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Abstract In this paper, we consider a class of convolution integral equations with singular integral-

differential operators. First, we establish the relation between Fourier analysis theory and Riemann boundary

value problems, and investigate the theory of Noether solvability and some properties of Cauchy integral
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By means of the regularity theory of the classical Riemann-Hilbert problems and of the theory of complex

analysis, we obtain the conditions of Noether solvability and analytical solutions. In addition, we also study
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1 Introduction

There were rather complete investigations on the method of solution for integral equations of convolution

type and equations of Cauchy type. Karapetjeantz [1] considered the invertibility of Wiener-Hopf operators

with discontinuous coefficients. For operators containing both Cauchy principal value integral and convolution,

Duduchava [2,3] discussed the conditions of their Noethericity in more general cases. Litvinchuk [4] studied

first the singular integral-differential equations, in which the class of differentiable functions was extended to

the Hölder continuous function class, next the singular integral-differential equations which the coefficients

contain a discontinuity point of the first kind were also studied, and he later again considered the integral-

differential equations with convolution kernel. Subsequently, many mathematicians proposed a general method

to solve some classes of singular integral equation with a mixture of convolution kernel and Cauchy kernel, in

which the convolution kernel has discontinuous property, that is to transform this kind of integral equation to

Riemann boundary value problem by using Fourier transform (see [5,6] and references therein). Particularly,

Li and Ren [7] dealt with the solvability of one class of singular integro-differential equations in the case of

non-normal type, and the explicit solutions and conditions of solvability were obtained, which extended the

results of [5,6] to the classes of continuous functions and the classes of discontinuous coefficients. Later on,

Li [8-18] further considered the problem of finding solutions for convolution integral equations with singular

kernels, and gave the conditions of solvability and the general solutions by Riemann-Hilbert approach.

In the practical problems, such as atomic diffusion theory, heat conduction, transport and nuclear collision,

and mathematics physics and so on, these problems are closely related to singular integral-differential equations

1∗ Corresponding author at: School of Mathematical Science, Qufu Normal University, Qufu, 273165, P.R.China.
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of Cauchy type and integral-differential equations of convolution type [19-24]. Especially, the above practical

problems also occur more general singular integral-differential equations with a mixture of convolution kernel

and Cauchy kernel. The presentation and method of this class of equations rich the theory of singular integral

equations, and the method of solution mentioned in the paper is still effective for solving other singular

integral-differential equations.

This paper is devoted to the study of a class of singular integral-differential equations with convolution

and Cauchy kernels, that is,

n∑
j=0

{α1,jf
(j)
+ (t) + α2,jf

(j)
− (t) +

β1,j

πi

∫
R+

f (j)(τ)

τ − t
dτ +

β2,j

πi

∫
R−

f (j)(τ)

τ − t
dτ

+
ζ1,j√
2π

∫
R+

k1,j(t− τ)f (j)(τ)dτ +
ζ2,j√
2π

∫
R−

k2,j(t− τ)f (j)(τ)dτ} = g(t), t ∈ R,

(1.1)

for j = 0, 1, · · · , n; n ∈ N, where αp,j , βp,j , ζp,j (p = 1, 2) are real constants with βp,j not all equal to zero

simultaneously, the given functions kp,j(t), g(t) ∈ {0}. The unknown function f(t) ∈ {0}, and its derivatives

f (j)(t) ∈ {0} for any j = 1, 2, · · · , n. In Eq. (1.1) , f±(t) are given by

f±(t) =
1

2
f(t)(sgnt± 1).

In this paper, we give effective methods of solution for Eq.(1.1). By using the classical Fourier analysis

theory and lemmas given in this paper, we turn Eq.(1.1) into a Riemann boundary value problem. Via using

the method of complex boundary value problems and the generalized principle of analytic continuation [6-

8,25,26], we obtain the general solution and conditions of solvability in class {0}. Especially, we redefine the

index formulas of coefficients in Eq.(1.1), and consider in detail the properties of the index. As its applications,

the problem to find the solutions of Eq.(1.1) is also very important. Hence, Eq.(1.1) has important meaning

not only in application but also in the theory of resolving the equation itself.

Our work is organized as follows. In Section 2, we introduce the concepts of classes {0}, {{0}} and

investigate their properties. In Section 3, we adopt the Fourier transform approach to transform Eq.(1.1) into

boundary value problems for analytical functions with discontinuous coefficients. In Section 4, we use the

theory of complex analysis and Sokhotski–Plemelj formula to study the Riemann-Hilbert problem obtained

above. This allows us to show that Eq.(1.1) can be solved under certain conditions, so we obtain the conditions

of solvability for Eq.(1.1). Finally, we give the conclusion of this article.

2 Definitions and Lemmas

It is necessary for us to introduce certain new classes of functions in advance and to point out some of

their properties. In this section, let us introduce some notations.

We denote R = (−∞,+∞),R+ = (0,+∞),R− = (−∞, 0), and Lp(R)(p ≥ 1) denote the spaces of

Lebesgue integrable functions on R. If f(t) is continuous on R, we denote as f(t) ∈ C(R), similarly we also

have f(t) ∈ C(Ṙ), where Ṙ = R ∪ {∞}. H is a Hölder continuous function space. And C+ and C− stand for

the upper and lower half-planes, respectively.

