
DISCONTINUOUS FRACTIONAL BOUNDARY VALUE PROBLEMS WITH
ORDER α ∈ (1, 2)

ABSTRACT. This paper focuses on investigating the discontinuous fractional Sturm-Liouville
problem equipped with a transmission condition of order α ∈ (1, 2). Through rigorous analy-
sis, it is demonstrated that the eigenvalues and their corresponding eigenfunctions of this prob-
lem coincide with those of the constructed operator in Hilbert space. Furthermore, a necessary
and sufficient condition for the existence of eigenvalues is established, providing a theoretical
foundation for the spectral characterization of such fractional boundary value problems.

1. INTRODUCTION

Since its inception, the Sturm–Liouville problem has garnered significant attention across
mathematical and physical communities. Extensive theoretical advancements and practical ap-
plications have been documented in the literature, as demonstrated by foundational works [1–
4]. However, the classical integer-order formulation of this problem has become inadequate for
addressing modern challenges in engineering physics and interdisciplinary applications. This
limitation has spurred the integration of fractional calculus and fractional differential equations
into the framework, prompting a resurgence of interest in fractional-order generalizations of the
Sturm–Liouville problem. Fundamental concepts of fractional differentiation and integration,
alongside introductory treatments of fractional differential equations, are comprehensively pre-
sented in [5, 6]. Applications spanning physics and mechanics are surveyed in [7, 8], with par-
ticular emphasis on statistical mechanics explored in [9]. Financial modeling has also benefited
from fractional calculus, as exemplified by [10], which examines viscoelastic and thermody-
namic properties of stock indices. Among fractional-order operators, Riemann–Liouville frac-
tional integrals, Riemann–Liouville fractional derivatives, and Caputo fractional derivatives
have been most extensively studied. Recent developments include investigations into Hilfer
fractional derivatives, as highlighted in [11–13].

The study of continuous boundary-value problems has long attracted extensive attention.
Equally significant, however, are discontinuous boundary-value problems, among which the
Sturm-Liouville problem with transmission conditions has emerged as a critical research area
in physics and mechanics. This class of problems, characterized by eigenparameter-dependent
boundary conditions and complementary transmission conditions imposed at interior points,
has been systematically investigated in recent literature (see [14]). Furthermore, spectral prop-
erties of the classical Sturm-Liouville problem have been generalized to equations with piece-
wise continuous potentials ([15]), while Kadakal [16] established asymptotic approximation
formulas for eigenvalues and normalized eigenfunctions in regular Sturm-Liouville systems.
Meng [22] addressed two canonical fractional discontinuous dissipative Sturm-Liouville-type
boundary-value problems, incorporating both boundary and transmission conditions. Mean-
while, Sevinik [23] explored the existence and uniqueness of solutions for nonlinear fractional
differential equations of order 2 < α ≤ 3 . Other contributions include investigations into
fractional boundary-value problems under alternative boundary conditions were investigated
in [24–26].

The fractional-order Sturm-Liouville system with parameter α ∈ (12 , 1] has been systemati-
cally analyzed by Akdoğan [19, 20]. This study comprehensively characterized the boundary
conditions and two transmission conditions, leading to the conclusion that the eigenvalues and
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corresponding eigenfunctions of this fractional system exactly coincide with those of the con-
structed operator in Hilbert space. Furthermore, the fourth-order integer-order Sturm-Liouville
problem was rigorously discussed in [21], where both necessary and sufficient conditions for
the existence of eigenvalues were explicitly established.

The objective of this paper is to generalize the results derived in Refs. [19, 20] to the case of
fractional order α ∈ (1, 2). Motivated by the insights from [17, 18], we propose four boundary
conditions for fractional order α ∈ (1, 2). A discontinuous fractional Sturm-Liouville problem
with transmission conditions is then formulated. Through operator-theoretic analysis in Hilbert
space, the eigen-structure of the problem is characterized, and exact equivalence is established
between the operator eigenvalues and those of the boundary-value problem, leading to the
derivation of necessary and sufficient eigenvalue conditions.

This paper is structured as follows: Section 2 presents definitions and simple properties
for Riemann-Liouville fractional integrals, Riemann-Liouville fractional differentiation, and
Caputo fractional differentiation, along with some lemmas. Section 3 describes the discontin-
uous fractional Sturm-Liouville problem with transmission conditions, focusing on the order
α ∈ (1, 2), which is the subject of this study. Section 4 states that the boundary value problem
has four linearly independent solutions. Section 5 provides a sufficient and necessary condition
for the eigenvalues of the problem.

2. SOME AUXILIARY DEFINITIONS AND RESULTS

In this section we present the basic definitions and facts relevant to this work (see also [5, 6]),
along with the necessary proofs of the lemmas.

Definition 2.1 (c. f. [6]). (Left and right Riemann-Liouville (R-L) fractional integrals)
Let [a, b] ⊂ R, Re(α) > 0 and f ∈ L1[a, b]. Then the left and right Riemann-Liouville

fractional integrals Iαa+ and Iαb− of order α ∈ C are given by

Iαa+f(x) =
1

Γ(α)

∫ x

a

f(t)dt
(x− t)1−α

, x ∈ (a, b],

Iαb−f(x) =
1

Γ(α)

∫ b

x

f(t)dt
(t− x)1−α

, x ∈ [a, b)

respectively.

