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Abstract In this paper, we redefine the concept of a graphical convex metric
space involving sets with a graphical structure, and a new class of non-self
mappings, called weak proximal enriched G−contractions, is introduced in the
aforementioned space. Moreover, we demonstrate the existence of best ap-
proximation points for two types of weak proximal enriched G−contractions
in graphical convex metric spaces, under suitable control conditions. Addi-
tionally, we provide examples to confirm our main results.
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1. Introduction

Let X be a nonempty set and T : X → X be a mapping, an element u ∈ X is called
a fixed point of T if u = Tu. Fixed point theory play a crucial role in nonlinear
functional analysis. In 1922, Banach developed the Banach contraction principle [1],
which was a fundamental consequence of fixed point theory on metric spaces. The
Banach contraction principle states that any self-mapping T of a complete metric
space (X, d) satisfies the condition

d(Tu, Tv) ≤ kd(u, v), 0 ≤ k < 1

for all u, v ∈ X, then T has a unique fixed point in X. After that many authors
have generalized, improved and extended this celebrated result by changing either
the conditions of the mappings or the construction of the space [2–11].

The weak contraction principle, initially formulated by Alber and Guerr [12], in
Hilbert spaces, serves as a generalization of Banach’s contraction principle. Rhoades
[13] later extended this principle to metric spaces. A selfmap T of X is weakly
contractive if, for every u, v ∈ X,

d(Tu, Tv) ≤ d(u, v)− η(d(u, v))
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where η : [0,∞)→ [0,∞) is continuous and nondecreasing such that η(t) = 0 if and
only if t = 0. Rencently, Berinde and Păcurar [14] introduced a new class of enriched
contractions, which includes the Banach contractions. A mapping T : X → X is
called an enriched contraction mapping or a (a, b)−enriched enriched contraction
mapping if there exist a ∈ [0,∞) and b ∈ [0, a+ 1) such that

‖a(u− v) + Tu− Tv‖ ≤ b ‖u− v‖ .

In [14], they obtained the following theorem.

Theorem 1.1. [14] Let (X, ‖ ·‖ be a Banach space and T : X → X be an enriched
contraction mapping. Then

(1) F (T ) = {u}, for some u ∈ X ;

(2) there exists α ∈ [0, 1) such that the sequence {un}∞n=0 defined by

un+1 = αun + (1− α)Tun

converges to u.

(3) the following estimate:

‖un+i−1 − p‖ ≤
µi

1− µ
‖un − un−1‖

for any n ∈ N, where µ = k
1−k .

In 1970, Takahashi [15] introduced the concepts of the convex structure and the
convex metric space.

Definition 1.1. [15] Let (X, d) be a metric space. A mapping W : X×X×[0, 1]→
X is said to be a convex structure on X if for any z ∈ X and (u, v;λ) ∈ X×X×[0, 1],

d(z,W (u, v;λ)) ≤ λd(z, u) + (1− λ)d(z, v), (1.1)

then the space (X, d,W ) is called a convex metric space.

A nonempty subset H of a convex metric space (X, d,W ) is said to be convex if
W (u, v;λ) ∈ H for all u, v ∈ H and λ ∈ [0, 1]. It is clear that every linear normed
space, along with each of its convex subsets, can be considered as a convex metric
space, utilizing the natural convex structure,

W (u, v;λ)) = λu+ (1− λ)v,

but the reverse is not valid [16–18].
Berinde and Păcurar [18] gave the concept of enriched contractions on a convex

metric space as below.

Definition 1.2. [18] Let (X, d,W ) be a convex metric space. A mapping T : X →
X is said to be an enriched contraction if there exists k ∈ [0, 1) such that

d(W (u, Tu;λ),W (v, Tv;λ)) ≤ kd(u, v)

for all u, v ∈ X.
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Lemma 1.1. [18] Let (X, d,W ) be a convex metric space and T : X → X be a
mapping. Define the mapping Tλ : X → X by

Tλu = W (u, Tu;λ), u ∈ X,

then for any λ ∈ [0, 1), we have F (T ) = F (Tλ).

In 2006, Espinola and Kirk [19] presented valuable findings that integrated fixed
point theory with graph theory. Let X be a nonempty set. The graph G on X
is an ordered pair (V (G), E(G)), where the vertex set V (G) of G is X and the
edge E(G) of X is a subset of the Cartesian product X × X. Each edge in the
graph G can be assigned a weight equivalent to the distance between its vertices,
thereby transforming it into a weighted graph. Later on, Jachymski [20] replaced
the partial order with a directed graph. He introduced the following mapping: a
self-mapping T of a complete metric space (X, d) is called a G−contraction if there
exists k ∈ (0, 1) such that for all u, v ∈ X with (u, v) ∈ E(G) ,the following two
conditions hold:

(1) (Tu, Tv) ∈ E(G);

(2) d(Tu, Tv) ≤ kd(u, v).

The graph G is called reflexive, if set E(G) contains all loops, that is , (u, u) ∈ E(G))
for all u ∈ X. Furthermore, a graph G is called transitive whenever (u, v) ∈ E(G)
and (v, z) ∈ E(G) implies (u, z) ∈ E(G).