The Fourier transforms used in this paper understood to be performed in L2(R) and the functions involved

certainly belong to this space.

Definition 2.1. The Fourier transform operator of f(t) ∈ L2(R) is defined as follows

(Ff)(x) =
1√
2π

∫
R
f(t) exp(ixt)dt, (2.1)

2



denote (Ff)(x) as F (x). And the inverse Fourier transform operator of F (x) is defined by

(F−1F )(t) =
1√
2π

∫
R
F (x) exp(−ixt)dx, (2.2)

denote (F−1F )(t) as f(t), where both the integrals of (2.1) and (2.2) exist in the sense of the Cauchy principal

value.

Obviously, we have

F [f(−t)] = F (−x), F−1[F (−x)] = f(−t). (2.3)

Definition 2.2. Let f(t) ∈ C(R), if there exist two positive real numbers A and M satisfying the following

two conditions:
(1) |f(t1)− f(t2)| ≤ A |t1 − t2|µ , ∀t1, t2 ∈ [−M,M ];

(2) |f(t1)− f(t2)| ≤ A
∣∣t1−1 − t2

−1
∣∣µ , ∀t1, t2 ∈ R \ [−M,M ],

(2.4)

then we say that f(t) ∈ Ĥ, where µ ∈ (0, 1].

The concepts of classes {0} and {{0}} are introduced as follows.

Definition 2.3. A function F (x) belongs to {{0}}, if the following two conditions are fulfilled:

1) F (x) ∈ L2(R); 2) F (x) ∈ Ĥ, that is, F (x) satisfies the Hölder conditions on Ṙ.
that is,

{{0}} = {F (x)|F ∈ Ĥ ∩ L2(R)}.

Therefore, from Definition 2.3 we know that if F (x) ∈ {{0}}, then F (x) ∈ C(Ṙ) and F (∞) = 0.

Definition 2.4. Let F (x) = (Ff)(x), if F (x) ∈ {{0}}, we say that f(t) ∈ {0}, that is to say,

{0} = {f(t)|Ff = F ∈ {{0}}}.

Definition 2.5. The operators N and S are defined by

Nf(t) = f(−t), Sf(t) = f(t)sgnt. (2.5)

It is easy to see that [16-18]

SN+ NS = 0, N2 = S2 = I, (2.6)

where I is a unit operator.

For two functions k(t) and f(t), if we use the notation of convolution

(k ∗ f)(t) = 1√
2π

∫
R
k(t− τ)f(τ)dτ, (2.7)

then it is well known that

F{(k ∗ f)(t)} = Fk · Ff = K(x)F (x), (2.8)

where K,F are the Fourier transforms of k, f respectively.

We can easily obtain that if k, f ∈ {0}, then k ∗ f ∈ {0} (see [23-25]).

Definition 2.6. Let f (j)(t) ∈ {0} (j = 0, 1, · · · , n), we introduce the following singular integral-differential

operator

(Tf (j))(t) =
1

πi

∫
R
f (j)(τ)

dτ

τ − t
, t ∈ R, j = 0, 1, · · · , n, (2.9)

where the integral on the right-hand side of (2.9) is also the Cauchy principal value integral, and f (j)(t) stands

for the j-order derivatives of a function f(t).
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Note that we also can write (2.9) as

(Tdjf)(t) =
1

πi

∫
R
f (j)(τ)

dτ

τ − t
dtj ,

and when j = 0,

(Tf)(t) =
1

πi

∫
R
f(τ)

dτ

τ − t
, t ∈ R,

where djf stands for the j-order differentiations of a function f .

From [25-27], we know that T maps {{0}} into themselves respectively and

T 2 = I.

It is evident that

F−1 = NF = FN, F 2 = N. (2.10)

It was proved in [2,28,29], that when applying to functions in {0},

FS = TF . (2.11)

The following lemma 2.1 plays an important role.

Lemma 2.1. When applying to functions in {0},

FT = −SF , (2.12)

that is,

F [
1

πi

∫
R
f(τ)

dτ

τ − t
] = −F (x)sgnx. (2.13)

Proof. From (2.11), we have

T = FSF−1. (2.14)

Since

F−1 = NF = FN, F 2 = N, T = FSF−1, (2.15)

we get

FT = F 2SF−1 = NSNF = −N2SF = −SF , (2.16)

therefore, (2.12) is true. □

Note that, from f ∈ {0}, generally we could not assure that Tf ∈ {0}. However, we have

Lemma 2.2. If f ∈ {0}, and (Ff)(0) = 0, then Tf ∈ {0}.
Proof. Owing to f ∈ {0}, so we have Ff ∈ {{0}}. From Lemma 2.1, we know that

FTf = −sgnxFf. (2.17)
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Noting that

(Ff)(∞) = (Ff)(0) = 0, (2.18)

hence we obtain Ffsgnx ∈ {{0}}, i.e., FTf ∈ {{0}}, then Tf ∈ {0}. □

Moreover, when f(t) ∈ L1(R), we have

lim
x→0

F (x) = lim
x→0

1√
2π

∫
R
f(t) exp(ixt)dt =

1√
2π

∫
R
f(t)dt,

note that F is continuous on R, therefore
(Ff)(0) = 0

if and only if ∫
R
f(t)dt = 0. (2.19)

The following several lemmas are important to our paper.