Definition 2.2 (c. f. [6]). ( Left and right Riemann-Liouville (R-L) fractional derivatives)
Let [a, b] ⊂ R and f ∈ L1[a, b]. The left and right Riemann-Liouville fractional derivatives

of order α ∈ C (Re(α) ≥ 0) of function f are defined by

Dα
a+f(x) := DnIn−α

a+
f(x), x ∈ (a, b], (n = ⌊Re(α)⌋+ 1, n ∈ N0 = {0, 1, 2, · · · }) ,

Dα
b−f(x) := (−D)nIn−α

b− f(x), x ∈ [a, b), (n = ⌊Re(α)⌋+ 1, n ∈ N0)

respectively, where D = d
dx is the usual differential operator and ⌊Re(α)⌋ means the integral

part of Re(α). For ease of reference, we will straightforwardly consider the case n = 2, then

Dα
a+f(x) := D2I2−α

a+
f(x), x ∈ (a, b],

Dα
b−f(x) := D2I2−α

b− f(x), x ∈ [a, b).

Definition 2.3 (c. f. [6]). (Left and right Caputo fractional derivatives)
Let [a, b] ⊂ R and f ∈ L1[a, b]. The left and right Caputo fractional derivatives of order

α ∈ C (Re(α) ≥ 0) are
cDα

a+f(x) := In−α
a+

Dnf(x), x ∈ (a, b], (n = ⌊Re(α)⌋+ 1, n ∈ N0) ,
cDα

b−f(x) := (−1)nIn−α
b− Dnf(x), x ∈ [a, b), (n = ⌊Re(α)⌋+ 1, n ∈ N0)
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respectively, where D = d
dx is the usual differential operator and ⌊Re(α)⌋ means the integral

part of Re(α). Similarly, we will consider the case n = 2, then

cDα
a+f(x) := I2−α

a+
D2f(x), x ∈ (a, b],

cDα
b−f(x) := I2−α

b− D2f(x), x ∈ [a, b).

Property 2.1 (c.f. [6]). For ease of reference, we will straightforwardly consider the case
n = 2, then

Dα
a+I

α
a+f(x) = f(x),

Dα
b−I

α
b−f(x) = f(x)

and

Iαa+D
α
a+f(x) = f(x)− (x− a)α−1

Γ(α)
DI2−α

a+
f(a)− (x− a)α−2

Γ(α− 1)
I2−α
a+

f(a),

Iαb−D
α
b−f(x) = f(x) +

(b− x)α−1

Γ(α)
DI2−α

b− f(b)− (b− x)α−2

Γ(α− 1)
I2−α
b− f(b).

Based on the above equations, we can observe that the Riemann-Liouville (R-L) derivative
is the left inverse of the R-L integral, but not the right inverse.

Property 2.2 (c. f. [6]). Similarly, we will consider the case n = 2, then
cDα

a+I
α
a+f(x) = f(x),

cDα
b−I

α
b−f(x) = f(x)

and
Iαa+

cDα
a+f(x) = f(x)− f(a)− f ′(a)(x− a),

Iαb−
cDα

b−f(x) = f(x)− f(b) + f ′(b)(b− x).

Property 2.3 (c. f. [6]). Assume that 1 < α < 2, f ∈ AC[a, b] and g ∈ Lp(a, b)(1 ≤ p ≤ ∞).
Then the following integration by parts formula holds:

∫ b

a
f(x)Dα

a+g(x)dx =

∫ b

a
g(x) cDα

b−f(x)dx+ f(x)DI2−α
a+

g(x) |x=b
x=a −f ′(x)I2−α

a+
g(x) |x=b

x=a,∫ b

a
f(x)Dα

b−g(x)dx =

∫ b

a
g(x) cDα

a+f(x)dx+ f(x)DI2−α
b− g(x) |x=b

x=a −f ′(x)I2−α
b− g(x) |x=b

x=a .

Next, we will present and prove the following lemma that is closely related to the subsequent
content.

Lemma 2.1. Let f ∈ L2(a, b) and α ∈ (1, 2), then

(1)Iαa+
cDα

b−f(x) = Mg(x) + (−1)α[f(x)− f(b) + f ′(b)(b− x)],

(2)Iαa+
cDα

b−f(x) = (−1)α−1Iαa+Nf (x) + (−1)α[f(x)− f(a)− f ′(a)(x− a)],

where

Mg(x) =
1

Γ(α)

∫ b

a
(x− t)α−1g(t)dt,

Nf (x) =
1

Γ(2− α)

∫ b

a
(x− t)1−αf ′′(t)dt

and

g(x) = cDα
b−f(x).



4

Proof. In view of Definition 2.1, we have

Mg(x) =
1

Γ(α)

∫ b

a
(x− t)α−1g(t)dt

=
1

Γ(α)

∫ x

a
(x− t)α−1g(t)dt+

1

Γ(α)

∫ b

x
(x− t)α−1g(t)dt

= Iαa+g(x) + (−1)α−1Iαb−g(x).

Then it leads to

Iαa+g(x) = Mg(x) + (−1)αIαb−g(x).

To prove (2), by Definition 2.3, we obtain

Nf (x) =
1

Γ(2− α)

∫ b

a
(x− t)1−αf ′′(t)dt

=
1

Γ(2− α)

∫ x

a
(x− t)1−αf ′′(t)dt+ (−1)1−α 1

Γ(2− α)

∫ b

x
(t− x)1−αf ′′(t)dt

= cDα
a+f(x) + (−1)1−α cDα

b−f(x),

which gives
cDα

b−f(x) = (−1)α−1[Nf (x)− cDα
a+f(x)].

