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Abstract

This paper investigated the orbital stability of the solitary waves in the coupled
Schrödinger-BBM equation through abstract theoretical results and detailed spec-
tral analysis. First, we derived the explicit exact solitary wave solutions of the
coupled Schrödinger-BBM equation. Then, using the orbital stability theory de-
veloped by Grillakis et al., we established general criteria for assessing the orbital
stability of these solitary waves.
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1 Introduction
Nonlinear evolution equations (NLEEs), as an important research topic in mathemat-

ics, physics, and engineering, play a crucial role in describing various complex phenomena
such as nonlinear waves, fluid dynamics, optics, and quantum mechanics. The dynamic
behavior of many systems depends on the interaction of multiple factors. In order to
study the evolution and stability of the system, many combined equation and coupled
equations are introduced such as the Benjamin-Ono-Burgers equation[1], the coupled
Schrödinger-KdV equation [2] and the coupled KdV [3]. In this paper, we investigate
the coupled Schrödinger–Benjamin–Bona–Mahony (cS-BBM) equation, which describes
nonlinear wave phenomena and interactions across multiple physical fields. This system
is widely applied in shallow water waves, plasma physics, optics, and other fields to model
the interactions between long waves (described by the BBM equation) and short waves
(described by the Schrödinger equation),

iut + uxx + β1vu+ β2q(|u|2)u = 0, (t, x) ∈ R
vt − vxxt + (β3|u|2 + β4f(v))x = 0, (t, x) ∈ R
u(0) = u0(x), x ∈ R,
v(0) = v0(x), x ∈ R,

(1)
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where u(x, t) and v(x, t) represent complex and real functions respectively, βi (1 ≤ i ≤ 4)
are real constants. The well-posedness problem of (1) in H2 ×H2 when β1 = −1, β3 =
β4 = 1 was studied in [4].

When β1 = β3 = β4 = −1, β2 = −α, q(|u|2) = |u|p−1, f(v) = v2, we have
iut + uxx = vu+ α|u|p−1u,

vt − vxxt = (|u|2 + v2)x,

u(0) = u0(x),

v(0) = v0(x),

(2)

where α ∈ R, 1 ≤ p ≤ ∞. Guo [5] proved the global solvability of (3) in space
L∞(0, T ;Hm) × L∞(0, T ;Hm) for m ≥ 2 via integral estimation method and the fixed
point theorem. Guo and Miao [6] proved the global well-posedness in space L2×L2 when
1 < p < 5 and (u0, v0) ∈ L2 × L2 and the global well-posedness in space H1 ×H1 when
1 < p <∞ and (u0, v0) ∈ H1 ×H1 by Strichartz type estimates.

Orbital stability is an important concept in dynamical systems and partial differen-
tial equations, concerning the long-term behavior of solutions as they evolve over time,
particularly the stability of solutions in nonlinear systems. In the NLEEs, orbital sta-
bility is a key tool for determining whether these solutions can maintain their structure
under small perturbations. Recently, Luo [7] proved the orbital stability in H1(R) of the
modified Camassa-Holm-Novikov equation by conservation laws and the monotonicity
property of energy functional. Zheng [8] considered the orbital stability of the solitary
wave of a two-component Novikov system via the method proposed by [10, 11]. Xiao
[13] studied the orbital stability of multi-solitons for the Hirota equation via the method
proposed by [12]. The orbital stability of NLEEs has been studied extensively through
the method proposed by [16, 17], such as the generalized Boussinesq equation [15], the
EK equation [14], the coupled BBM [9] and the Schrödinger-KdV system [18], etc.

In this paper, we mainly give the orbital stability of solitary waves to the cS-BBM
equation under the condition that u(x, t) and v(x, t) as well as their derivatives decay to
zero as |x| → ∞. In section 2, we will study the explicit exact solitary wave solutions of
the coupled Schrödinger-BBM equation. In section 3 and 4, we will give the proof of the
main result of this paper in detail.

2 Solitary waves of the cS-BBM equation
We only consider the solitary wave solutions of the case of p = 3 in (2){

iut + uxx = vu+ α|u|2u,
vt − vxxt = (|u|2 + v2)x.

