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Abstract In this paper, we introduce the generalized one-sided weighted
Morrey spaces, which extend Nakai’s generalized Morrey spaces to a wider
function class, the one-sided Muckenhoupt weighted case. Morrey matching
Muckenhoupt enables us to study both the weak and strong type boundedness
of one-sided sublinear operators under certain size conditions. Moreover, we
establish the boundedness of the Riemann-Liouville fractional integral and
the compactness of the truncated Riemann-Liouville integral on these spaces.
As an application, we obtain the existence and uniqueness of solutions to a
Cauchy-type problem for fractional differential equations.
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1. Introduction

It is well known that the Morrey space was first introduced by Morrey [22] to study
the local behavior of solutions to second-order elliptic partial differential equations.
Note that Morrey space is nonseparable, and thus lacks the approximation tech-
niques typically available in separable spaces (e.g. continuous or integrable func-
tional spaces). The study of Morrey type spaces has attracted the attention of many
authors. We refer the readers to [1, 4, 14,21,26,35] and the references therein.

In 1994, Nakai introduced the generalized Morrey space to investigate the bound-
edness for Hardy-Littlewood maximal function, singular integrals and Riesz poten-
tials, see [23]. Softova [32] considered the boundedness of singular integrals and
commutators on the generalized Morrey spaces. The weighted Morrey space was
introduced by Komori and Shirai to establish the boundedness of maximal function
and singular integral, see [13]. They also obtained the boundedness of commutators
for singular integral and Riesz potentials in the same paper [13]. For more works
on weighted Morrey space, see [6, 10,11,16,17,24,25].

For one-sided weight, introduced by Sawyer [28], Aimar, Forzani and Mart́ın-
Reyes [2] introduced the one-sided Calderón-Zygmund singular integrals and proved
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the boundedness of one-sided Calderón-Zygmund singular integrals. Recently, the
boundedness of one-sided operators with nonconvolution kernels is an active topic.
In [30], Shi and Fu introduced one-sided weighted Morrey space, which is a kind of
one-sided version of the generalized Morrey space given by [23]. According to [15],
they [30] presented the strong estimates for one-sided sublinear operators which
satisfy certain size conditions on the one-sided weighted Morrey spaces. However,
in [30], there were no endpoint estimates for one-sided sublinear operators. In this

paper, we introduce the generalized one-sided weighted Morrey space Lp,λ+ (R, ωθ)
(see Definition 2.1), which reduces to the one-sided weighted Morrey spaces in [30]
with θ = 1. Meanwhile, the generalized one-sided weighted Morrey spaces of weak
type WLp,λ+ (R, ωθ) are given. Thus, the following question naturally arises:

Question 1 : Can we establish the strong and endpoint estimates for one-sided
sublinear operators on Lp,λ+ (R, ωθ) and WLp,λ+ (R, ωθ), respectively?

The first aim of this article is to give an affirmative answer to Question 1.

On the other hand, the subject of fractional integrals and derivatives integrals
has gained considerable popularity and importance during the past several decades,
due mainly to its demonstrated applications in numerous seemingly diverse and
widespread fields of science and engineering. It does indeed provide several poten-
tially useful tools for solving differential and integral equations, and various other
problems. Readers may consult [3, 7, 9, 12, 31, 33] and the references therein for
their development and applications. Dong, Fu and Xu [5] studied the boundedness
and compactness for Riemann-Liouville integral operators, obtaining the existence
and the uniqueness of solutions to a Cauchy type problem for fractional differen-
tial equations on variable exponent Lebesgue spaces. The authors in [34] extend
the above results in [5] to Morrey spaces. It is natural to consider the following
questions:

Question 2 : Whether the boundedness and compactness for Riemann-Liouville
integral operators on the generalized one-sided weighted Morrey spaces can be
established? Can we obtain the existence and the uniqueness of solutions to a
Cauchy type problem for fractional differential equations on the generalized one-
sided weighted Morrey spaces?

In this article, we obtain positive answers to Question 2.

This paper is organized as follows. In Section 2, we introduce the generalized
one-sided weighted Morrey spaces and establish the endpoint and strong estimates
for one-sided sublinear operators which satisfy certain size conditions. The bound-
edness of Riemann-Liouville integral operators on a local one-sided weighted Morrey
space are given in Section 3. Section 4 is devoted to studying the existence and
uniqueness of solutions to a Cauchy-type problem associated with fractional differ-
ential equations.

Throughout, the letter C, sometimes with additional parameters, will stand for
positive constants, not necessarily the same one at each occurrence, but independent
of the essential variables. We also denote f . g if f ≤ Cg. For x0 ∈ R, h > 0 and
η > 0, we always denote that I = (x0, x0 +h) and ηI = (x0, x0 +ηh). If 1 ≤ p ≤ ∞,
its conjugate exponent is denoted by p′.