By applying the fractional operator Iαa+ to both sides, we get

Iαa+
cDα

b−f(x) = (−1)α−1[Iαa+Nf (x)− Iαa+
cDα

a+f(x)]

= (−1)α−1Iαa+Nf (x) + (−1)α[f(x)− f(a)− f ′(a)(x− a)].

The proof is completed. □

3. DISCONTINUOUS FRACTIONAL STURM-LIOUVILLE PROBLEM WITH TRANSMISSION
CONDITIONS

In this section, we consider the following fractional S-L differential expression £α,x defined
as

£α,x :=

{
cDα

0−p(x)D
α
−1+ + q(x), x ∈ [−1, 0);

cDα
1−p(x)D

α
0+ + q(x), x ∈ (0, 1].

Then we shall consider the following fractional S-L problem on I , where I = [−1, 0) ∪ (0, 1],

(3.1) £α,xu+ λu = 0

with boundary conditions

L1(u) := a1,0I
2−α
−1+

u(−1) + a2,0D
α+1
−1+

u(−1) = 0,(3.2)

L2(u) := b1,0I
2−α
0+

u(1) + b2,0D
α+1
0+

u(1) = 0,(3.3)

L3(u) := a1,1D
α−1
−1+

u(−1) + a2,1D
α
−1+u(−1) = 0,(3.4)

L4(u) := b1,1D
α−1
0+

u(1) + b2,1D
α
0+u(1) = 0(3.5)

and transmission conditions

L5(u) := I2−α
−1+

u(−0) + I2−α
0+

u(+0) = 0,(3.6)

L6(u) := Dα−1
−1+

u(−0) +Dα−1
0+

u(+0) = 0,(3.7)

L7(u) := Dα
−1+u(−0) +Dα

0+u(+0) = 0,(3.8)

L8(u) := Dα+1
−1+

u(−0) +Dα+1
0+

u(+0) = 0,(3.9)
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where
3

2
< α < 2 in (3.1) - (3.9), λ ∈ C and λ is the eigenparameter in (3.1), and

p(x) =

{
p1, x ∈ [−1, 0),

p2, x ∈ (0, 1].

q(x) is real-valued and continuous in both [−1, 0) and (0, 1], also has finite limits q(±0) :=
lim

x→±0
q(x), a21,j + a22,j ̸= 0, b21,j + b22,j ̸= 0, with j = 0, 1 and p1, p2 are positive real numbers.

4. THE OPERATOR FORMULATION OF THE PROBLEM

We define the following inner product in the Hilbert space L2[−1, 1] by

(4.1) ⟨f, g⟩ = 1

p1

∫ 0

−1
f(x)g(x)dx+

1

p2

∫ 1

0
f(x)g(x)dx,

where f := f(x), g := g(x) ∈ L2[−1, 1]. In this Hilbert space we define the operator T with
domain

D(T ) :=


f = f(x) and Dα−1f(x), Dαf(x), Dα+1f(x),cDαf(x),

are absolutely continuous on [−1, 0) ∪ (0, 1],
and f(±0), Dαf(±0), Dα−1f(±0), Dα+1f(±0), I2−αf(±0) have finite limits,

Lif = 0, i = 1, 2, 3, 4, 5, 6, 7, 8.


(4.2)

and action law

(4.3) T f := £α,xf.

Thus the problem (3.1) - (3.9) can be written in the operator form as

T u = λu.

It should be noted that the eigenvalues and eigenfunctions of problem (3.1) - (3.9) are related
to the eigenvalues and eigenfunctions of operator T , respectively.

Theorem 4.1. The linear operator T is symmetric.

Proof. For each f, g ∈ D(T ), using (4.1) we write

⟨T f, g⟩ = 1

p1

∫ 0

−1
T f(x)g(x)dx+

1

p2

∫ 1

0
T f(x)g(x)dx

=
1

p1

∫ 0

−1
(cDα

0−p1D
α
−1+f(x))g(x)dx+

1

p2

∫ 1

0
(cDα

1−p2D
α
0+f(x))g(x)dx

+
1

p1

∫ 0

−1
q(x)f(x)g(x)dx+

1

p2

∫ 1

0
q(x)f(x)g(x)dx.

(4.4)
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By applying property 2.3, we get

⟨T f, g⟩ =
{∫ 0

−1
f(x)cDα

0−D
α
−1+g(x)dx+Dα

−1+g(x)DI2−α
−1+

f(x) |0−1 −DDα
−1+g(x)I

2−α
−1+

f(x) |0−1

−Dα
−1+f(x)DI2−α

−1+
g(x) |0−1 +DDα

−1+f(x)I
2−α
−1+

g(x) |0−1

}
+

{∫ 1

0
f(x)cDα

1−D
α
0+g(x)dx+Dα

0+g(x)DI2−α
0+

f(x) |10 −DDα
0+g(x)I

2−α
0+

f(x) |10

−Dα
0+f(x)DI2−α

0+
g(x) |10 +DDα

0+f(x)I
2−α
0+

g(x) |10
}

+
1

p1

∫ 0

−1
q(x)f(x)g(x)dx+

1

p2

∫ 1

0
q(x)f(x)g(x)dx

= ⟨f, T g⟩+
[
Dα

−1+g(x)DI2−α
−1+

f(x) |0−1 −DDα
−1+g(x)I

2−α
−1+

f(x) |0−1

−Dα
−1+f(x)DI2−α

−1+
g(x) |0−1 +DDα

−1+f(x)I
2−α
−1+

g(x) |0−1

]
+
[
Dα

0+g(x)DI2−α
0+

f(x) |10 −DDα
0+g(x)I

2−α
0+

f(x) |10
−Dα

0+f(x)DI2−α
0+

g(x) |10 +DDα
0+f(x)I

2−α
0+

g(x) |10
]
.