On the other hand, as a non-self mapping T may not have a fixed point, there
is often an attempt to find an element u that is in some sense closest to Tu. In
this context, best approximation theorems and best proximity point theorems are
relevant. Let A,B are two nonempty subsets of a metic space (X, d) and T : A→ B
be a non-self mapping. A point q ∈ A is called a best proximity point of T if
d(q, T q) = d(A,B), where

d(A,B) = inf {d(u, v) : u ∈ A, v ∈ B} .

Best proximity point theorems are interestingly a natural generalization of fixed
point theorems, as a best proximity point becomes a fixed point if the mapping
under consideration is a self-map. In what follows, we set

A0 = {u ∈ A : d(u, v) = d(A,B) for some v ∈ B} ,

B0 = {v ∈ B : d(u, v) = d(A,B) for some u ∈ A} .

Motivated by the recent results, we first present the concept of a graphical con-
vex metric space, which generalizes the notion of convex metric spaces in the sense
of Takahashi [15] and improves upon the concept of graphical convex metric spaces
in the sense of Chen [21]. Furthermore, we introduce the concept of weak enriched
G−contraction in this new space, which serves as a generalization of both weak en-
riched contraction and G−contraction. To explore the best approximation point for
enriched-type non-self mappings, we define weak proximal enriched G−contractions
of type (I) and type (II). We establish the best approximation point theorem for
the mapping T and the average mapping Tλ, considering scenarios of both conti-
nuity and discontinuity for T . Furthermore, we present examples to illustrate our
theoretical results.
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2. Main results

Throughout this paper, we assume that G is a directed, reflexive, and transitive
graph with V (G) = X. We denote Tλu = W (u, Tu;λ) for λ ∈ [0, 1).

Firstly, we define the concept of a graphical convex metric space, which gen-
eralizes the classical notion of convex metric spaces and improves the concept of
graphical convex metric spaces presented in reference [21,22].

Definition 2.1. Let (X, d) be a metric space endowed with a graph G. If a mapping
W : V (G)× V (G)× [0, 1]→ V (G) satisfies

d(z,W (u, v;λ)) ≤ λd(z, u) + (1− λ)d(z, v), (2.1)

for all z, u, v ∈ V (G) with (u, v) ∈ E(G) and λ ∈ [0, 1). Then (X, d,W,G) is said
to be a graphical convex metric space.

Remark 2.1. Every convex metric space (X, d,W ) is a graphical convex metric
space and every graphical convex metric space (G, d,W ) in the sense of Chen [21]
is a graphical convex metric space, where V (G) = X and E(G) = X×X. However,
the reverse may not necessarily be true. See the example below.

Example 2.1. Let X = [1, 2] ∪ {3} and d(u, v) = |u− v| for all x, y ∈ X. It is not
difficult to see that there is no convex structure W : X×X×[0, 1]→ X that satisfies
(1.1). Let E(G) = {(u, v) : u, v ∈ [1, 2]} and define W : V (G)×V (G)×[0, 1]→ V (G)
by

W (u, v;λ) = λu+ (1− λ)v,

for all u, v ∈ V (G) with (u, v) ∈ E(G) and λ ∈ [0, 1]. Clearly, (X, d,W,G) is a
graphical convex metric space, and it is not a graphical convex metric space in the
sense of Chen [21].

Proposition 2.1. Let (X, d,W,G) be a graphical convex metric space. For all
u, v ∈ V (G) with (u, v) ∈ E(G) and λ ∈ [0, 1], we have

d(u, v) = d(u,W (u, v;λ)) + d(W (u, v;λ), v). (2.2)

Proof. Using the triangle inequality and (2.1), we get

d(u, v) ≤ d(u,W (u, v;λ)) + d(W (u, v;λ), v)

≤ (1− λ)d(u, v) + λd(u, v)

= d(u, v).

Thus, (2.2) holds.

Proposition 2.2. Let (X, d,W,G) be a graphical convex metric space. For all
u, v ∈ V (G) with (u, v) ∈ E(G) and λ ∈ [0, 1], we have

d(u,W (u, v;λ)) = (1− λ)d(u, v), d(W (u, v;λ), v) = λd(u, v). (2.3)

Proof. By (2.1) and (2.2), we get

d(u, v) = d(u,W (u, v;λ)) + d(W (u, v;λ), v)

≤ (1− λ)d(u, v) + λd(u, v)
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= d(u, v).

Thus, (2.3) holds.
The following proposition is obviously valid.

Proposition 2.3. Let (X, d,W,G) be a graphical convex metric space. For all
u, v ∈ V (G) with (u, v) ∈ E(G) and λ ∈ [0, 1], we have

W (u, u;λ) = u, W (u, v; 1) = u, W (u, v; 0) = v.

Let u0 ∈ V (G) be the initial value of a sequence {un}, and let T : V (G) →
V (G) be a mapping. We say that {un} is a T−Krasnoselskij sequence if un+1 =
W (un, Tun;λ), where λ ∈ [0, 1).

Definition 2.2. Let (X, d,W,G) be a graphical convex metric space. The set
E(G) is said to be convex if for any u1, v1, u2, v2 ∈ V (G) with (u1, v1) ∈ E(G) and
(u2, v2) ∈ E(G), and for all λ ∈ [0, 1], we have (W (u1, u2;λ),W (v1, v2;λ)) ∈ E(G).