A note on Nakai’s generalized Morrey spaces and applications 3

2. Buondedness and compactness for sublinear op-
erators

In this section, we begin by recalling the definition of one-sided weight. A weight
ω will be a locally integrable function in R such that ω ≥ 0. We say that ω ∈ A+

p

for p > 1 if it satisfies

[ω]A+
p

:=
( 1

h

∫ x

x−h
ω(t)dt

)( 1

h

∫ x+h

x

ω(t)1−p′dt
)p−1

<∞

for all h > 0, x ∈ R; also, for p = 1,

[ω]A+
1

:=
∥∥∥M−ω

ω

∥∥∥
L∞

<∞,

where M−f(x) = suph>0
1
h

∫ x
x−h |f(y)|dy. The classes A−p are defined in a similar

way. If 1 ≤ p < ∞, then Ap $ A+
p and Ap $ A−p . Notice that the function

ω(x) = ex is in A+
p but not in Ap.

Similarly, a weight ω is said to belong to A+
(p,q), 1 < p ≤ ∞, 1 ≤ q < ∞ if it

satisfies

[ω]A+
(p,q)

:=
( 1

h

∫ x

x−h
ω(t)qdt

)1/q( 1

h

∫ x+h

x

ω(t)−p
′
dt
)1/p′

<∞

for all h > 0 and x ∈ R; for p = 1,

[ω]A+
(1,q)

:=
∥∥∥M−ωq

ωq

∥∥∥
L∞

<∞.

We introduce the following generalized one-sided weighted Morrey spaces.

Definition 2.1. Let 1 ≤ p < ∞, 0 ≤ λ < 1 and 1 ≤ θ < ∞. Suppose that ω is a
one-sided weight. For any x0 ∈ R, h > 0, set

Φ+
ω,λ,θ(x0, h) := hλ−1ωθ(x0 − h, x0) = hλ−1

∫ x0

x0−h
ω(x)θdx.

(1) The generalized one-sided weighted Morrey spaces, Lp,λ+ (R, ωθ), is defined by

Lp,λ+ (R, ωθ) := {f ∈ Lploc : ‖f‖Lp,λ+ (θ,ωθ) <∞},

where

‖f‖Lp,λ+ (R,ωθ) := sup
x0∈R,h>0

( 1

Φ+
ω,λ,θ(x0, h)

∫ x0+h

x0

|f(y)|pdy
)1/p

.

(2) The generalized one-sided weighted Morrey spaces of weak type, WLp,λ+ (R, ωθ),
is defined by

WLp,λ+ (R, ωθ) :=
{
f ∈ Lploc : ‖f‖WLp,λ+ (R,ωθ) <∞

}
,

where

‖f‖p
WLp,λ+ (R,ωθ)

:= sup
x0∈R,h>0

1

Φ+
ω,λ,θ(x0, h)

sup
γ>0

γp
∣∣{x ∈ (x0, x0 + h) : |f(x)| > γ

}∣∣.
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For simplicity, we denote ‖f‖Lp,λ+ (R,ωθ) and ‖f‖p
WLp,λ+ (R,ωθ)

by ‖f‖Lp,λ+ (ωθ) and

‖f‖p
WLp,λ+ (ωθ)

, respectively.

In this section, we focus on a kind of one-sided operators with nonconvolution
kernels. We adopt a definition made in [19] to consider one-sided sublinear operators
T +
α which satisfy the following conditions:

|T+
α f(x)| .

∫ ∞
x

|f(y)|
(y − x)1−α dy, x /∈ suppf, (2.1)

where f ∈ L1(Rn) with compact support and 0 ≤ α < 1. If α = 0, it is easy to check
that the condition (2.1) is satisfied by many one-sided operators, such as one-sided
Hardy-Littlewood maximal operators, one-sided singular integral and so on. Both
one-sided maximal fractional operator and one-sided fractional integral satisfy (2.1)
with 0 < α < 1. Corresponding to (2.1), we can also define T −α . For simplicity,
here we omit it.

Now, for the boundedness of sublinear operators in generalized one-sided weight-
ed Morrey spaces, we have the following results.

Theorem 2.1. Let 0 ≤ α < 1, 0 ≤ β, λ < 1, 1 ≤ p < q < ∞, β/p = λ/q and
1/p = 1/q + α.
(i) If 1 < p <∞, λ+ q < 2 and T +

α is bounded from Lp to Lq, then T +
α is bounded

from Lp,β+ (ωp) to Lq,λ+ (ωq).

(ii) If p = 1 and T +
α is bounded from L1 to Lq,∞, then T +

α is bounded from L1,β
+ (ω)

to WLq,λ+ (ωq).

To show Theorem 2.1, we need the following lemmas.

Lemma 2.1. [18] Let 1 ≤ p ≤ ∞, and ω ∈ A+
p . Then for all x0 ∈ R, h > 0 and

η ≥ 1, ∫ x0

x0−ηh
ω ≤ ηp

(
2p[ω]A+

p
+ (2p[ω]A+

p
)2
) ∫ x0+h

x0

ω.