(4.5)

It’s worth noting that DI2−α = Dα−1, DDα = Dα+1. By considering the fractional boundary
conditions (3.2) - (3.5) and transmission conditions (3.6) - (3.9) we have

⟨T f, g⟩ = ⟨f, T g⟩,
which proves that the operator T is symmetric. □

Corollary 4.1. All eigenvalues of the problem (3.1) - (3.9) are real.

Corollary 4.2. The eigenfunctions corresponding to the different eigenvalues of the fractional
Sturm-Liouville problem (3.1) - (3.9) are orthogonal.

Proof. Let λ1 and λ2 are two different eigenvalues corresponding to eigenfunctions y1(x) and
y2(x), respectively, for the problem (3.1) to (3.9).

£α,xy1 + λ1y1 = 0,

£α,xy2 + λ2y2 = 0.

Multiply the conjugate of the upper-equation by y2(x) and the conjugate of the lower-equation
by y1(x) respectively, subtract from each other and integrate from −1 to 1 because of the
symmetry of the operator £α,x. We have

(λ1 − λ2)⟨y1(x), y2(x)⟩ = 0.

Since λ1 ̸= λ2, and the proof completes. □

Naturally, we can assume now that all eigenfunctions of the problem (3.1) - (3.9) are real-
valued.

Lemma 4.1. The equivalent integral form of equation (3.1) with fractional transmission con-
ditions (3.6) - (3.9) is given as

(4.6) u(x) = u0(x) +
1

p2
I2α0+

[
Nu(x) + (−1)1−α(λ+ q(x))u(x)

]
,

where

(4.7)
u0(x) =

xα−1

Γ(α)

(
−Dα−1

−1+
u(−0)

)
+

xα−2

Γ(α− 1)

(
−I2−α

−1+
u(−0)

)
+ Iα0+

(
−Dα

−1+u(−0)
)
+ Iα0+x

(
−Dα+1

−1+
u(−0)

)
.
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Proof. Let us consider (3.1)
cDα

1−p2D
α
0+u(x) + (λ+ q(x))u(x) = 0, x ∈ (0, 1] .

Apply the fractional integral operator Iα0+ acting on this equation and by Lemma 2.1, we obtain

Iα0+
cDα

1−p2D
α
0+u(x) + Iα0+(λ+ q(x))u(x) = 0(4.8)

and
p2D

α
0+u(x) = Iα0+Nu(x) + p2D

α
0+u(+0)

+ p2xDDα
0+u(+0) + (−1)1−α Iα0+ (λ+ q(x))u(x).

(4.9)

Applying Iα0+ on both sides of (4.9) and using conditions (3.6) - (3.9), we find

u(x) =
xα−1

Γ(α)

(
−Dα−1

−1+
u(−0)

)
+

xα−2

Γ(α− 1)

(
−I2−α

−1+
u(−0)

)
+ Iα0+

(
−Dα

−1+u(−0)
)
+ Iα0+x

(
−Dα+1

−1+
u(−0)

)
+

1

p2
I2α0+

[
Nu(x) + (−1)1−α(λ+ q(x))u(x)

]
.

(4.10)

So we reach

(4.11) u(x) = u0(x) +
1

p2
I2α0+

[
Nu(x) + (−1)1−α(λ+ q(x))u(x)

]
,

which completes the proof. □

We next define um(x, λ) to construct the successive approximations

um(x, λ) = u0(x, λ) +
1

p2Γ(2α)

∫ x

0
(x− y)2α−1

[
Num−1(y) + (−1)1−α(λ+ q(y))um−1(y)

]
dy

= u0(x, λ) +
1

p2
I2α0+

[
Num−1(x) + (−1)1−α(λ+ q(x))um−1(x, λ)

]
.

Lemma 4.2. Let Q1 := maxx∈(0,1] |q(x)|, PR1 := max|λ|∈R P1(λ) and P1(λ) := maxx∈(0,1] |u0(x, λ)|,
kα := 1

(3−α)Γ(2−α) .
Then the following estimate

(4.12) ∥um(x, λ)− um−1(x, λ)∥ ≤ PR1

{
2kα + |λ|+Q1

p2Γ(2α+ 1)

}m

holds for all m ∈ N = {1, 2, · · · }.

Proof. Let us apply the mathematical induction for m. Note that we notate K =
1

Γ(2α+ 1)
.

For m = 1, we have

∥u1(x, λ)− u0(x, λ)∥ = ∥ 1

p2
I2α0+ [Nu0(x) + (−1)1−α(λ+ q(x))u0(x, λ)]∥.

By using Lemma 2.1 and Corollary 2.3 in [5], we have
∥u1(x, λ)− u0(x, λ)∥

≤ 1

p2
K∥Nu0(x) + (−1)1−α(λ+ q(x))u0(x, λ)∥

≤ 1

p2
K(∥Nu0(x)∥+ ∥(λ+ q(x))u0(x, λ)∥)

≤ 1

p2
K(2kα∥u0(x, λ)∥+ (|λ|+Q1)∥u0(x, λ)∥)

≤ KPR1

p2
(2kα + |λ|+Q1).
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Suppose that (4.12) holds for m− 1, i.e.,

∥um−1(x, λ)− um−2(x, λ)∥ ≤ PR

{
K

p2
(2kα + |λ|+Q)

}m−1

.