Lemma 2.3. Let f (j)(t) ∈ {0} (j = 0, 1, · · · , n), then

F [f
(j)
± (t)] = (−ix)jF [f±(t)]−

1√
2π

j−1∑
m=0

(−ix)mf (j−m−1)(0) (2.20)

for j = 1, 2, · · · , n.
Proof. We will use mathematical induction to prove (2.20). Since

F [f
′

+(t)] =
1√
2π

∫
R
f

′

+(t) exp(ixt)dt =
1√
2π

∫
R+

f
′
(t) exp(ixt)dt

=
1√
2π

∫
R+

exp(ixt)df(t) =
1√
2π

[f(t) exp(ixt)]|+∞
0 − 1√

2π
ix

∫
R+

f(t) exp(ixt)dt

= − 1√
2π

f(0) + (−ix)F [f+(t)],

(2.21)

hence the result is true for j = 1. We now suppose (2.20) holds for j = k, that is,

F [f
(k)
+ (t)] = (−ix)kF [f+(t)]−

1√
2π

k−1∑
m=0

(−ix)mf (k−m−1)(0), (2.22)

and prove it for j = k + 1.

By using integral subsection method and (2.22), then when j = k + 1, we have

F [f
(k+1)
+ (t)] = (−ix)k+1F [f+(t)]−

1√
2π

k∑
m=0

(−ix)mf (k−m)(0). (2.23)

Similarly, we can prove the case f
(j)
− (t) for j = 1, 2, · · · , n. □

Lemma 2.4. Let f (j)(t) ∈ {0} and F (0) = 0, Tf (j)(t) is given by (2.9), that is,

(Tf (j))(t) =
1

πi

∫
R
f (j)(τ)

dτ

τ − t
, j = 0, 1, 2, · · · , n,

then

(FTf (j))(t) = −(−ix)jsgnxF (x). (2.24)
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Proof. By Lemma 2.3, we obtain

(Ff (j))(t) = (Ff
(j)
+ )(t)− (Ff

(j)
− )(t) = (−ix)j(Ff+)(t)− (−ix)j(Ff−)(t) = (−ix)jF (x). (2.25)

Again using Lemma 2.2, we can obtain

(FTf (j))(t) = −(−ix)jsgnxF (x). (2.26)

The definitions of all above notations can be found in [4-6]. □

In the following, we establish the relation between Fourier transforms and Riemann boundary value prob-

lems. Let f ∈ {0}, we define the Cauchy type integral as follows

F (z) =
1

2πi

∫
R
f(t)

dt

t− z
, ∀z ∈ C+ ∪ C−, (2.27)

then we can obtain

lim
z→x,z∈C+

1

2πi

∫ +∞

−∞

f(t)

t− z
dt = F+(x), x ∈ R, (2.28)

and

lim
z→x,z∈C−

1

2πi

∫ +∞

−∞

f(t)

t− z
dt = F−(x), x ∈ R. (2.29)

From [4, 30], we have

F+(x) =
1

2πi

∫
R+

f(t)
dt

t− x
=

1√
2π

∫
R
f+(t) exp(ixt)dt, (2.30)

and

F−(x) =
1

2πi

∫
R−

f(t)
dt

t− x
=

1√
2π

∫
R
f−(t) exp(ixt)dt, (2.31)

where F±(x) are the Fourier transforms of f±(t) respectively, which are the boundary values of the sectionally

analytical function F (z) in the upper half plane C+ and the lower half plane C−, respectively.

At the end of this section, we give the generalized Sokhotski–Plemelj formulas of Fourier transform.

Assume that f ∈ {0}, the Cauchy type integral F (z) is given by (2.27), then the following generalized

Sokhotski–Plemelj formulas hold

F±(x) = ±1

2
f(x) +

1

2πi

∫
R

f(t)

t− x
dt, x ∈ R, (2.32)

i.e.,

F±(x) = ±1

2
f(x) + F (x), x ∈ R. (2.33)

Moreover, when F± ∈ {{0}}, via the extended residue theorem [6,7,30], we also know that

F (z) =
1

2πi

∫
R

F (t)dt

t− z
, ∀z ∈ C+ ∪ C−. (2.34)

It follows that F (z) is also analytic in C+ ∪ C−.
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3 Reducing Eq.(1.1) to a Riemann boundary value problem

In this section, via using Fourier transform, we will convert Eq.(1.1) into a Riemann boundary value

problem. In order to solve Eq.(1.1), we may write it as the following form

n∑
j=0

{α1,jf
(j)
+ (t) + α2,jf

(j)
− (t) + β1,jTf

(j)
+ (t)− β2,jTf

(j)
− (t) + ζ1,jk1,j ∗ f (j)

+ (t)− ζ2,jk2,j ∗ f (j)
− (t)}

=g(t), t ∈ R.