Lemma 2.2. [20] Let 0 < r < 1, 1 < p < q <∞ and 1/p− 1/q = r. Then
(i) ω ∈ A+

(p,q) ⇒ ωq ∈ A+
q and ωp ∈ A+

p ;

(ii) ω ∈ A+
(p,q) ⇔ ωq ∈ A+

q(1−r) ⇔ ωq ∈ A+
1+q/p′ ⇔ ω−p

′ ∈ A−1+p′/q.

Now we give the proof of Theorem 2.1.
Proof. We first prove (i). For x0 ∈ R and h > 0, let f(x) = f1(x) + f2(x), where
f1(x) = fχ2I(x). Then

1

Φ+
ω,λ,q(x0, h)

∫ x0+h

x0

|T +
α f(x)|qdx .

1

Φ+
ω,λ,q(x0, h)

∫ x0+h

x0

|T +
α f1(x)|qdx

+
1

Φ+
ω,λ,q(x0, h)

∫ x0+h

x0

|T +
α f2(x)|qdx

=: J1 + J2.

For ω ∈ A+
(p,q), by Lemmas 2.1 and 2.2, we have

ωq(x0 − 2h, x0) . ωq(x0 − h, x0). (2.2)
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It follows from the Hölder inequality, (2.2) and the fact that T +
α is bounded from

Lp to Lq that

J1 .
1

Φ+
ω,λ,q(x0, h)

(∫ x0+2h

x0

|f(y)|pdy
)q/p

≤ h(β−1)q/p−λ+1‖f‖q
Lp,β+ (ωp)

[ωp(x0 − 2h, x0)]q/p

ωq(x0 − h, x0)

. ‖f‖q
Lp,β+ (ωp)

ωq(x0 − 2h, x0)

ωq(x0 − h, x0)

. ‖f‖q
Lp,β+ (ωp)

.

Invoking (2.1), we obtain that for x0 < x < x0 + h,

|T +
α f2(x)| .

∫ ∞
x

|f2(y)|
(y − x)1−α dy

.
∞∑
k=1

1

(2kh)
1−α

∫ x0+2kh

x0+2k−1h

|f(y)|dy

≤
∞∑
k=1

1

(2kh)1/p−α

(∫ x0−h+2k+1h

x0−h
|f(y)|pdy

)1/p

.‖f‖Lp,β+ (ωp)

∞∑
k=1

(2kh)
α−(2−β)/p[

ωp(x0 − h− 2k+1h, x0 − h)
]1/p

.

Using Lemmas 2.1 and 2.2 again, we obtain

[
ωp(x0 − h− 2k+1h, x0 − h)

]1/p
. (2kh)α

(∫ x0−h

x0−h−2k+1h

ω(y)qdy
)1/q

. (2kh)α2k
(∫ x0

x0−h
ω(y)qdy

)1/q

,

which gives

J2 .
‖f‖q

Lp,β+ (ωp)

Φ+
ω,λ,q(x0, h)

∫ x0+h

x0

( ∞∑
k=1

[
ωp(x0 − h− 2k+1h, x0 − h)

]1/p
(2kh)

(2−β)/p−α

)q
dx

.
‖f‖q

Lp,β+ (ωp)

hλ−2

( ∞∑
k=1

(2kh)α2k

(2kh)
(2−β)/p−α

)q
.‖f‖q

Lp,β+ (ωp)

( ∞∑
k=1

2k((λ+q−2)/q)
)q

.‖f‖q
Lp,β+ (ωp)

,

where the fourth inequality follows from λ+ q < 2.
Combining with the estimates of J1 and J2, we conclude that

‖T +
α f‖Lq,λ+ (ωq) . ‖f‖Lp,β+ (ωp).
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Now we turn to prove (ii). Let f1(x), f2(x) be mentioned in (i). We write

γq

Φ+
ω,λ,q(x0, h)

∣∣{x ∈ I : |T +
α f(x)| > γ}

∣∣ ≤ γq

Φ+
ω,λ,q(x0, h)

∣∣{x ∈ I : |T +
α f1(x)| > γ/2}

∣∣
+

γq

Φ+
ω,λ,q(x0, h)

∣∣{x ∈ I : |T +
α f2(x)| > γ/2}

∣∣
=: J3 + J4.

For ω ∈ A+
(1,q), we observe that ωq ∈ A+

1 . From Lemma 2.1 and the fact that T +
α is

bounded from L1 to Lq,∞, we have

J3 .
1

Φ+
ω,λ,q(x0, h)

(∫ x0+2h

x0

|f(y)|dy
)q

≤‖f‖q
L1,β

+ (ω)
h(β−1)q−λ+1 [ω(x0 − 2h, x0)]q

ωq(x0 − h, x0)

.‖f‖q
L1,β

+ (ω)

ωq(x0 − 2h, x0)

ωq(x0 − h, x0)

.‖f‖q
L1,β

+ (ω)
.