Then we have
∥um(x, λ)− um−1(x, λ)∥

= ∥ 1

p2
I2α0+ [Num−1 −Num−2(x, λ) + (−1)α(λ+ q(x))(um−1(x, λ)− um−2(x, λ))]∥

≤ K

p2
[∥Num−1 −Num−2∥+ ∥(λ+ q(x))(um−1(x, λ)− um−2(x, λ))∥]

≤ K

p2
[2kα∥um−1(x, λ)− um−2(x, λ)∥+ (|λ|+Q1)∥(um−1(x, λ)− um−2(x, λ))∥]

≤ K

p2
(2kα + |λ|+Q1)∥(um−1(x, λ)− um−2(x, λ))∥

≤ PR1

{
K

p2
(2kα + |λ|+Q1)

}m

.

The proof is completed. □

By a similar proof method, we can prove the following lemma.

Lemma 4.3. Let Q2 := maxx∈[−1,0) |q(x)|, PR2 := max|λ|∈R P2(λ) and P2(λ) := maxx∈[−1,0) |u0(x, λ)|,
kα := 1

(3−α)Γ(2−α) .
Then the following estimate

(4.13) ∥um(x, λ)− um−1(x, λ)∥ ≤ PR2

{
2kα + |λ|+Q2

p1Γ(2α+ 1)

}m

holds for all m ∈ N.

Corollary 4.3. Let Q := max {Q1, Q2}, PR := max {PR1 , PR2}, we can deduce that

∥um(x, λ)− um−1(x, λ)∥ ≤ PR

{
2kα + |λ|+Q

p1Γ(2α+ 1)

}m

, x ∈ [−1, 0),

and

∥um(x, λ)− um−1(x, λ)∥ ≤ PR

{
2kα + |λ|+Q

p2Γ(2α+ 1)

}m

, x ∈ (0, 1]

also hold.

Lemma 4.4. The following initial value problem
cDα

0−p1D
α
−1+u(x) + (q(x) + λ)u(x) = 0, x ∈ [−1, 0],(4.14)

I2−α
−1+

u(−1) = a2,0,(4.15)

Dα+1
−1+

u(−1) = −a1,0(4.16)

has a unique solution on [−1, 0] provided that

K

p1
(2kα + |λ|+Q) < 1.(4.17)

Proof. We can derive the following integral equation by proving Lemma 4.1 in a similar man-
ner.

u(x) = u0(x) +
1

p1
I2α−1+

[
Nu(x) + (−1)1−α(λ+ q(x))u(x)

]
(4.18)
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where

u0(x) =
(x+ 1)α−1

Γ(α)
(Dα−1

−1+
u(−1)) +

(x+ 1)α−2

Γ(α− 1)
a2,0

+ Iα−1+(D
α
−1+u(−1)) + Iα−1+(−a1,0)(x+ 1).

The following integral equation is formulated using the mapping A,

ϕ = Aϕ(4.19)

where A is defined as:

Af = u0 +
1

p1
I2α−1+

[
Nf + (−1)1−α(λ+ q)f

]
,

then we have

∥Af −Ag∥ =

∥∥∥∥ 1

p1
I2α−1+

[
(Nf −Ng) + (−1)1−α(λ+ q)(f − g)

]∥∥∥∥ .
By using Lemma 2.1 and Corollary 2.3 in [5], we have

∥Af −Ag∥ ≤ K

p1

∥∥(Nf −Ng) + (−1)1−α(λ+ q)(f − g)
∥∥

≤ K

p1
∥(Nf −Ng)∥+ ∥(λ+ q)(f − g)∥

≤ K

p1
(2kα + |λ|+Q) ∥f − g∥ .

(4.20)

Based on (4.17) it can be shown that the mapping A is a contraction on the space ⟨C [−1, 0] , ∥·∥⟩.
For A there is therefore a unique solution of the equation (4.19). The proof is complete. □

Theorem 4.2. For any λ ∈ C, satisfying
K

pi
(2kα + |λ| + Q) < 1 (i = 1, 2). The differential

equation (3.1) has a unique solution that satisfies the fractional boundary condition (3.2) and
the transmission conditions (3.6) - (3.9).

Proof. Take into account the differential equation for λ ∈ C
£α,xu(x) + λu(x) = 0, x ∈ [−1, 0),(4.21)

cDα
0−p1D

α
−1+u(x) + (q(x) + λ)u(x) = 0, x ∈ [−1, 0),(4.22)

I2−α
−1+

u(−1) = a2,0,(4.23)

Dα+1
−1+

u(−1) = −a1,0.(4.24)

By lemma 4.3, this initial value problem has a unique solution ϕ11(x, λ). Next, we consider
the differential equation for λ ∈ C.

£α,xu(x) + λu(x) = 0, x ∈ (0, 1],(4.25)
cDα

1−p2D
α
0+u(x) + (q(x) + λ)u(x) = 0, x ∈ (0, 1],(4.26)

I2−α
0+

u(+0) = −I2−α
−1+

ϕ11(−0),(4.27)

Dα+1
0+

u(+0) = −Dα+1
−1+

ϕ11(−0).(4.28)

We establish the sequence {un(x, λ)} for x ∈ (0, 1] and n = 1, 2, . . . such that

un(x, λ) = u0(x, λ) +
1

p2
I2α0+

[
Nun−1(x) + (−1)1−α(λ+ q(x))un−1(x, λ)

]
(4.29)

where

u0(x, λ) =
xα−1

Γ(α)
(−Dα−1

−1+
ϕ11(−0)) +

xα−2

Γ(α− 1)
(−I2−α

−1+
ϕ11(−0))

+ Iα0+(−Dα
−1+ϕ11(−0)) + Iα0+(− Dα+1

−1+
ϕ11(−0))x, x ∈ (0, 1].

