.3) with s = s,.
Lemma 4.6 The problem (1.3) with s < s, has at least two positive T-periodic solutions.
Proof Let s < s, is arbitrary. Set

={ue E:min{yy(s),yo(s« + 1)} <u(r) < max{y(s),y(s« + 1)}, |au(t)| < 1, fort e [1,T]z}

in view of Lemma 3.6-3.8, deg(l — A (u; s),Q,0) is well-defined with s € [5, s, + 1]. On account
of Lemma 4.2 and 4.4, the problem (1.3) has no positive T-periodic solution in Q for s = s, + 1.
Combining with the homotopy invariance of topological degree, we get

deg(I — Ay(u; 5),Q,0) = deg(I — Ay(u; s, + 1),2,0) = 0.

Let € € (0, s, — 5), from Lemma 4.4, the problem (1.3) has at least one positive 7-periodic solution
us(t) with s = s, — &. Further, u5(¢) is a strict lower solution of the problem (1.3) with s = . Set

={uecE :us(t) <u(t) < max{y(5),y(s« + 1)}, |au(t)| < 1, fort e [1,T]z}.
Obviously, Q; < Q, and in view of Lemma 4.1, we have that deg(/ — A,(u;5),Q;,0) = 1. Set
Q, := Q\Q,. According to the additivity property of topological degree yields
deg(I — Ay(u; 5),Q,,0) = deg(I — A,(u; 5), 2\Q,0)
= deg(I — Ay(u; 5),Q,0) — deg(I — As(u;5),Q,0)
=0—-1=-1.

Consequently, there exists another positive T-periodic solution to problem (1.3) with s = s in Q,.
Since § is arbitrary, the conclusion follows.

Lemma 4.7 There exists sg, € R such that the problem (1.3) for any R, > 1 has at least two positive
T-periodic solutions u;(¢) and u,(¢) satisfying (2.11).

Proof Let € > 0. Q(e) is defined by (4.11). Set

Q, = {u € E : min{yy(s), %6} <u(t) <y(s)+e |au(r)| <1, forre [1,T]z}.

Then, in view of Lemma 4.3 and 4.5, the problem (1.3) has at least two positive T-periodic solutions
u (1) € Q(€) and uy (1) € Q,/Q,(€), this implies
min{u; (1) : t € [1,T]z} > €, min{uy(¢t) : t € [1,T]z} < €
Thereby, since € is arbitrariness, the conclusion hold by setting sg, = min{G(Ry), G(Rio)}
Proof of Theorem 2.1 The conclusion follows immediately from Lemma 4.4-4.7.

Here is an examples to illustrate our conclusion:
Example 1 Let us consider the Ambrosetti-Prodi type results of the following periodic boundary value

problem
pult — 1) lu u(t) —u(t) —4 == €
(¢1 Aut—l))>+2 (D)au(t) —u(t) =4 =5, 1e[l,8]z
u(0) = u(8), Au(0) = Au(8),
where f(u(t)) = su(r) g(t, u(t)) = —u(t) — 4.
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Let gi(t,u(t)) = A/u(t), g(t,u(t)) = u(t) q(t,u(t)) = #2() w(t;R) = |sin 3¢ + 1.

Fix gy = i it is easy to verify that ulirgl+ Z 10 oo,uETOO Z 10u =0,and —u(t) — 4 < _ﬁ(t) +
|sinZt| + 1, for u € (0,%]. Which means the function g(t,u( ) has a repulsive singularity at the
8

origin. Obviously, for & = 1, we have that —u(r) — 2 < +/u(t) — u(t), foru > 1, lim Su(t) =
U=+0 ;1
i A/ u(t) i A/ u(t)
+o0, lim ’ZIT = 0,and L = limsup=—/——— < 1, for¢ =
u—-too u—too 3 (1= (o)
=1

w(t;R) = 2, it follows that —u(r) — 4 < — + 1+ 2, foru € (0, 1]. it means that (H2) holds. At

10, hence (H1) holds. When

1
10u(t)

8

the same time, we get that ) fu(r)Au(r) = 0 holds. According to Theorem 2.1, there exists a constant
=1

5o € R, such that the above problem has no positive solution, at least one positive solution or at least

two positive solutions with s > sy, s = 59, or s < s, respectively.
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