For x0 < x < x0 + h, according to (2.1), we obtain

|T +
α f2(x)| .

∞∑
k=1

1

(2kh)
1−α

∫ x0+2kh

x0+2k−1h

|f(y)|dy

.‖f‖L1,β
+ (ω)

∞∑
k=1

ω(x0 − h− 2k+1h, x0 − h)

(2kh)
2−α−β ,

which proves, together with Lemma 2.1, that

J4 .
‖f‖q

L1,β
+ (ω)

Φ+
ω,λ,q(x0, h)

∫ x0+h

x0

( ∞∑
k=1

ω(x0 − h− 2k+1h, x0 − h)

(2kh)2−α−β

)q
dx

.
‖f‖q

L1,β
+ (ω)

hλ−2

( ∞∑
k=1

(2kh)1−1/q2k/q

(2kh)
2−α−β

)q
.‖f‖q

L1,β
+ (ω)

( ∞∑
k=1

2k(β−1/q)
)q

.‖f‖q
L1,β

+ (ω)
.

This together with the estimate of J3 implies

‖T +
α f‖WLq,λ+ (ωq) . ‖f‖L1,β

+ (ω).

The proof is complete.
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3. Bounded and compact operators for Riemann-
Liouville fractional integral

In order to state our results, we recall the following definition of Riemann-Liouville
fractional integral.

Definition 3.1. Let δ be a positive constant and 0 < α < 1. Define the Riemann-
Liouville integral of order α as follows

Iα0+f(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α ds, 0 ≤ t ≤ δ.

Let Ω be an open subset in R. We will work on a local one-sided weighted
Morrey space Lp,λ+ (Ω, ωθ), which is defined by

Lp,λ+ (Ω, ωθ) :=
{
f ∈ Lploc : ‖f‖Lp,λ+ (Ω,ωθ) <∞

}
,

where

‖f‖Lp,λ+ (Ω,ωθ) := sup
x0∈Ω
h>0

( 1

Φ+
ω,λ,θ(x0, h)

∫ x0+h

x0

χΩ(y)|f(y)|pdy
)1/p

.

Now, we present the boundedness of Riemann-Liouville fractional integral on
Lp,λ+ (Ω, ωθ).

Theorem 3.1. Let 0 < σ < 1, 1 < p < q < ∞ and 1/p − 1/q = σ. Suppose
that 1/p < α < 1, 0 ≤ β, µ < 1 and β/p ≤ µ/q. Then Iα0+ is bounded from

Lp,β+ ((0, δ), ωp) to Lq,µ+ ((0, δ), ωq) for ω ∈ A+
(p,q) and 0 < δ <∞.

Proof. Let Ω = (0, δ) for some δ > 0. For any x0 ∈ Ω, by the Hölder inequality
and 1/p < α < 1, we have

1

Φ+
ω,µ,q(x0, h)

∫ x0+h

x0

χΩ(t)|Iα0+f(t)|qdt

.
1

Φ+
ω,µ,q(x0, h)

∫ x0+h

x0

χΩ(t)
(∫ t

0

|f(τ)|pdτ
)q/p(∫ t

0

(t− τ)(α−1)p′dτ
)q/p′

dt

.
1

Φ+
ω,µ,q(x0, h)

∫ x0+h

x0

χΩ(t)
(∫ t

0

|f(τ)|pdτ
)q/p

t
(αp−1)q

p dt

=: J5.

For any h > 0, we deal with J5 in the following two cases:
Case 1 : For 0 < h ≤ δ, there exists a nonnegative integer k0 such that δ/2k0+1 <
h ≤ δ/2k0 , then

J5 ≤
1

Φ+
ω,µ,q(x0, h)

∫ x0+h

x0

χΩ(t)

(
δβ−1ωp(−δ, 0)

δβ−1ωp(−δ, 0)

∫ δ

0

|f(τ)|pdτ
)q/p

t
(αp−1)q

p dt

≤ ‖f‖q
Lp,β+ ((0,δ),ωp)

δq(β−1)/p
[
ωp(−δ, 0)

]q/p
hµ−1ωq(x0 − h, x0)

∫ x0+h

x0

χ(0,δ)(t)t
(αp−1)q

p dt
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≤ ‖f‖q
Lp,β+ ((0,δ),ωp)

δβq/p−1

hµ−2

ωq(x0 − 2δ, x0)

ωq(x0 − h, x0)
δ

(αp−1)q
p

. ‖f‖q
Lp,β+ ((0,δ),ωp)

δ1−µ+
(αp+β−1)q

p
ωq(x0 − 2k0+2h, x0)

ωq(x0 − h, x0)

. ‖f‖q
Lp,β+ ((0,δ),ωp)