(4.30)
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Obviously, each of the functions un(x, λ) is an entire function of λ for each x ∈ (0, 1]. Next
we consider the following series

u∗(x, λ) = lim
n→∞

(un(x, λ)− u0(x, λ)) =

∞∑
j=1

((uj(x, λ)− uj−1(x, λ)).(4.31)

According to estimate (4.12) in lemma 4.2, for 0 < x ≤ 1, the absolute value of its terms is
less than the corresponding terms of the convergent numeric series

PR

∞∑
j=1

{
K

p2
(2kα + |λ|+Q)

}j

.

Hence, series (4.31) converges uniformly. Obviously, each term (uj(x, λ) − uj−1(x, λ)) of
series (4.31) is continuous on x ∈ (0, 1]. Therefore the sum of series (4.31) is continuous on
x ∈ (0, 1] and

ϕ12(x, λ) = lim
n→∞

(un(x, λ)) = u0(x, λ) + u∗(x, λ)

is continuous on x ∈ (0, 1].
The uniform convergence of the sequence un(x, λ) allows us to substitute n → ∞ into

(4.29), resulting in equation (4.11). This shows that the limit function ϕ12(x, λ) defined by
(4.31) serves as the solution to (4.11). However, it is important to note that the fulfillment of
the initial conditions (4.27) to (4.28) alone is not sufficient. Finally, let the function ϕ1(x, λ)
be given by

ϕ1(x, λ) =

{
ϕ11(x, λ), x ∈ [−1, 0),

ϕ12(x, λ), x ∈ (0,−1]
(4.32)

satisfies the differential equation (3.1), fractional boundary conditions (3.2) and fractional
transmission conditions (3.6) - (3.9).

□

Using a similar approach, we can prove the next theorem.

Theorem 4.3. For any λ ∈ C, satisfying
K

pi
(2kα + |λ| + Q) < 1 (i = 1, 2), the differential

equation

£α,xu(x) + λu(x) = 0, x ∈ [−1, 0) ∪ (0,−1]

has unique solution

ϕ2(x, λ) =

{
ϕ21(x, λ), x ∈ [−1, 0)
ϕ22(x, λ), x ∈ (0, 1]

,(4.33)

ϕ3(x, λ) =

{
ϕ31(x, λ), x ∈ [−1, 0)
ϕ32(x, λ), x ∈ (0, 1]

,(4.34)

ϕ4(x, λ) =

{
ϕ41(x, λ), x ∈ [−1, 0)
ϕ42(x, λ), x ∈ (0, 1]

(4.35)

satisfying separately fractional boundary conditions (3.3) - (3.5) and transmission conditions
(3.6) - (3.9), for each x ∈ [−1, 0) ∪ (0, 1] .
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5. THE SUFFICIENT AND NECESSARY CONDITION FOR EIGENVALUES

In this section, we present a necessary and sufficient condition for the S-L problem, which
is composed of conditions (3.1) - (3.9), to meet the following conditions. If we apply the
boundary conditions (3.2) - (3.5), we can obtain the following boundary matrices.

A =


a1,0 0 0 a2,0
0 a1,1 a2,1 0
0 0 0 0
0 0 0 0

 , B =


0 0 0 0
0 0 0 0
b1,0 0 0 b2,0
0 b1,1 b2,1 0

 ,

and let

Cu(x) =

{
C1u(x), x ∈ [−1, 0),
C2u(x), x ∈ (0, 1]

where

C1u(x) =
(
I2−α
−1+

u(x), Dα−1
−1+

u(x), Dα
−1+u(x), Dα+1

−1+
u(x)

)T
,

and
C2u(x) =

(
I2−α
0+

u(x), Dα−1
0+

u(x), Dα
0+u(x), Dα+1

0+
u(x)

)T
.

If λ is not an eigenvalue of (3.1) - (3.9), it can be inferred from Section IV of [19] that ϕ1,
ϕ2, ϕ3 and ϕ4 of the equation (3.1) on [−1, 0) ∪ (0, 1] are linearly independent.

Let ϕ11, ϕ21, ϕ31 and ϕ41 of the equation (3.1) in the interval [−1, 0) satisfying the following
intitial condition

(
Cϕ11(−1, λ), Cϕ21(−1, λ), Cϕ31(−1, λ), Cϕ41(−1, λ)

)
= E(5.1)

where E is identity matrix. Since the fractional Wronskians are entire functions with respect
to λ, independent of x, we can define

ω1(x) = W
(
ϕ11(x, λ), ϕ21(x, λ), ϕ31(x, λ), ϕ41(x, λ)

)
= det

(
Cϕ11(x, λ), Cϕ21(x, λ), Cϕ31(x, λ), Cϕ41(x, λ)

)
= det

(
Cϕ11(−1, λ), Cϕ21(−1, λ), Cϕ31(−1, λ), Cϕ41(−1, λ)

)
= 1.

And let ϕ12, ϕ22, ϕ32 and ϕ42 of the equation (3.1) in the interval (0, 1] satisfying the following
intitial condition, that is, the transmission conditions (3.6) - (3.8), then(

Cϕ12(+0, λ), Cϕ22(+0, λ), Cϕ32(+0, λ), Cϕ42(+0, λ)
)

= −
(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

)
.