Example 2.2. Let X = R. Define d(u, v) = |u− v| and W (u, v;λ) = λu+ (1−λ)v
for all u, v ∈ X and λ ∈ [0, 1]. Consider the graph E(G) = {(u, v) ∈ X ×X : u ≤ v}.
It is clear that if u1 ≤ v1 and u2 ≤ v2, then W (u1, u2;λ) ≤ W (v1, v2;λ) for any
λ ∈ [0, 1]. Hence, E(G) is convex in X ×X.

More examples of E(G) being convex can be found in references [23, 24]. Next,
we will establish some properties of the T−Krasnoselskij iteration processes through
convexity.

Proposition 2.4. Let (X, d,W,G) be a graphical convex metric space. Choose u0 ∈
V (G) such that (u0, Tu0) ∈ E(G) and let the sequence {un} be a T−Krasnoselskij
sequence. Suppose that

(1) the mapping T : V (G) → V (G) is edge-preserving, that is, (Tu, Tv) ∈ E(G)
for all (u, v) ∈ E(G);

(2) E(G) is convex.

Then (un, Tun) ∈ E(G) and (un, un+p) ∈ E(G) for any n, p ∈ N.

Proof. By the convexity of E(G) and (u0, u0) ∈ E(G), (u0, Tu0) ∈ E(G), we get
(u0,W (u0, Tu0;λ)) ∈ E(G), that is, (u0, u1) ∈ E(G). Since T is edge-preserving,
we get (Tu0, Tu1) ∈ E(G). By the transitive property of G, we get (u0, Tu1) ∈
E(G). Combining this with (Tu0, Tu1) ∈ E(G) and the convexity of E(G), we get
(u1, Tu1) ∈ E(G). Using a similar argument, we can conclude that (un, un+1) ∈
E(G) and (un, Tun) ∈ E(G). By the transitive property ofG, we also get (un, un+p) ∈
E(G), for all p ∈ N (for more details see Figure 1).

•••

•••

•••

•••
0u

1u 2u
nu 1nu +

0Tu 1Tu 2Tu
nTu 1nTu +

Figure 1. The T−Krasnoselskij sequence associated with Proposition 2.4
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Remark 2.2. If T is edge-preserving and E(G) is convex, then Tλ is also edge-
preserving.

The following definition is that of weak enriched contraction, which generalizes
enriched contraction and weak contraction.

Definition 2.3. Let (X, d,W ) be a convex metric space. A mapping T : X → X
is said to be a weak enriched contraction if there exists λ ∈ [0, 1) such that for all
u, v ∈ X, the following inequality holds:

d(Tλu, Tλv) ≤ d(u, v)− η(d(u, v)),

where η : [0,∞)→ [0,∞) is continuous and nondecreasing function satisfying η(t) =
0 if and only if t = 0.

We also present the definitions of weak enriched G−contraction, which generalize
weak enriched contraction and G−contraction, as follows:

Definition 2.4. Let (X, d,W,G) be a graphical convex metric space. A mapping T
is said to be a weak enriched G−contraction if the following conditions are satisfied:

(1) Tλ is edge-preserving, meaning that if (u, v) ∈ E(G), then (Tλu, Tλv) ∈ E(G)
for all u, v ∈ V (G);

(2) there exists λ ∈ [0, 1) such that for all u, v ∈ V (G) with (u, v) ∈ E(G) , the
following inequality holds:

d(Tλu, Tλv) ≤ d(u, v)− η(d(u, v)),

where η : [0,∞)→ [0,∞) is continuous and nondecreasing function satisfying η(t) =
0 if and only if t = 0.

Example 2.3. Any weak enriched contraction mapping is a weak enriched G0−
contraction, where the graph G0 is defined by V (G0) = X and E(G0) = X ×X.

Weak enriched G−contraction is not necessarily a weak enriched contraction.

Example 2.4. Let X = [0, 2] equipped with the usual metric d. Assessing the
graph G with V (G) = X and E(G) = {(u, u) : 0 ≤ u ≤ 2} ∪

{
( 1
2 , u) : 0 ≤ u ≤ 1

}
∪{

( 3
2 , u) : 1 < u < 2

}
. Define W (u, v;λ) = λu + (1 − λ)v for all u, v ∈ V (G) with

(u, v) ∈ E(G) and λ ∈ [0, 1). It is clear that (X, d,W,G) is a graphical convex
metric space. Define the mapping T : X → X by

Tu =

1− u 0 ≤ u ≤ 1

3− u 1 < u ≤ 2,

take λ = 1
2 , then

T 1
2
u =


1
2 0 ≤ u ≤ 1

3
2 1 < u ≤ 2.

It is clear that if (u, v) ∈ E(G), then (Tu, Tv) ∈ E(G) (and also (T 1
2
u, T 1

2
v) ∈

E(G)). Note that d(T 1
2
u, T 1

2
v) = 0 for all u, v ∈ V (G) with (u, v) ∈ E(G),

thus d(T 1
2
u, T 1

2
v) ≤ kd(u, v) for any k ∈ [0, 1), that is, T is a weak enriched
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G−contraction with η(t) = kt for any t ≥ 0. However, T is not weak enriched
contraction, as let u = 2

3 , v = 4
3 , we have

d(W (
2

3
, T

2

3
;λ),W (

4

3
, T

4

3
;λ)) =

2

3
|2− λ| > 2

3
= d(

2

3
,

4

3
).