δ1−µ+
(αp+β−1)q

p 2k0q

. ‖f‖q
Lp,β+ ((0,δ),ωp)

,

where the third inequality follows from the Hölder inequality, and the fifth inequality
is obtained by Lemmas 2.1 and 2.2.
Case 2 : For h > δ, we have

J5 ≤
1

Φ+
ω,µ,q(x0, h)

∫ δ

0

(
hβ−1ωp(−h, 0)

hβ−1ωp(−h, 0)

∫ h

0

χ(0,δ)(τ)|f(τ)|pdτ
)q/p

t
(αp−1)q

p dt

≤‖f‖q
Lp,β+ ((0,δ),ωp)

hq(β−1)/p
[
ωp(x0 − 2h, x0)

]q/p
hµ−1ωq(x0 − h, x0)

δ1+
(αp−1)q

p

.‖f‖q
Lp,β+ ((0,δ),ωp)

hβq/p−1

hµ−1

ωq(x0 − 2h, x0)

ωq(x0 − h, x0)
δ1+

(αp−1)q
p

.‖f‖q
Lp,β+ ((0,δ),ωp)

δ1−µ+
(αp+β−1)q

p

.‖f‖q
Lp,β+ ((0,δ),ωp)

,

where we use Lemmas 2.1 and 2.2 in the third inequality. Consequently,

‖Iα0+f‖Lq,µ+ ((0,δ),ωq) . ‖f‖Lp,β+ ((0,δ),ωp),

which completes the proof of Theorem 3.1.

To prove the compactness result, we need the following proposition, which is a
direct application of [8, Theorem 3.1].

Proposition 3.1. Let Ω = (0, δ) for some δ <∞. Suppose 1 < p <∞, 0 < β < 1

and ω ∈ A+
p . Let G be a subset of Lp,β+ (Ω, ω). Then G is strongly pre-compact set

in Lp,β+ (Ω, ω) if it satisfies the following conditions:
(1) G is uniformly bounded, i.e. sup

f∈G
‖f‖Lp,β+ (Ω,ω) <∞;

(2) G uniformly vanishes at infinity, i.e. lim
γ→δ

sup
f∈G
‖fχΩγ‖Lp,β+ (Ω,ω) = 0, where Ωγ =

{x ∈ Ω : |x| > γ};
(3) G is uniformly equicontinuous, i.e. lim

l→0
sup
f∈G
‖f(·+ l)− f(·)‖Lp,β+ (Ω,ω) = 0.

Theorem 3.2. Let 0 < σ < 1, 1 < p < q < ∞ and 1/p − 1/q = σ. Suppose that
1
2 (1 + 1

p ) < α < 1, 0 < β, µ < 1 and β/p ≤ µ/q. For 0 < δ <∞, then

Tu(t) =
χ(0,δ)(t)

Γ(α)

∫ t

0

u(τ)

(t− τ)1−α dτ

is a compact operator from Lp,β+ ((0, δ), ωp) to Lq,µ+ ((0, δ), ωq) for ω ∈ A+
(p,q).
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Proof. According to the definition of compact operator, it suffices to show the set

G :=
{
Tu : ‖u‖Lp,β+ ((0,δ),ωp) ≤ 1

}
is pre-compact. In view of Proposition 3.1, we need only to verify that G satisfies
conditions (1)-(3). Observe that Tu(t) = χ(0,δ)(t)I

α
0+f(t). By Theorem 3.1, con-

dition (1) holds. It is easy to show that condition (2) holds. It remains to check
condition (3). By noting that x ≥ δ and y > 0, both Tu(x+ y) and Tu(x) vanish.
For 0 < x < δ and y > 0 small enough such that x+ y ∈ (0, δ), then

|Tu(x+ y)− Tu(x)| = 1

Γ(α)

∣∣∣ ∫ x+y

0

u(τ)

(x+ y − τ)1−α dτ −
∫ x

0

u(τ)

(x− τ)1−α dτ
∣∣∣

≤ 1

Γ(α)

∣∣∣ ∫ x

0

u(τ)

(x+ y − τ)1−α −
u(τ)

(x− τ)1−α dτ
∣∣∣

+
1

Γ(α)

∣∣∣ ∫ x+y

x

u(τ)

(x+ y − τ)1−α dτ
∣∣∣

=: F1(x) + F2(x).

Recall that |xλ − yλ| ≤ |x − y|λ with x, y ≥ 0 and 0 < λ < 1. The fact that
1
2 (1 + 1

p ) < α < 1 and the Hölder inequality imply that

F1(x) =
1

Γ(α)

∣∣∣ ∫ x

0

u(τ)
(x− τ)1−α − (x+ y − τ)1−α

(x+ y − τ)1−α(x− τ)1−α dτ
∣∣∣

. y1−α
∫ x

0

|u(τ)|
(x+ y − τ)1−α(x− τ)1−α dτ

. y1−α
(∫ x

0

|u(τ)|pdτ
)1/p(∫ x

0

1

(x− τ)2(1−α)p′
dτ
)1/p′

. y1−α
(∫ x

0

|u(τ)|pdτ
)1/p

x2α−1−1/p.