(3.1)

In the following discussions, we will see that Eq. (3.1) has a solution under some conditions, hence we take

the Fourier transforms in both sides of (3.1) by using Lemmas 2.1-2.4, then (3.1) is reduced to the following

Riemann boundary value problem with discontinuous coefficients:

F+(x) = A(x)F−(x) + C(x), x ∈ R, (3.2)

where

A(x) =

n∑
j=0

{(−ix)j [−α2,j − β2,jsgnx+ ζ2,jK2,j(x)]}

n∑
j=0

{(−ix)j [α1,j − β1,jsgnx+ ζ1,jK1,j(x)]}
,

C(x) =

G(x) + 1√
2π

n∑
j=1

{[
j−1∑
m=0

(−ix)mf (j−m−1)(0)][α1,j + α2,j + ζ1,jK1,j(x)− ζ2,jK2,j(x)]}

n∑
j=0

{(−ix)j [α1,j − β1,jsgnx+ ζ1,jK1,j(x)]}
,

F±(x) = F [f±(t)], G(x) = F [g(t)], Kp,j = F [kp,j(t)]

for p = 1, 2; j = 0, 1, 2, · · · , n.
It is not difficult to prove that (3.1) and (3.2) are equivalent. From previous discussions, we also know

that (3.2) is a Riemann boundary value problem with nodes x = 0,∞ on R, and it can be directly solved by

the method of [30-32].

In this paper, we shall take another method to solve Eq. (3.2). Applying linear transform [33,34]

z =
ξ

−1 + iξ
, (3.3)

this transform maps the real axis X on the plane Z onto the unit circle Γ on the complex plane ξ

Γ = {ξ ∈ C : |2ξ + i| = 1},

which surrounds an interior region Σ+ and an exterior region Σ−, and maps the upper half-plane C+ and the

lower half-plane C− onto the Σ+ and Σ− respectively, where

Σ+ = {ξ ∈ C : |2ξ + i| < 1}, Σ− = {ξ ∈ C : |2ξ + i| > 1}.

Again let

F (z) = Ψ(ξ), G(z) = U(ξ), Kp,j(z) = Bp,j(ξ)

for p = 1, 2; j = 0, 1, 2, · · · , n, then (3.2) is readily reduced to the following Riemann boundary value problem

in plane ξ:

Ψ+(τ) = N(τ)Ψ−(τ) +M(τ), τ ∈ Γ, (3.4)
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where

M(τ) =

U(τ) + 1√
2π

n∑
j=1

{[
j−1∑
m=0

(− τ
τ+i )

mf (j−m−1)(0)][α1,j + α2,j +B1,j(τ)−B2,j(τ)]}

n∑
j=0

{[α1,j − β1,jδ(τ) +B1,j(τ)](− τ
τ+i )

j}
,

N(τ) =

n∑
j=0

{[−α2,j − β2,jδ(τ) +B2,j(τ)](− τ
τ+i )

j}

n∑
j=0

{[α1,j − β1,jδ(τ) +B1,j(τ)](− τ
τ+i )

j}
,

and

δ(τ) =

1, τ ∈ Γ1;

−1, τ ∈ Γ2,

where Γ1,Γ2 are the left half circles and the right half circles of Γ, respectively.

In the following, to solve a Riemann boundary value problem (3.4), we will consider the two cases: the

normal type and the non-normal type.

4 The solving method of problem (3.4)

In section 3, we turn Eq.(1.1) into a Riemann boundary value problem (3.4). By means of the principle of

analytic continuation and of the theory of complex analysis, we obtain the conditions of Noether solvability and

the general solution in class {0}. Some special kinds of Riemann boundary value problems with discontinuous

coefficients appear in the course of solving equations, which are solved in the same time.

4.1 Solution of problem (3.4) in the case of normal type

First, let us solve the Riemann boundary value problem (3.4) in the case of normal type.

If
n∑

j=0

{[(−1)p−1αp,j − βp,jδ(τ) + Bp,j(τ)](− τ
τ+i )

j} ̸= 0 (τ ∈ Γ; p = 1, 2), then τ = 0 is the discontinuity

points of M(τ) and N(τ), therefore it is also node of (3.4), then we call (3.4) the boundary value problem of

normal type with node τ = 0. Let

γ = σ∗ + iι∗ =
1

2πi
log

N(−0)

N(+0)
, (4.1)

where the definitions of N(±0) can be found from [7,18], namely,

N(−0) = lim
τ→0,τ∈Γ2

N(τ), N(+0) = lim
τ→0,τ∈Γ1

N(τ).

Because logN(τ) has infinite number continuous branches, we take a continuous branch of logN(τ) such

as

logN(−i) = 0.