Clearly, we have the following relations.

Banach contraction⇒ enriched contraction⇒ weak enriched contraction

⇒ weak enriched G− contraction

Motivated by the ideas of Basha [25,26], we introduce the concept of a G−proximal
mapping in a graphical convex metric space as follows.

Definition 2.5. Let (X, d,W,G) be a graphical convex metric space and A and B
are two non-empty sets of V (G). A mapping T : A→ B is said to be G−proximal
if T satisfies

(v1, v2) ∈ E(G)

d(u1, T v1) = d(A,B)

d(u2, T v2) = d(A,B)

⇒ (u1, u2) ∈ E(G)

for all u1, u2, v1, v2 ∈ A.

Now, we will provide the definitions of weak proximal enriched G−contraction
of type (I) and type (II).

Definition 2.6. Let (X, d,W,G) be a graphical convex metric space, and let A and
B be two nonempty subsets of V (X). A mapping T : A → B is said to be a weak
proximal enriched G−contraction of type (I) if , there exists λ ∈ [0, 1) such that

(v1, v2) ∈ E(G)

d(u1, T v1) = d(A,B)

d(u2, T v2) = d(A,B)

⇒ d(W (v1, u1;λ),W (v2, u2;λ)) ≤ d(v1, v2, )−η(d(v1, v2, )),

for all u1, u2, v1, v2 ∈ A, where η : [0,∞)→ [0,∞) is continuous and nondecreasing
satisfying η(t) = 0 if and only if t = 0.

Definition 2.7. Let (X, d,W,G) be a graphical convex metric space, and let A and
B be two nonempty subsets of V (X). A mapping T : A → B is said to be a weak
proximal enriched G−contraction of type (II) if , there exists λ ∈ [0, 1) such that

(v1, v2) ∈ E(G)

d(u1,W (v1, T v1;λ)) = d(A,B)

d(u2,W (v2, T v2;λ)) = d(A,B)

⇒ d(u1, u2) ≤ d(v1, v2, )− η(d(v1, v2, )),

for all u1, u2, v1, v2 ∈ A, where η : [0,∞)→ [0,∞) is continuous and nondecreasing
satisfying η(t) = 0 if and only if t = 0.
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Remark 2.3. (1) In Definition 2.6, if T is G−proximal and E(G) is convex, we
obtain the definition of weak enriched G−contraction when A = B.

(2) In Definition 2.7, if Tλ is G−proximal, then we obtain the definition of weak
enriched G−contraction when A = B.

Now, we present our first main result.

Theorem 2.1. Let (X, d,W,G) be a complete graphical convex metric space and
E(G) is convex. Let A and B be two nonempty closed subsets of V (X) such that
A0 is convex. Assume that T : A → B is a continuous weak proximal enriched
G−contraction of type (I), if it satisfies the following conditions:

(1) T is G−proximal with T (A0) ⊆ B0;

(2) there exist elements u0, z0 ∈ A0 such that (u0, z0) ∈ E(G) and d(z0, Tu0) =
d(A,B).

Then T has a best proximity point in A. Furthermore, if for any two best proximity
points u∗, u∗∗ ∈ A, we have (u∗, u∗∗) ∈ E(G), then T has a unique best proximity
point in A.

Proof. Let u0 and z0 in A0 be such that (u0, z0) ∈ E(G) and d(z0, Tu0) = d(A,B).
Let u1 = W (u0, z0;λ), since A0 is convex, then u1 ∈ A0. From the fact that
T (A0) ⊆ B0, there exists z1 ∈ A0 such that d(z1, Tu1) = d(A,B). From (u0, u0) ∈
E(G), (u0, z0) ∈ E(G) and the convexity of E(G), we have (u0, u1) ∈ E(G). Since
T is G−proximal, we get (z0, z1) ∈ E(G). By using the transitive property of G,
we have (u0, z1) ∈ E(G), by combining this with (z0, z1) ∈ E(G) and the convexity
of E(G), we obtain that (u1, z1) ∈ E(G). Using a similar argument, we can obtain
two sequences {un} and {zn} in A0 such that d(zn, Tun) = d(A,B) with (un, zn) ∈
E(G), (un, un+1) ∈ E(G) and un+1 = W (un, zn;λ) for any n ∈ N. Moreover, by
using the transitive property of G, we can deduce that (un, un+p) ∈ E(G) for any
p ∈ N (for more details see Figure 2). If there exists n0 ∈ N such that un0