For F2(x), by the Hölder inequality again, we have

F2(x) ≤ 1

Γ(α)

(∫ x+y

x

|u(τ)|pdτ
)1/p(∫ x+y

x

1

(x+ y − τ)(1−α)p′
dτ
)1/p′

. yα−1/p
(∫ x+y

0

|u(τ)|pdτ
)1/p

.

Therefore,

1

Φ+
ω,µ,q(x0, h)

∫ x0+h

x0

χ(0,δ)(x)|Tu(x+ y)− Tu(x)|qdx

.
y(1−α)q

Φ+
ω,µ,q(x0, h)

∫ x0+h

x0

χ(0,δ)(x)
(∫ δ

0

|u(τ)|pdτ
)q/p

x(2α−1−1/p)qdx

+
y(αp−1)q/p

Φ+
ω,µ,q(x0, h)

∫ x0+h

x0

χ(0,δ)(x)
(∫ x+y

0

|u(τ)|pdτ
)q/p

dx

=: J6 + J7.
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By a similar the estimate J3 in Theorem 3.1, we obtain

J6 + J7 . y(1−α)q + y(αp−1)q/p.

Then
‖Tu(·+ y)− Tu(·)‖Lq,µ+ ((0,δ),ωq) . y1−α + yα−1/p,

which tends to 0 as y tends to 0. This completes the proof.

4. Nonlinear fractional differential equations on the
generalized one-sided weighted Morrey spaces

In this section, we begin with the definition of absolutely continuous functions.

Definition 4.1. A function f(x) is called absolutely continuous on an interval Ω,
if for every ε > 0 there exists δ > 0 such that for any finite set of pairwise disjoint
intervals [ak, bk] ⊂ Ω, k = 1, 2, · · · , n, such that

∑n
k=1(bk − ak) < δ, the inequality∑n

k=1 |f(bk)− f(ak)| < ε holds. The space of these functions is denoted by AC(Ω).

It is well known [27] that the space AC(Ω) coincides with the space of primitives
of Lebesgue summable functions:

f(x) ∈ AC([a, b])⇔ f(x) = c+

∫ x

a

ϕ(t)dt,

∫ b

a

|ϕ(t)|dt <∞. (4.1)

Definition 4.2. Let δ be a positive constant and 0 < α < 1. The Riemann-
Liouville derivative of order α is defined by

Dα
0+f(t) =

1

Γ(1− α)

d

dt

∫ t

0

f(s)

(t− s)α
ds, 0 ≤ t ≤ δ.

It is clear that Dα
0+f(t) = d

dtI
1−α
0+ f(t).

Consider the classical Cauchy problem for the nonlinear fractional differential
equation: {

Dα
0+u(t) = f(t, u(t)),

I1−α
0+ u(0) = 0.

(4.2)

The initial condition I1−α
0+ u(0) = 0 in (4.2) is (more or less) equivalent to the

following initial (weighted) condition:

lim
t→0+

t1−αu(t) = 0.

Kilbas and Trujillo [12] established the following relation between Iα0+ and Dα
0+ .

Lemma 4.1 ( [12]). Let 0 < α < 1 and f1−α(x) = I1−α
0+ f(x) for any x ∈ (a, b). If

f ∈ L1(a, b) and f1−α ∈ AC[a, b], then

(Iα0+Dα
0+f)(x) = f(x)− f1−α(0)

Γ(α)
xα−1

holds almost everywhere on [a, b].
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Next, we recall the famous Schauder fixed-point theorem.

Lemma 4.2 ( [29]). Let H be a convex and closed subset of a Banach space. Then
any continuousand compact map T : H → H has a fixed point.

By Lemma 4.2, Dong, Fu and Yan [5] obtained the existence and the uniqueness
of solutions to the Cauchy problems for nonlinear fractional ordinary differential
equations in the variable exponent Lebesgue spaces. Now, we give the corresponding
results on local one-sided weighted Morrey spaces.

Theorem 4.1. Let 0 < σ < 1, 1 < p, q < ∞, 0 < β, µ < 1, 1/p − 1/q = σ,
ω ∈ A+

(p,q). Suppose that the operator F : F (u) = f(t, u(t)) is bounded, continuous

from Lq,µ+ ((0, δ), ωq) to Lp,β+ ((0, δ), ωp) for 0 < δ <∞. If 1
2 (1+ 1

p ) < α < 1, then the

Cauchy problem (4.2) has at least a solution u ∈ Lq,µ+ ((0, δ), ωq) for a sufficiently
small δ. Furthermore, if there exists a constant CF > 0 such that

‖Fu− Fv‖Lp,β+ ((0,δ),ωp) ≤ CF ‖u− v‖Lq,µ+ ((0,δ),ωq), u, v ∈ Lq,µ((0, δ), ωq), (4.3)

then the solution of (4.2) is unique in Lq,µ((0, δ), ωq) for a sufficiently small δ.