Then choose an integer χ such as

0 ≤ σ∗ − χ < 1,

and again denote

σ = σ∗ − χ, λ = γ − χ = σ + iι∗, (4.2)

then we call χ the index of the problem (3.4). Note that, we can also define the formula of index in the

following method

χ =
1

2πi

∫
R
d logN(s). (4.3)
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Define the following piece-wise function

X(ξ) =

eΓ(ξ), ξ ∈ Σ+;

(ξ + i
2 )

−χeΓ(ξ), ξ ∈ Σ−,
(4.4)

where

Γ(ξ) =
1

2πi

∫
Γ

(τ +
i

2
)−χ logN(τ)

dτ

τ − ξ
, ξ /∈ Γ. (4.5)

Via using the Sokhotski-Plemelj formula to (4.4) and (4.5), we obtain

X+(τ) = eΓ
+(τ), X−(τ) = eΓ

−(τ)(τ +
i

2
)−χ;

Γ±(τ) = ±1

2
(τ +

i

2
)−χ logN(τ) +

1

2πi

∫
Γ

(t+
i

2
)−χ logN(t)

dt

t− τ
,

therefore, from our previous discussions, we know that

X+(τ)

X−(τ)
=

eΓ
+(τ)

eΓ−(τ)(τ + i
2 )

−χ
= eΓ

+(τ)−Γ−(τ)(τ +
i

2
)χ

=elogN(τ)(τ +
i

2
)−χ(τ +

i

2
)χ = N(τ),

that is,

X+(τ) = N(τ)X−(τ), τ ∈ Γ. (4.6)

Next, we shall solve (3.4). For the time being, we do not consider the property of Ψ(ξ) at a neighborhood

of ξ = 0, we know that Ψ(ξ) is bounded at ξ = ∞, therefore (3.4) has a solution in R0. By means of the

principle of analytic continuation and of the theory of complex analysis [6,30], similar to the solving method

of [18,19,30], then we can obtain the general solutions of (3.4) as follows

Ψ(ξ) = X(ξ)[D(ξ) + Pχ(ξ)], (4.7)

where

D(ξ) =
1

2πi

∫
Γ

M(τ)

X+(τ)

dτ

τ − ξ
, ξ /∈ Γ, (4.8)

and when χ ≥ 0, Pχ(ξ) is a polynomial with the degree χ; when χ < 0, Pχ(z) ≡ 0; and when χ < −1, the

following −χ− 1 conditions of Noether solvability hold∫
Γ

M(τ)τ j

X+(τ)
dτ = 0 (4.9)

for j = 0, 1, · · · ,−χ − 2. Therefore, when χ < 0, (3.4) has only solution and its solution is still (4.7), in this

case, Pχ(z) ≡ 0.

In the following, we shall consider the case near τ = 0. By lemma 2.2, we have (Ff)(t) ∈ {{0}} and

(Ff)(0) = 0.

If τ = 0 is an ordinary node, then 0 < σ < 1, and λ ̸= 0, because Ψ(ξ) is a continuous function near τ = 0,

and (Ff)(0) = 0, we may obtain

Ψ(0) = (Ff)(0) = 0,

hence one has the following condition of Noether solvability:

√
2πU(0) +

n∑
j=1

f (j−1)(0)[B1,j(0)−B2,j(0) + α1,j(0) + α2,j(0)] = 0. (4.10)
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If τ = 0 is a special node, that is, σ = 0, λ = iι0.

(1) If ι0 ̸= 0, in this case, besides (4.9), the following condition of Noether solvability must be fulfilled:

2πic+

∫
Γ

M(τ)

X+(τ)

dτ

τ
= 0, (4.11)

where c is a constant term of Pχ(ξ). Once (4.11 ) hold, then (4.9 ) must be also satisfied, and D(ξ) ∈ H near

τ = 0, therefore in order that Ψ±(ξ) is continuous at τ = 0, then (4.11 ) must be satisfied.

(2) If ι0 = 0, then λ = 0, hence Ψ(0) = 0 if and only if (4.11 ) holds. So the necessary condition of the

existence of solution for (3.4) is (4.11).

In summary above cases, we may obtain

Theorem 4.1. Under the case of the normal type, the necessary condition of the existence of solution for

Eq. (3.1) is (4.9). Assume that (4.9) holds.

If τ = 0 is an ordinary node, when χ ≥ −1, Eq. (3.1) is solvable; when χ < −1, and (4.10) satisfies, (3.1)

has only solution (4.7), in this case, Pχ(z) ≡ 0.

If τ = 0 is a special node, then (4.9) and (4.11) hold. When χ ≥ −1, (3.1) has a solution; when χ < −1

and (4.10) satisfies, then (3.1) has a solution.

Therefore, the solution of (4.1) is given by

f(t) = F−1[F (x)], (4.12)

where

F (x) = F+(x)− F−(x). (4.13)

From F (x) ∈ {{0}}, we have f(t) ∈ {0}, and the uncertain constants f (j)(0)(j = 0, 1, · · · , n − 1) are

determined by (4.27)-(4.29). □

4.2 Solution of problem (3.4) in the case of non-normal type

Next, we assume that N(τ) has some zero-points and pole-points on Γ, then problem (3.4) is called the

non-normal type case. Let

n∑
j=0

[α1,j − β1,jδ(τ) +B1,j(τ)](−
τ

τ + i
)j and

n∑
j=0

[−α2,j − β2,jδ(τ) +B2,j(τ)](−
τ

τ + i
)j

have common and the same order zero-points a1, a2, · · · , aq with the orders γ1, γ2, · · · , γq respectively on Γ;
n∑

j=0

[α1,j −β1,jδ(τ)+B1,j(τ)](− τ
τ+i )

j has some zero-points b1, b2, · · · , bs with the orders α1, α2, · · · , αs respec-

tively;
n∑

j=0

[−α2,j −β2,jδ(τ)+B2,j(τ)](− τ
τ+i )

j has some zero-points c1, c2, · · · , cl with the orders β1, β2, · · · , βl

respectively, and αj , βj , γj are positive integers. Again let

Π1(τ) =

s∏
j=1

(τ − bj)
αj , Π2(τ) =

l∏
j=1

(τ − cj)
βj ,

s∑
j=1

αj = N1,

l∑
j=1

βj = N2,

q∑
j=1

γj = N3.