= un0+1,
we have

d(un0 , zn0) = d(un0+1, zn0) ≤ (1− λ)d(un0 , zn0)

which implies d(un0
, zn0

) = 0, it follows that

d(A,B) ≤ d(un0
, Tun0

) ≤ d(un0
, zn0

) + d(zn0
, Tun0

) = d(A,B),

thus d(un0
, Tun0

) = d(A,B), that is, un0
is a best proximity point of T . Hence,

we suppose that d(un, un+1) > 0 for all n ∈ N. Since T is weak proximal enriched
G−contraction of type (I), we have

d(W (un−1, zn−1;λ),W (un, zn;λ)) ≤ d(un−1, un)− η(d(un−1, un)),

it follows that d(un, un+1) ≤ d(un−1, un)− η(d(un−1, un)) < d(un−1, un), this gives
that {d(un, un+1)} is a decreasing sequence of nonnegative real numbers. Assume
that lim

n→∞
d(un, un+1) = t ≥ 0. If t > 0, then η(t) > 0. For any n ∈ N, we have

t = lim
n→∞

d(un, un+1) ≤ lim
n→∞

d(un−1, un)− η( lim
n→∞

d(un−1, un)) = t− η(t),

a contradiction. Hence, lim
n→∞

d(un, un+1) = 0. Now, we show that {un} is a Cauchy

sequence. On the contrary, suppose that {un} is not a Cauchy sequence. Then
there exist ε > 0 and two sequences {mk} , {nk} of positive integers such that

nk > mk > k, d(umk
, unk

) ≥ ε and d(umk
, unk−1) < ε.
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We have

ε ≤ d(umk
, unk

) ≤ d(umk
, unk−1) + d(unk−1, unk

),

let k →∞, we deduce that lim
k→∞

d(umk
, unk

) = ε. Further, from

d(umk
, unk

) ≤ d(umk
, umk+1) + d(umk+1, unk+1) + d(unk+1, unk

)

and

d(umk+1, unk+1) ≤ d(umk+1, umk
) + d(umk

, unk
) + d(unk

, unk+1),

we get lim
k→∞

d(umk+1, unk+1) = ε. Since T is weak proximal enriched G−contraction

of type (I) with (umk
, unk

) ∈ E(G), it follows that

d(umk+1, unk+1) ≤ d(umk
, unk

)− η(d(umk
, unk

)),

by letting k → ∞, we get ε ≤ ε − η(ε) which yields η(ε) = 0, a contradiction.
Therefore, the sequence {un} is Cauchy sequence in A. Since A is a closed subset
of V (X), there exists a u∗ ∈ A such that un → u∗. Further, using the triangle
inequality, we get

d(zn, un) ≤ d(zn, un+1) + d(un+1, un) ≤ λd(zn, un) + d(un+1, un),

which implies lim
n→∞

d(zn, un) = 0, thus zn → u∗. Since T is continuous, we have

Tun → Tu. By the continuity of the metric function d, we have d(un, Tun) →
d(u∗, Tu∗). Then

d(A,B) ≤ d(un, Tun) ≤ d(un, zn) + d(zn, Tun) = d(un, zn) + d(A,B),

Let n → ∞, we obtain that d(u∗, Tu∗) = d(A,B), that is u∗ is a best proximity
point of T . Let us suppose that T has another best proximity point u∗∗ in A with
(u∗, u∗∗) ∈ E(G), that is, d(u∗∗, Tu∗∗) = d(A,B). Since T is a weak proximal
enriched G−contraction of type (I), we have

d(u∗, u∗∗) = d(W (u∗, u∗;λ),W (u∗∗, u∗∗;λ)) ≤ d(u∗, u∗∗)− η(d(u∗, u∗∗)),

which implies u∗ = u∗∗. This complete the proof.

•••

•••

•••

•••

0u

0z 2z1z nz 1nz +

1u 2u
nu 1nu +

Figure 2. The graph of {un} and {zn} in Theorem 2.1

In order to remove the continuity assumption, we need the following condition.

Definition 2.8. [20] For any sequence {un} in X, if un → u and (un, un+1) ∈ E(G)
for all n ∈ N, then there is a subsequence {unk

} of {un}, such that (unk
, u) ∈ E(G)

for all k ∈ N. We say graph G satisfy the property (P ).
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Remark 2.4. If un → u and (un, un+1) ∈ E(G). Suppose that G has the property
(P ), by the transitive property of G, we have (un, u) ∈ E(G) for all n ∈ N.

Definition 2.9. [25, 26] Let (X, d) be a metric space, and let A and B be two
nonempty subsets of X. A is said to be approximatively compact with respect to B
if any sequence {un} in A satisfying the condition that d(un, v)→ d(A, v) for some
v ∈ B has a convergent subsequence.

Theorem 2.2. Let (X, d,W,G) be a complete graphical convex metric space. Sup-
pose that G has the property (P ) and E(G) is convex. Let A and B be two nonempty
closed subsets of V (X) such that A0 is convex and B is approximatively compact with
respect to A. Assume that T : A → B is a weak proximal enriched G−contraction
of type (I), if it satisfies the following conditions:

(1) T is G−proximal with T (A0) ⊆ B0;

(2) there exist elements u0, z0 ∈ A0 such that (u0, z0) ∈ E(G) and d(z0, Tu0) =
d(A,B).

Then T has a best proximity point in A. Furthermore, if for any two best proximity
points u∗, u∗∗ ∈ A, we have (u∗, u∗∗) ∈ E(G), then T has a unique best proximity
point in A.