(5.2)

Similarly, we can define

ω2(x) = W
(
ϕ12(x, λ), ϕ22(x, λ), ϕ32(x, λ), ϕ42(x, λ)

)
= det

(
Cϕ12(x, λ), Cϕ22(x, λ), Cϕ32(x, λ), Cϕ42(x, λ)

)
= det

(
Cϕ12(+0, λ), Cϕ22(+0, λ), Cϕ32(+0, λ), Cϕ42(+0, λ)

)
= det

[
−
(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

)]
= 1.

Lemma 5.1. Let

u(x) =

{
u1(x), x ∈ [−1, 0),
u2(x), x ∈ (0, 1]

be any solution of the equation T y = λy, then it can be represented as

u(x) =

{
d1ϕ11(x) + d2ϕ21(x) + d3ϕ31(x) + d4ϕ41(x), x ∈ [−1, 0),
d5ϕ12(x) + d6ϕ22(x) + d7ϕ32(x) + d8ϕ42(x), x ∈ (0, 1]
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where di ∈ C(i = 1, 2, . . . 8). If u(x) satisfies the transmission conditions (3.6) - (3.9), then
d1 = d5, d2 = d6, d3 = d7, d4 = d8.

Proof. Let u(x) be represented in the following form

u(x) =

{
d1ϕ11(x) + d2ϕ21(x) + d3ϕ31(x) + d4ϕ41(x), x ∈ [−1, 0),
d5ϕ12(x) + d6ϕ22(x) + d7ϕ32(x) + d8ϕ42(x), x ∈ (0, 1].

Applying the transmission conditions (3.6) - (3.9) to the above equation, i.e.,
d5I

2−α
0+

ϕ12(+0, λ) + d6I
2−α
0+

ϕ22(+0, λ) + d7I
2−α
0+

ϕ32(+0, λ) + d8I
2−α
0+

ϕ42(+0, λ)

d5D
α−1
0+

ϕ12(+0, λ) + d6D
α−1
0+

ϕ22(+0, λ) + d7D
α−1
0+

ϕ32(+0, λ) + d8D
α−1
0+

ϕ42(+0, λ)
d5D

α
0+ϕ12(+0, λ) + d6D

α
0+ϕ22(+0, λ) + d7D

α
0+ϕ32(+0, λ) + d8D

α
0+ϕ42(+0, λ)

d5D
α+1
0+

ϕ12(+0, λ) + d6D
α+1
0+

ϕ22(+0, λ) + d7D
α+1
0+

ϕ32(+0, λ) + d8D
α+1
0+

ϕ42(+0, λ)



= −


d1I

2−α
−1+

ϕ11(−0, λ) + d2I
2−α
−1+

ϕ21(−0, λ) + d3I
2−α
−1+

ϕ31(−0, λ) + d4I
2−α
−1+

ϕ41(−0, λ)

d1D
α−1
−1+

ϕ11(−0, λ) + d2D
α−1
−1+

ϕ21(−0, λ) + d3D
α−1
−1+

ϕ31(−0, λ) + d4D
α−1
−1+

ϕ41(−0, λ)

d1D
α
−1+ϕ11(−0, λ) + d2D

α
−1+ϕ21(−0, λ) + d3D

α
−1+ϕ31(−0, λ) + d4D

α
−1+ϕ41(−0, λ)

d1D
α+1
−1+

ϕ11(−0, λ) + d2D
α+1
−1+

ϕ21(−0, λ) + d3D
α+1
−1+

ϕ31(−0, λ) + d4D
α+1
−1+

ϕ41(−0, λ)

 .

We rewrite it in the following form(
Cϕ12(+0, λ), Cϕ22(+0, λ), Cϕ32(+0, λ), Cϕ42(+0, λ)

) (
d5, d6, d7, d8

)T
= −

(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

) (
d1, d2, d3, d4

)T
.

Then from (5.2), we have

−
(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

) (
d5, d6, d7, d8

)T
= −

(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

) (
d1, d2, d3, d4

)T
,

so

(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

) (
d5 − d1, d6 − d2, d7 − d3, d8 − d4

)T
= 0.

(5.3)

Since

det
(
Cϕ11(−0, λ), Cϕ21(−0, λ), Cϕ31(−0, λ), Cϕ41(−0, λ)

)
= 1 ̸= 0,

the above system of linear equation (5.3) has only zero solution, so

d1 = d5, d2 = d6, d3 = d7, d4 = d8.

□

Let
Φ1(x, λ) =

(
Cϕ11(x, λ), Cϕ21(x, λ), Cϕ31(x, λ), Cϕ41(x, λ)

)
, x ∈ [−1, 0),

Φ2(x, λ) =
(
Cϕ12(x, λ), Cϕ22(x, λ), Cϕ32(x, λ), Cϕ42(x, λ)

)
, x ∈ (0, 1]

(5.4)

where Φ1(0, λ) and Φ2(0, λ) are defined by left and right limits. Let

Φ(x, λ) =

{
Φ1(x, λ), x ∈ [−1, 0),
Φ2(x, λ), x ∈ (0, 1]

and
Φ(−0, λ) = Φ1(0, λ),Φ(+0, λ) = Φ2(0, λ),

for arbitrary x ∈ [−1, 0) ∪ (0, 1], Φ(x, λ) is entire function of parameter λ.
According to the boundary conditions (3.2) - (3.5), it can be obtained that

(5.5) ACu(−1) +BCu(1) = 0.