Then, (3.4) is reduced to

Ψ+(τ) =
Π2(τ)

Π1(τ)
N0(τ)Ψ

−(τ) +M(τ), τ ∈ Γ. (4.14)

Since F (x) ∈ {{0}}, so Ψ(τ) is continuous on Γ. In order that Ψ(τ) satisfy the conditions at aj(1 ≤ j ≤ q),
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then the following conditions of solvability must be fulfilled

√
2πU (k)(aj) + {[

n∑
j=1

(

j−1∑
m=0

(− τ

τ + i
)mf (j−m−1)(0)](B1,j(τ)−B2,j(τ) + α1,j + α2,j)}(k)|τ=aj = 0 (4.15)

for k = 0, 1, · · · , γj − 1; j = 1, 2, · · · , q.
In order that computation of (4.15) is feasible, U(τ), B1,j(τ), B2,j(τ) must exist derivatives until order

γj − 1 at the neighborhood of aj , and all order derivatives satisfy Hölder conditions.

Here, according to the values of α1,j ± β1,j , α2,j ± β2,j(j = 0, 1, · · · , n), we have the following four cases

(1) α1,j ± β1,j ̸= 0, α2,j ± β2,j ̸= 0; (2) α1,j ± β1,j = 0, α2,j ± β2,j ̸= 0;

(3) α1,j ± β1,j ̸= 0, α2,j ± β2,j = 0; (4) α1,j ± β1,j = 0, α2,j ± β2,j = 0

for j = 0, 1, · · · , n.
Without loss of generality, we discuss only the case (1) in this paper. On other cases, similar to the

statement in the case (1), here we do not discuss. Under satisfying the above conditions, (3.4) is a Riemann

boundary value problem with the discontinuous coefficients, and τ = 0 is a node of (3.4). X(ξ) take also (4.4),

in which Γ(ξ) take the following value

Γ(ξ) =
1

2πi

∫
Γ

logN0(τ)
dτ

τ − ξ
, ξ /∈ Γ. (4.16)

Moreover, we can easily see that the homogeneous problem of (4.14) is

Ψ+(τ) =
Π2(τ)

Π1(τ)
N0(τ)Ψ

−(τ). (4.17)

Using the extended Liouville theory and the regularity theory of the classical Riemann boundary value

problems [6,20,21], we may obtain the general solutions of (4.17) as follows

Ψ∗(ξ) =

Π2(ξ)X(ξ)Pχ−N1(ξ), ξ ∈ Σ+;

Π1(ξ)X(ξ)Pχ−N1
(ξ), ξ ∈ Σ−.

(4.18)

Now, we discuss the non-homogeneous case of (4.14). Construct the following function

Φ(ξ) =
1

2πi

∫
Γ

Π1(τ)M(τ)

X+(τ)

dτ

τ − ξ
, ξ /∈ Γ. (4.19)

For the time being, we do not consider Ψ(ξ) at case of neighborhood of τ = 0. Since F (x) ∈ {{0}},
hence Ψ(ξ) is bounded on Γ, and Ψ(ξ) has no singularity at τ = bj , cj . Via Sokhotski-Plemelj formula and the

extended Liouville theory [6, 22, 30], and again using Hermite interpolation polynomial Ωρ(ξ)(ρ = N1+N2−1),

hence we can define the following function:

S(ξ) =


X(ξ)
Π1(ξ)

[Φ(ξ)− Ωρ(ξ)], ξ ∈ Σ+;
X(ξ)
Π2(ξ)

[Φ(ξ)− Ωρ(ξ)], ξ ∈ Σ−.
(4.20)

In (4.20), Ωρ(ξ) is a Hermite interpolation polynomial with the zero-points of order αj , βj at bj , cj , re-

spectively. When the solvable conditions (4.15) are satisfied, S(ξ) is a special solution of non-homogeneous

Riemann boundary value problem (4.14), using the structure theorem of solution, we obtain the general

solutions of the problem (4.14):

Ψ(ξ) = S(ξ) + Ψ∗(ξ). (4.21)
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Taking boundary value to (4.21 ), we may obtain:

Ψ(ξ) =

Ψ+(ξ), ξ ∈ Σ+;

Ψ−(ξ), ξ ∈ Σ−,
(4.22)

where

Ψ+(ξ) =
1

2
M(ξ) +

X+(ξ)

Π1(ξ)
[Φ(ξ)− Ωρ(ξ)] +X+(ξ)Π2(ξ)Pχ−N1(ξ);

Ψ−(ξ) = −1

2

M(ξ)

N(ξ)
+

X−(ξ)

Π2(ξ)
[Φ(ξ)− Ωρ(ξ)] +X−(ξ)Π1(ξ)Pχ−N1(ξ).

In the following, we shall discuss the analytical property of solutions near τ = 0 and ∞.