Proof. Proceeding as in the proof of Theorem 2.1, it is guaranteed that there are
two sequences {un} and {zn} in A0 such that d(zn, Tun) = d(A,B) with (un, zn) ∈
E(G), (un, un+1) ∈ E(G) and un+1 = W (un, zn;λ) for any n ∈ N. By using similar
arguments as in the proof of Theorem 2.1, we can conclude that {un} is Cauchy
sequence in A and lim

n→∞
d(zn, un) = 0. Due to the fact that A is a closed subset of

V (X), there exists an element u∗ ∈ A such that un → u∗. By property (P ), we
conclude that (un, u

∗) ∈ E(G) for all n ∈ N. Further, using the triangle inequality,
we get

d(zn, u
∗) ≤ d(zn, un) + d(un, u

∗),

which implies zn → u∗. Besides, we have

d(u∗, B) ≤ d(u∗, Tun)

≤ d(u∗, zn) + d(zn, Tun)

= d(u∗, zn) + d(A,B)

≤ d(u∗, zn) + d(u∗, B),

let n → ∞, we have lim
n→∞

d(u∗, Tun) = d(u∗, B). Since B is approximatively com-

pact with respect to A, it follows that the sequence {Tun} has a subsequence {Tunk
}

converging v in B. Then we obtain

d(u∗, v) = lim
n→∞

d(un, Tun) = d(A,B),

which implies that u∗ ∈ A0. Again, since T (A0) ⊆ B0, there exists an elemen-
t z ∈ A0 such that d(z, Tu∗) = d(A,B), since T is a weak proximal enriched
G−contraction of type (I), it follows that

d(W (un, zn;λ),W (u∗, z;λ)) ≤ d(un, u
∗)− η (d(un, u

∗)) .
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We obtain

d(u∗,W (u∗, z;λ)) ≤ d(u∗, un+1) + d(un+1,W (u∗, z;λ))

= d(u∗, un+1) + d(W (un, zn;λ),W (u∗, z;λ))

≤ d(u∗, un+1) + d(un, x
∗)− η (d(un, u

∗)) ,

let n → ∞, we have d(u∗,W (u∗, z;λ)) = 0, which implies that u∗ = z. There-
fore d(u∗, Tu∗) = d(A,B) and u∗ is a best proximity point of T . Let us suppose
that T has another best proximity point u∗∗ in A with (u∗, u∗∗) ∈ E(G), that is,
d(u∗∗, Tu∗∗) = d(A,B). Since T is a weak proximal enriched G−contraction of type
(I), we have

d(u∗, u∗∗) = d(W (u∗, u∗;λ),W (u∗∗, u∗∗;λ)) ≤ d(u∗∗, u∗)− η(d(u∗, u∗∗)),

which implies u∗ = u∗∗. This complete the proof.
Next, we will give an example to support Theorem 2.2.

Example 2.5. Let X = R2 and define d(u, v) = |u1 − u3| + |u2 − u4| for all u =
(u1, u2), v = (u3, u4) ∈ X. Consider the graph G with V (G) = X and E(G) =
{((u1, u2), (u3, u4)) : u1 ≤ u3, u2 ≤ u4}. DefineW ((u1, u2), (u3, u4);λ) = (λu1+(1−
λ)u3, λu2+(1−λ)u4) for all (u1, u2), (u3, u4) ∈ V (G) with ((u1, u2), (u3, u4)) ∈ E(G)
and λ ∈ (0, 1). Clear, (X, d,W,G) is a complete graphical convex metric space.
It is easy to show that G is reflexive and transitive, and E(G) is convex. Let
A = {(0, u1) : 0 ≤ u1 ≤ 1} and B = {(1, u2) : 0 ≤ u2 ≤ 1}. Then A and B are
nonempty closed subsets of V (G) and A = A0, B = B0, then B is approximatively
compact with respect to A. Let T : A → B defined by T (0, u) = (1, u2 ). Note that
d(A,B) = 1 and T (A0) ⊆ B0. Assume that e1, e2, e3, e4 be elements in A such
that d(e1, T e2) = d(A,B), d(e3, T e4) = d(A,B). Take e2 = (0, r1), e4 = (0, r2) and
r1 ≤ r2. Then e1 = (0, r12 ) and e3 = (0, r22 ). It is easy to show that (e2, e4) ∈ E(G)
and (e1, e3) ∈ E(G). Hence T is G−proximal. Moreover,

d(W (e1, e2;λ),W (e3, e4;λ)) = d((0, λr1 + (1− λ)
r1
2

), (0, λr2 + (1− λ)
r2
2

))

=

∣∣∣∣λ(r1 − r2) + (1− λ)
r1 − r2

2

∣∣∣∣
=
λ+ 1

2
|r1 − r2|

=
λ+ 1

2
(|0− 0|+ |r1 − r2|)

=
λ+ 1

2
d(e2, e4).

Since λ < 1, thus T is a weak proximal enriched G−contraction of type (I). There-
fore, all hypotheses of Theorem 2.2 is satisfied, we obtain that T has a unique best
proximity point (0, 0).

We present the convergence plots of the sequences {un} and {zn} for the initial
value u0 = (0, 1) in Figure 3.