Next, we can determine the sufficient and necessary condition for the eigenvalues in the fractional-
order Sturm-Liouville problem.
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Theorem 5.1. The complex number λ is an eigenvalue of the problem (3.1) - (3.9) if and only
if

det(A+BΦ(1, λ)) = 0.

Proof. Let λ0 be an eigenvalue of the problem (3.1) - (3.9) and u0(x) its corresponding eigen-
function. Then by Lemma 5.1, the eigenfunction u0(x) may be represented in the form

u0(x, λ0) =

{
d1ϕ11(x, λ0) + d2ϕ21(x, λ0) + d3ϕ31(x, λ0) + d4ϕ41(x, λ0), x ∈ [−1, 0),
d1ϕ12(x, λ0) + d2ϕ22(x, λ0) + d3ϕ32(x, λ0) + d4ϕ42(x, λ0), x ∈ (0, 1]

where d1, d2, d3 and d4 are not all zero. Substituting u0(x) into (5.5), we obtain

A


d1I

2−α
−1+

ϕ11(−1, λ0) + d2I
2−α
−1+

ϕ21(−1, λ0) + d3I
2−α
−1+

ϕ31(−1, λ0) + d4I
2−α
−1+

ϕ41(−1, λ0)

d1D
α−1
−1+

ϕ11(−1, λ0) + d2D
α−1
−1+

ϕ21(−1, λ0) + d3D
α−1
−1+

ϕ31(−1, λ0) + d4D
α−1
−1+

ϕ41(−1, λ0)

d1D
α
−1+ϕ11(−1, λ0) + d2D

α
−1+ϕ21(−1, λ0) + d3D

α
−1+ϕ31(−1, λ0) + d4D

α
−1+ϕ41(−1, λ0)

d1D
α+1
−1+

ϕ11(−1, λ0) + d2D
α+1
−1+

ϕ21(−1, λ0) + d3D
α+1
−1+

ϕ31(−1, λ0) + d4D
α+1
−1+

ϕ41(−1, λ0)



+B


d1I

2−α
0+

ϕ12(1, λ0) + d2I
2−α
0+

ϕ22(1, λ0) + d3I
2−α
0+

ϕ32(1, λ0) + d4I
2−α
0+

ϕ42(1, λ0)

d1D
α−1
0+

ϕ12(1, λ0) + d2D
α−1
0+

ϕ22(1, λ0) + d3D
α−1
0+

ϕ32(1, λ0) + d4D
α−1
0+

ϕ42(1, λ0)
d1D

α
0+ϕ12(1, λ0) + d2D

α
0+ϕ22(1, λ0) + d3D

α
0+ϕ32(1, λ0) + d4D

α
0+ϕ42(1, λ0)

d1D
α+1
0+

ϕ12(1, λ0) + d2D
α+1
0+

ϕ22(1, λ0) + d3D
α+1
0+

ϕ32(1, λ0) + d4D
α+1
0+

ϕ42(1, λ0)

 = 0.

That is

A
(
Cϕ11(−1, λ0), Cϕ21(−1, λ0), Cϕ31(−1, λ0), Cϕ41(−1, λ0)

) (
d1, d2, d3, d4

)T
+B

(
Cϕ12(1, λ0), Cϕ22(1, λ0), Cϕ32(1, λ0), Cϕ42(1, λ0)

) (
d1, d2, d3, d4

)T
= 0.

By (5.1) and (5.4), we have

(A+BΦ(1, λ0))
(
d1, d2, d3, d4

)T
= 0.(5.6)

By the fact that d1, d2, d3 and d4 are not all zero, we have that det (A+BΦ(1, λ0)) = 0.
On the contrary, if det (A+BΦ(1, λ0)) = 0, then the homogeneous system of the lin-

ear equations (5.6) for the variables of the constanta d1, d2, d3 and d4 has non-zero solution(
d1

′, d2
′, d3

′, d4
′)T . Let

u(x) =

{
d1

′ϕ11(x, λ0) + d2
′ϕ21(x, λ0) + d3

′ϕ31(x, λ0) + d4
′ϕ41(x, λ0), x ∈ [−1, 0),

d1
′ϕ12(x, λ0) + d2

′ϕ22(x, λ0) + d3
′ϕ32(x, λ0) + d4

′ϕ42(x, λ0), x ∈ (0, 1],

then u(x) is the non-zero solution of equation T u = λu, which satisfies the conditions (3.2) -
(3.9) and (5.1). So λ is the eigenvalue of the problem (3.1) - (3.9). □
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[14] O.S. Mukhtarov, E. Tunç. Eigenvalue problems for Sturm Liouville equations with trans-
mission conditions. Israel Journal of Mathematics, 2004, 144: 367-380.

[15] M. Kadakal, O.S. Mukhtarov. Sturm–Liouville problems with discontinuities at two
points. Computers and Mathematics with Applications, 2007, 54(11-12): 1367-1379.

[16] M. Kadakal, O.S. Mukhtarov. Discontinuous Sturm–Liouville problems containing eigen-
parameter in the boundary conditions. Acta Mathematica Sinica, 2006, 22(5): 1519-1528.

[17] M. Klimek, O.P. Agrawal. Fractional Sturm–Liouville problem. Computers and Mathe-
matics with Applications, 2013, 66(5): 795-812.

[18] M. Zayernouri, G.E. Karniadakis. Fractional Sturm–Liouville eigen-problems: theory and
numerical approximation. Journal of Computational Physics, 2013, 252: 495-517.
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