Firstly, we consider the case near τ = 0. When τ = 0, on the case of the solution (4.21), similar to the

above discussion.

If τ = 0 is an ordinary node if and only if (4.9 ) fulfills.

If τ = 0 is a special node, besides (4.9 ) holds, the constant term c of Pχ(ξ) is determined by the following

equality:

c =
Ωρ(0)− Φ(0)

Π1(0)Π2(0)
. (4.23)

Secondly, we consider the case near τ = ∞, by (4.18) and (4.20), we know that if N1 − χ − 1 > 0, then

S(ξ) has a pole point with the order N1−χ− 1 at ∞, in order that Ψ(ξ) is bounded at ξ = ∞, suppose Ωρ(ξ)

is written as

Ωρ(ξ) = e0ξ
ρ + e1ξ

ρ−1 + · · ·+ eρ, (4.24)

where ej are constants, then one must have

e0 = e1 = · · · = eN1−χ−2 = 0, (4.25)

here Ωρ(ξ) is a polynomial with the degree ρ− (N1 − χ− 1). Note that

ρ− (N1 − χ− 1) = N2 + χ.

Therefore, from previous discussions, we also know that

(1) when N2 + χ = −1, we have Ωρ(ξ) ≡ 0;

(2) when N2+χ < −1, besides Ωρ(ξ) ≡ 0, the following conditions of Noether solvability must be satisfied:∫
Γ

Π1(τ)M(τ)

X+(τ)
τk−1dτ = 0, k = 0, 1, · · · , N1 − χ− ρ;∫

Γ

Π1(τ)M(τ)

X+(τ)

dτ

(τ − bj)p
= 0, j = 1, 2, · · · , s; p = 0, 1, 2, · · · , αj ;∫

Γ

Π1(τ)M(τ)

X+(τ)

dτ

(τ − cr)q
= 0, r = 1, 2, · · · , l; p = 0, 1, 2, · · · , βr.

(4.26)

Since we require that f (j)(t) ∈ {0}, therefore (F±(x))(j) ∈ {{0}} (j = 0, 1, 2, · · · , n). Here we will use the

following method to solve the undetermined constants f(0), f ′(0), · · · , f (n−1)(0). Suppose that F+(x) may be

expanded the Laurent series in the hollow neighborhood of x = ∞, we only take former finite number terms,
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namely,

F+(x) =
υ1
x

+O(
1

| x |
);

F+(x) =
υ1
x

+
υ2
x2

+O(
1

| x |2
);

· · · · · ·

F+(x) =
υ1
x

+ · · ·+ υn
xn

+O(
1

| x |n
).

(4.27)

Owing to

υj =
f (j−1)(0)√

2πi
, j = 1, 2, · · · , n, (4.28)

therefore, we may obtain f(0), f ′(0), · · · , f (n−1)(0) by solving Eqs. (4.27).

Moreover, we can also apply the following method, because

lim
x→+∞

{(−ix)jF+(x)− 1√
2π

j−1∑
m=0

(−ix)mf (j−m−1)(0)} = 0, (4.29)

the undetermined constants f(0), f ′(0), · · · , f (n−1)(0) can also be determined by solving Eqs. (4.29).

Through the above method of solution, we have the following theorem.

Theorem 4.2 (Theory of Noether solvability). Under the conditions αp,j ±βp,j ̸= 0 (j = 0, 1, · · · , n; p =

1, 2), the necessary conditions of the existence of solution for Eq.(3.1) are (4.9) and (4.11). Assume that the

above conditions hold.

(1) When τ = 0 is an ordinary node, if χ − N1 ≥ 0, Eq.(3.1) is solvable, and contains χ − N1 linearly

independent solutions; if χ − N1 = −1, (3.1) has only solution; if χ − N1 < −1, we require also that (4.15)

satisfies, and if N2 + χ < −1, one require also that (4.26) holds, then (3.1) has just only solution, its solution

is given by (4.21), and when χ−N1 ≤ −1, Ωρ(ξ) ≡ 0.

(2) When τ = 0 is a special node, the above corresponding conditions and (4.23) should be fulfilled. Then

the solution of Eq.(3.1) is also given by (4.12), where F (x) is determined by (4.13). And F±(x) (or Ψ(ξ)) are

given by (4.22).

Therefore, the uncertain constants f (j)(0)(j = 0, 1, 2, · · · , n− 1) are determined by (4.27)-(4.29). □

5 Conclusions

In this article, we consider Noether solvability and analytical solutions for a class of convolution integral

equations with singular integral-differential operators of Cauchy type. From the previous work, we know that

other class of singular integral-different equation of convolution type can be also solved by the method of this

paper, such as Wiener- Hopf type equations, dual type and so on. It is of great significance for improving and

developing integral equations and boundary value theory, Clifford analysis theory, complex analysis and other

disciplines. For other convolution integral equations with singular integral-differential operators, our method

is very appropriate, which is very helpful for solving other equations and applications.