Remark 2.5. Let T defined as in Example 2.5 and the averaged mapping defined
by Tλu = W (u, Tu;λ) for all u ∈ V (G) and λ ∈ (0, 1). It is worth noting that the
best proximity point of T is not a best proximity point of Tλ. Indeed, Tλ(0, 0) =
W ((0, 0), (1, 0);λ) = (0, (1− λ)), then d((0, 0), Tλ(0, 0)) = 1− λ < d(A,B) = 1.
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•••

0 (0,1)u =
1

3
(0, )

4
u =

0

1
(0, )

2
z =

2

9
(0, )

16
u =

2

9
(0, )

32
z =

•••

1

3
(0, )

8
z =

3
0,

4

n

nu
  

=      

1 3
0,

2 4

n

nz
  

=      

1

1

3
0,

4

n

nu

+

+

  
=      

1

1

1 3
0,

2 4

n

nz

+

+

  
=      

Figure 3. Graph associated with Example 2.5

Theorem 2.3. Let (X, d,W,G) be a complete graphical convex metric space and
G has the property (P ). Let A and B be two nonempty closed subsets of V (X)
and B is approximatively compact with respect to A. Assume that T : A → B is
a weak proximal enriched G−contraction of type (II), if it satisfies the following
conditions:

(1) Tλ is G−proximal with Tλ(A0) ⊆ B0;

(2) there exist elements u0, u1 ∈ A0 such that (u0, u1) ∈ E(G) and d(u1, Tλu0) =
d(A,B).

Then Tλ has a best proximity point in A. Furthermore, if for any two best proximity
points u∗, u∗∗ ∈ A, we have (u∗, u∗∗) ∈ E(G), then Tλ has a unique best proximity
point in A.

Proof. Let u0 and u1 in A0 be such that (u0, u1) ∈ E(G) and d(u1, Tλu0) =
d(A,B). In view of the fact that Tλ(A0) ⊆ B0, there exists u2 ∈ A0 such that
d(u2, Tu1) = d(A,B). Since Tλ is G−proximal, we get (u1, u2) ∈ E(G). Continuing
this process, we can obtain a sequence {un} in A0 such that d(un+1, Tλun) = d(A,B)
and (un, un+1) ∈ E(G) for any n ∈ N. By using the transitive property of G, we
can deduce that (un, un+p) ∈ E(G) for any p ∈ N (for more details see Figure 4).
If there exists n0 ∈ N such that un0

= un0+1, we have

d(un0
, Tλun0

) = d(un0+1, Tλun0
) = d(A,B)

which implies un0
is a best proximity point of Tλ. Hence, we suppose that d(un, un+1) >

0 for all n ∈ N. Since T is a weak proximal enriched G−contraction of type (II), it
follows that

d(un, un+1) ≤ d(un−1, un)− η(d(un−1, un)).

By using similar arguments as in the proof of Theorem 2.1, we can conclude that
{un} is Cauchy sequence in A. Due to the fact that A is a closed subset of V (G),
there exists a u∗ ∈ A such that un → u∗. By property (P ), we conclude that
(un, u

∗) ∈ E(G) for all n ∈ N. Besides, we have

d(u∗, B) ≤ d(u∗, Tλun)

≤ d(u∗, un+1) + d(un+1, Tλun)

= d(u∗, un+1) + d(A,B)

≤ d(u∗, un+1) + d(u∗, B).
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Let n → ∞, we have lim
n→∞

d(u∗, Tλun) = d(u∗, B). Since B is approximatively

compact with respect to A, it follows that the sequence {Tλun} has a subsequence
{Tλunk

} converging v in B. So we obtain

d(u∗, v) = lim
n→∞

d(un, Tλun) = d(A,B),

which implies that u∗ ∈ A0. Again, since Tλ(A0) ⊆ B0, there exists an elemen-
t z ∈ A0 such that d(z, Tλu

∗) = d(A,B), since T is a weak proximal enriched
G−contraction of type (II), it follows that

d(un+1, z) ≤ d(un, u
∗)− η (d(un, u

∗)) .

Let n→∞, we have d(u∗, z) = 0 which implies that u∗ = z. Therefore d(u∗, Tλu
∗) =

d(A,B) and u∗ is a best proximity point of Tλ. Let us suppose that Tλ has anoth-
er best proximity point u∗∗ in A with (u∗, u∗∗) ∈ E(G), that is, d(u∗∗, Tλu

∗∗) =
d(A,B). Since Tλ is a weak proximal enriched G−contraction of type (II), we have

d(u∗, u∗∗) ≤ d(u∗, u∗∗)− η(d(u∗, u∗∗)),

which implies u∗ = u∗∗. This complete the proof.

•••
1nu +2u

0u 1u nu
•••

Figure 4. The graph of {un} in Theorem 2.3

Example 2.6. Let X = R2 and define d(u, v) = |u1 − u3| + |u2 − u4| for all u =
(u1, u2), v = (u3, u4) ∈ X. Consider the graph G with V (G) = X and E(G) =
{((u1, u2), (u3, u4)) : u1 ≤ u3, u2 ≤ u4}. DefineW ((u1, u2), (u3, u4);λ) = (λu1+(1−
λ)u3, λu2 + (1 − λ)u4) for any (u1, u2), (u3, u4) ∈ V (G) with ((u1, u2), (u3, u4)) ∈
E(G) and λ ∈ (0, 1). Clear, (X, d,W,G) is a complete graphical convex metric
space. Let A = {(0, u) : 0 ≤ u ≤ 1} , B = {(u, v) : 1 ≤ u ≤ 3, 0 ≤ v ≤ 1}. Then A
and B are nonempty closed subsets of V (G) and A = A0, B = B0, then B is
approximatively compact with respect to A. Define the the mapping T : A→ B by
T (0, u) = T (3, 1− u) for u ∈ [0, 1]. For λ = 2