Proof. By noting that f(t, u(t)) ∈ Lp,β+ ((0, δ), ωp) ⊆ L(0, δ) and Dα
0+u(t) =

d
dtI

1−α
0+ u(t), we obtain u1−α ∈ AC[0, δ] from (4.1). From Lemma 4.1, the derivative

equation (4.2) is equivalent to the following integral equation:

u(t) =

{
1

Γ(α)

∫ t
0
f(τ,u(τ))
(t−τ)1−α dτ, 0 < t < δ,

0 a.e., t ≥ δ.

=
χ(0,δ)(t)

Γ(α)

∫ t

0

f(τ, u(τ))

(t− τ)1−α dτ =: T (f(t, u)).

(4.4)

Set

Au(t) := T (f(t, u)) =
χ(0,δ)(t)

Γ(α)

∫ t

0

f(τ, u(τ))

(t− τ)1−α dτ.

Then the equation (4.4) has a solution in Lq,µ+ ((0, δ), ωq) if and only if the oper-
ator A has a fixed point in Lq,µ+ ((0, δ), ωq). Next, we show that A is completely
continuous. From Theorem 3.2, we deduce that T is a compact operator from
Lp,β+ ((0, δ), ωp) to Lq,µ+ ((0, δ), ωq). Since F : u→ f(t, u) is bounded and continuous

from Lq,µ+ ((0, δ), ωq) to Lp,β+ ((0, δ), ωp) and Au(t) = (T ◦ F )u(t), we conclude that
A is a compact and continuous operator in Lq,µ+ ((0, δ), ωq). Hence, A is completely
continuous in Lq,µ+ ((0, δ), ωq).

Choose a positive constant M0 and set D :=
{
u : ‖u‖Lq,µ+ ((0,δ),ωq) ≤M0

}
. Then

D is a bounded closed convex set. For any 0 ≤ x0 ≤ δ, by the Hölder inequality,
we get

1

Φ+
ω,µ,q(x0, h)

∫ x0+h

x0

χ(0,δ)(t)|Au(t)|qdt

≤ 1

Φ+
ω,µ,q(x0, h)Γ(α)q

∫ x0+h

x0

χ(0,δ)(t)
∣∣∣ ∫ t

0

f(τ, u(τ))

(t− τ)1−α dτ
∣∣∣qdt

≤
(
p−1
αp−1

)q/p′
Γ(α)qΦ+

ω,µ,q(x0, h)

∫ x0+h

x0

χ(0,δ)(t)
(∫ t

0

|f(τ, u(τ))|pdτ
)q/p

t
(αp−1)q

p dt
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=: L1.

For 0 < h ≤ δ, arguing similarly as in the proofs of Case 1 in Theorem 3.1, we have

L1 ≤
δ(αp−1+β)q/p+1−µ‖Fu‖q

Lp,β+ ((0,δ),ωp)(
αp−1
p−1

)q/p′
Γ(α)q

ωq(x0 − 2k0+2h, x0)

ωq(x0 − h, x0)

≤ C1‖F‖qMq
0

Γ(α)q
(
αp−1
p−1

)q/p′ δ (αp+β−1)q
p +1−µ,

where C1 = 2(k0+3)q(2q[ωq]A+
q

+ (2q[ωq]A+
q

)2
)
.

For h > δ, we get

L1 ≤
2qδ(αp−1+β)q/p+1−µ‖Fu‖q

Lp,β+ ((0,δ),ωp)(
αp−1
p−1

)q/p′
Γ(α)q

ωq(x0 − 2h, x0)

ωq(x0 − h, x0)

≤ C2‖F‖qMq
0

Γ(α)q
(
αp−1
p−1

)q/p′ δ (αp+β−1)q
p +1−µ,

where C2 = 23q(2q[ωq]A+
q

+ (2q[ωq]A+
q

)2
)
.

Combining the above estimates for L1, we obtain

‖Au‖Lq,µ+ ((0,δ),ωq) ≤
C

1/q
1 ‖F‖M0

Γ(α)
(
αp−1
p−1

)1/p′ δ αp+β−1
p + 1−µ

q .

Set

δ =

[
Γ(α)

(
αp−1
p−1

)1/p′
C

1/q
1 ‖F‖

](αp+β−1
p + 1−µ

q

)−1

.

Hence
‖Au‖Lq,µ+ ((0,δ),ωq) ≤M0.