Moreover, we can also study the stability of solution as well as solvability for Eq.(1.1) in Clifford analysis

(see [35-41]). About the following some partial differential equations: the modified short pulse equation, the

Hirota equation, and the nonlinear Schrödinger equation, it is well known that these equations play important

parts in actual applications. Therefore, solving PDEs by integral equation method has important meaning

not only in application but also in the theory of resolving the equation itself. Especially, our result also

provides theoretical support to quantum field theory and Ising model [42-46]. Currently, there appear the

so-called hype singular integral-differential equations with the order of a singular point higher than the special

dimension in the fields of airmechanics, electron optics, fracture mechanics and others, and its solvability can
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also be solved by the method proposed in this paper (see [47-53]).
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[25]P. Wöjcik, M. A. Sheshko, S. M. Sheshko, Application of Faber polynomials to the approximate

solution of singular integral equations with the Cauchy kernel, Differential Equations, 49(2)(2013),

198-209.

[26]M. C. De-Bonis, C. Laurita, Numerical solution of systems of Cauchy singular integral equations

with constant coefficients, Appl. Math. Comput., 219 (2012), 1391-1410.

[27]N. M. Tuan, N. T. Thu-Huyen, The solvability and explicit solutions of two integral equations via

generalized convolutions, J. Math. Anal. Appl., 369(2010), 712-718.

[28]P. R. Li, Generalized convolution-type singular integral equations, Appl. Math. Comput., 311 (2017),

314-323.

[29]W. W. Zhang, Y. X. Lei, P. R. Li, The solvability of some kinds of singular integral equations of

convolution type with variable integral limits, J. Appl. Anal. Comput., 14(4)(2024), 2207–2227.

[30]J. K. Lu, Boundary Value Problems for Analytic Functions, Singapore, World Sci., 2004.

[31]P. R. Li, One class of generalized boundary value problem for analytic functions, Bound. Value

Probl., 2015 (2015): 40.

[32]Y. X. Lei, W. W. Zhang, H. Q. Wang, P. R. Li, Noetherian solvability for convolution singular

integral equations with finite translations in the case of normal type, J. Appl. Anal. Comput., 2025,

15(1), 587–604.

[33]M. Sun, P. R. Li, S. W. Bai, A new efficient method for two classes of convolution singular integral

equations of non-normal type with Cauchy kernels, J. Appl. Anal. Comput., 12 (4) (2022), 1250-1273.

[34]S. W. Bai, P. R. Li, M. Sun, Closed-form solutions for several classes of singular integral equations

with convolution and Cauchy operator, Complex Var. Elliptic Equ., 68(11)(2023), 1916–1939.

[35]P. R. Li, Linear BVPs and SIEs for generalized regular functions in Clifford analysis, J. Funct.

Spaces, 2018 (2018), Article ID 6967149, 10 pages.

[36]J. Colliander, M. Keel, G. Staffilani, etc, Transfer of energy to high frequencies in the cubic defocusing

nonlinear Schrodinger equation, Invent. Math., 181(1)(2010), 39-113.

[37]G. B. Ren, U. Kaehler, J. H. Shi, C. W. Liu, Hardy-Littlewood inequalities for fractional derivatives

of invariant harmonic functions, Complex Anal. Oper. Theory., 6(2)(2012), 373-396.

[38]R. Katani, S. McKee, Numerical solution of two-dimensional weakly singular Volterra integral

equations with non-smooth solutions, J. Comput. Appl. Math., 2022, 402, 113779.

[39]R. Abreu-Blaya, J. Bory-Reyes, F. Brackx, H. De-Schepper, F. Sommen, Cauchy integral formulae

in Hermitian Quaternionic Clifford Analysis, Complex Anal. Oper. Theory, 6 (2012), 971-985.

[40]Z. Blocki, Suita conjecture and Ohsawa-Takegoshi extension theorem, Invent. Math., 193 (2013),

149-158.

[41]Y. F. Gong, L. T. Leong, T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl.,

354(2009), 435-444.

15



[42]C. Hongler, S. Smirnov, The energy density in the planar Ising model, Acta Math., 211(2) (2013),

191-225.

[43]I. Zamanpour, R. Ezzati, Operational matrix method for solving fractional weakly singular 2D

partial Volterra integral equations, J. Comput. Appl. Math., 2023, 419, 114704.

[44]T. Wang, S. Liu and Z. Zhang, Singular expansions and collocation methods for generalized Abel

integral equations, J. Comput. Appl. Math., 2023, 429, 115240.

[45]D. Kinzebulatov, K. R. Madou, Stochastic equations with time-dependent singular drift, J. Diff.

Eqs., 2022, 337, 255–293.

[46]T. Tuan, V. K. Tuan, Young inequalities for a Fourier cosine and sine polyconvolution and a

generalized convolution, Integr. Transf. Spec. F., 2023, 34(9), 690–702.

[47]W. X. Ma, Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton

solutions, Journal of Geometry and Physics, 177 (2022), 104522.

[48]W. X. Ma, Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems,

Partial Differential Equations in Applied Mathematics, 4 (2021), 100190.

[49]B. Guo, N. Liu, Y. Wang, Long-time asymptotics for the Hirota equation on the half-line, Nonlinear

Anal., 174(2018), 118-140.

[50]L. K. Arruda, J. Lenells, Long-time asymptotics for the derivative nonlinear Schrödinger equation

on the half-line, Nonlinearity, 30 (2017), 4141-4172.
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