3 , we have T 2
3
(0, u) = W ((0, u), (3, 1−

u); 2
3 ) = (1, 13u + 1

3 ). Note that d(A,B) = 1 and T 2
3
(A0) ⊆ B0. It is easy to show

that G is reflexive and transitive. Assume that e1, e2, e3, e4 be elements in A such
that d(e1, T 2

3
e2) = d(A,B), d(e3, T 2

3
e4) = d(A,B). Take e2 = (0, r1), e4 = (0, r2)

and r1 ≤ r2. Then e1 = (0, 13r1 + 1
3 ) and e2 = (0, 13r2 + 1

3 ). It is clear hat
(e2, e4) ∈ E(G) and (e1, e2) ∈ E(G). Hence Tλ is G−proximal. Moreover,

d(e1, e3) = d((0,
1

3
r1 +

1

3
), (0,

1

3
r2 +

1

3
))

=
1

3
|r1 − r2|

=
1

3
(|0− 0|+ |r1 − r2|)
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=
1

3
d(e2, e4),

thus T is a weak proximal enriched G−contraction of type (II). Therefore, all
hypotheses of Theorem 2.3 is satisfied, we obtain that T has a unique best proximity
point (0, 12 ).

We present the convergence plot of the sequences {un} for the initial value
u0 = (0, 1) in Figure 5.

•••
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2 3
n n

u + +
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Figure 5. Graph associated with Example 2.6

Taking A = B in Theorem 2.1, we obtain the following fixed point theorem.

Corollary 2.1. Let (X, d,W,G) be a complete graphical convex metric space and
E(G) is convex. Let T : V (X) → V (X) be a continuous mapping that satisfies the
following conditions:

(1) T is edge-preserving;

(2) there exists λ ∈ [0, 1) such that for all u, v ∈ V (G) with (u, v) ∈ E(G) , the
following inequality holds:

d(Tλu, Tλv) ≤ d(u, v)− η(d(u, v)),

where η : [0,∞)→ [0,∞) is continuous and nondecreasing function satisfying η(t) =
0 if and only if t = 0. Then T has a fixed point. Furthermore, if for any two fixed
points u∗, u∗∗ ∈ X, we have (u∗, u∗∗) ∈ E(G), then T has a unique fixed point.

Taking A = B in Theorem 2.2, we obtain the following fixed point theorem.

Corollary 2.2. Let (X, d,W,G) be a complete graphical convex metric space. As-
sume that G has the property (P ) and E(G) is convex. Let T : V (X)→ V (X) be a
mapping that satisfies the following conditions:

(1) T is edge-preserving;

(2) there exists λ ∈ [0, 1) such that for all u, v ∈ V (G) with (u, v) ∈ E(G) , the
following inequality holds:

d(Tλu, Tλv) ≤ d(u, v)− η(d(u, v)),

where η : [0,∞)→ [0,∞) is continuous and nondecreasing function satisfying η(t) =
0 if and only if t = 0. Then T has a fixed point. Furthermore, if for any two fixed
points u∗, u∗∗ ∈ X, we have (u∗, u∗∗) ∈ E(G), then T has a unique fixed point.

Taking A = B in Theorem 2.3, we obtain the following fixed point theorem.

Corollary 2.3. Let (X, d,W,G) be a complete graphical convex metric space and
G has the property (P ). Let T : V (X)→ V (X) be a weak enriched G−contraction,
then T has a fixed point. Furthermore, if for any two fixed points u∗, u∗∗ ∈ X, we
have (u∗, u∗∗) ∈ E(G), then T has a unique fixed point.
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Note that any weak enriched contraction is a weak enriched G0−contraction, we
obtain the following fixed point theorem.

Corollary 2.4. Let (X, d,W ) be a complete convex metric space and T : X → X
be a weak enriched contraction. Then

(1) F (T ) = {u}, for some u ∈ X ;

(2) there exists λ ∈ [0, 1) such that the sequence {un}∞n=0 defined by

un+1 = W (un, Tun;λ)

converges to u.
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[8] R. Anjum, M. Abbas, and H. I şık. Completeness problem via fixed point theory,
Complex Anal. Oper. Th., 2023, 17(6),85.

[9] M. Younis, D. Singh and A. A. N. Abdou, A fixed point approach for tuning cir-
cuit problem in dislocated b-metric spaces, Math. Meth. Appl. Sci., 2022,45(4),
2234–2253.

[10] M. Younis, D. Singh, L. L. Chen and M. Metwali, A study on the solutions of
notable engineering models, Math. Model. Anal., 2022, 27(3), 492–509.

[11] M. Younis, D. Singh and A. Goyal, A novel approach of graphical rectangular
b-metric spaces with an application to the vibrations of a vertical heavy hanging
cable, J. Fixed Point Theory Appl., 2019, 21, 1–33.

[12] Ya.I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in
Hilbert spaces, in: New Results in Operator Theory and its Applications,
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