It follows from Lemma 4.2 that A has a fixed point in D. Therefore, Equation (4.2)
has at least a solution in Lq,µ+ ((0, δ), ωq). Suppose that u1, u2 are two solutions of
Equation (4.2). By the similar discussions as above, we have

‖Au1 −Au2‖Lp,β+ ((0,δ),ωq)

≤
C

1/q
1 ‖Fu1 − Fu2‖Lq,µ+ ((0,δ),ωq)

Γ(α)(αq−1
q−1 )1/p′

δ
αp+β−1

p + 1−µ
q

≤ C
1/q
1 CF

Γ(α)(αp+β−1
p−1 )1/p′

δ
αp+β−1

p + 1−µ
q ‖u1 − u2‖Lq,µ((0,δ),ωq).

Set

δ <

[
Γ(α)

(
αq−1
q−1

)1/p′
C

1/q
1 CF

](αp+β−1
p + 1−µ

q

)−1

.

This implies that A is a contraction mapping in Lq,µ+ ((0, δ), ωq) and has a unique
fixed point in Lq,µ+ ((0, δ), ωq). Therefore, the Cauchy problem (4.2) has a unique
solution in Lq,µ+ ((0, δ), ωq). The proof is complete.
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Remark 4.1. The conditions that operator F : F (u) = f(t, u(t)) is bounded,

continuous from Lq,µ+ ((0, δ), ωq) to Lp,β+ ((0, δ), ωp), 1
2 (1 + 1

p ) < α < 1 are sufficient
but not necessary.

In fact, for the following differential equation of fractional order 0 < α < 1
(see [34, Example 4.1]), {

Dα
0+u(t) = λtγ(u(t))2,

I1−α
0+ u(0) = 0,

(4.5)

where t > 0, λ, γ ∈ R and λ 6= 0. In view of [12, Property 2.1], we observe that
equation (4.5) has the exact solution

u(t) =

{
Γ(1−α−γ)
λΓ(1−2α−γ) t

−(α+γ), 0 < t < δ,

0, a.e.t ≥ δ,

where 0 < α+ γ < 1. Moreover, in this case, we also have

f(t, u(t)) =

{
1
λ

[ Γ(1−α−γ)
Γ(1−2α−γ)

]2
t−(2α+γ), 0 < t < δ,

0, a.e. t ≥ δ.

Taking ω = |x|−1/(2q) ∈ A+
(p,q), we claim that u ∈ Lq,µ+ ((0, δ), |x|−1/2) for 1 −

(α + γ)q − µ > 0 and µ ≥ 1/2. Meanwhile, we also obtain that f(t, u(t)) /∈
Lp,β+ ((0, δ), |x|−p/(2q)) for 2(α+ γ)p > 1.

For 0 < x0 < δ, we have

1

Φ+
ω,µ,q(x0, h)

∫ x0+h

x0

χ(0,δ)(t)|u(t)|qdt

.
1

hµ−1
∫ x0

x0−h |x|
−1/2dx

∫ x0+h

x0

χ(0,δ)(t)t
−(α+γ)qdt

=: L2.

For any h > 0, we have divided the proof of L2 into two cases.
Case 0 < h ≤ δ : In this case, as x0 > h > 0, then

L2 .
1

hµ−1(
√
x0 −

√
x0 − h)

∫ x0+h

x0

t−(α+γ)qdt

.
√
x0 +

√
x0 − h

hµ

[
(x0 + h)1−(α+γ)q − x1−(α+γ)q

0

]
.δ

3
2−(α+γ)q−µ <∞.

As x0 ≤ h ≤ δ, we have

L2 .
1

hµ−1(
√
x0 +

√
h− x0)

∫ x0+h

x0

t−(α+γ)qdt

≤ 1

hµ−1/2

[
(x0 + h)1−(α+γ)q − x1−(α+γ)q

0

]
≤δ 3

2−(α+γ)q−µ <∞.
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Case h > δ : For u ≥ 1/2, we obtain

L2 .
1

hµ−1(
√
x0 +

√
h− x0)

∫ δ

0

t−(α+γ)qdt

≤ 1

hµ−1/2
δ1−(α+γ)q

≤δ 3
2−(α+γ)q−µ <∞.

Combining with the above estimates, we obtain u ∈ Lq,µ+ ((0, δ), |x|−1/2).

On the other hand, we turn to prove f(t, u(t)) /∈ Lp,β+ ((0, δ), |x|−p/(2q)). By
taking h = δ and x0 = δ/2, we obtain that for 2(α+ γ)p > 1

1

δβ−1
∫ δ/2
−δ/2 |x|−p/2qdx

∫ δ

0

1

λp

[ Γ(1− α− γ)

Γ(1− 2α− γ)

]2p
t−(2α+γ)pdt

≥ 1

δβ−p/(2q)
1

λp

[ Γ(1− α− γ)

Γ(1− 2α− γ)

]2p ∫ δ

0

t−(2α+γ)pdt

=∞.

This implies that f(t, u(t)) /∈ Lp,β+ ((0, δ), |x|−p/2q).
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