(3)

Assume that (3) has solitary wave solutions in the form of

u(x, t) = e−iωta(ξ) = e−iωteiq(ξ)â(ξ), a(ξ) = eiqξâ(ξ), v(t, x) = b(ξ), ξ = x− ct, (4)
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where â(ξ), b(ξ) are real functions, ω, q, c are constants to be determined later. a(ξ), b(ξ)
as well as their derivatives decay to zero as |ξ| → ∞. Substituting (4) into equation (3),
we obtain {

ωa(ξ)− ica′(ξ) + a′′(ξ)− a(ξ)b(ξ)− α|a(ξ)|2a(ξ) = 0,

−cb′(ξ) + cb′′′(ξ)− (|a(ξ)|2 + b2(ξ))′ = 0.
(5)

Set both the real part and the imaginary part of the first equation in (5) to be zero, and
integrate the second equation, we have(

ω +
c2

4

)
â+ â′′ − âb− αâ3 = 0, (6)

−cb+ cb′′ − â2 − b2 = 0. (7)

Let â(ξ) = AsechBξ, where A and B are constants to be determined later. Substitut-
ing it into (6), we obtain(

ω +
c2

4

)
â+B2â− 2B2

A2
â3 − âb− αâ3 = 0. (8)

By comparing the coefficients of terms with the same power, we obtain

B2 = −ω − c2

4
, b =

(
−α− 2B2

A2

)
â2. (9)

Inserting (9) into (7), one has((
−c+ 4cB2

)(
−α− 2B2

A2

)
− 1

)
â2 +

(
6c
B2

A2
− α− 2B2

A2

)(
α +

2B2

A2

)
â4 = 0. (10)

Thus, we get

α = 6c
B2

A2
− 2B2

A2
, A2 = 6c2B2 − 24c2B4. (11)

We only consider the case of A > 0, B > 0, from (4), (9) and (11), it yields

â(ξ) =

(
6c2
(
−ω − c2

4

)
(1 + 4ω + c2)

) 1
2

sech

((
−ω − c2

4

) 1
2

ξ

)
, (12)

b(ξ) = −6c

(
−ω − c2

4

)
sech2

((
−ω − c2

4

) 1
2

ξ

)
. (13)

Therefore, the following theorem is obtained.

Theorem 2.1. If c > 0 and −1
4
(c2 + 1) < ω < − c2

4
, there exists solitary wave

solutions of equation (3) in the form of (4) with â, b satisfying (12) and (13), respectively.
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3 Orbital stability of solitary waves for the cS-BBM
equation

Setting q⃗ = (u, v) and defining the work space X = H1
complex(R) × H1

real(R) with the
inner product

(q⃗1, q⃗2) = Re

∫
R
u1ū2 + u1xū2x + v1v2 + v1xv2xdx, ∀ q1, q2 ∈ X, (14)

X∗ = H−1(R) is viewed as the dual space of X. Then, there is a nature isomorphism
I : X → X∗ write as ⟨Iq⃗1, q⃗2⟩ = (q1, q2) where ⟨f⃗ , q⃗⟩ = Re

∫
R f1ū + f2vdx. Therefore,

I =

(
1− ∂2x 0

0 1− ∂2x

)
.

Let T1(m1)q⃗(·) = q⃗(· −m1), T2(m2)q⃗(·) = (eim2u(·), v(·)) where q⃗ ∈ X and m1, m2 ∈
R. Denote ψ⃗(x) = (a(x), b(x)), then T1(ct)T2(ωt)ψ⃗(x) can be viewed as the solitary wave
solutions of equation (3) in Theorem 2.1. By computation, we have

T ′
1(0) =

(
−∂x

−∂x

)
, T ′

2(0) =

(
−i

0

)
. (15)

The orbital stability of solitary waves T1(ct)T2(wt)ψ⃗(x) is defined as follows.

Definition 3.1. The solitary wave T1(ct)T2(wt)ψ⃗(x) is orbitally stable: ∀ ϵ > 0,
there exists τ > 0, if ||q⃗0−ψ⃗||X < τ and q⃗(t) is the solution of (3) on [0, t0) with q⃗(0) = q⃗0,
then q⃗(t) can be continued to a solution in 0 ≤ t < +∞, and

sup
0<t<∞

inf
m1∈R

inf
m2∈R

||q⃗(t)− T1(m1)T2(m2)ψ⃗(x)||X < ϵ. (16)

Otherwise, T1(ct)T2(wt)ψ⃗(x) is called orbitally unstable [18].
Now, we study the orbital stability of solitary waves of the cS-BBM equation (3).

System (3) can be transformed into a Hamiltonian form

dq⃗

dt
= JE ′(q⃗), (17)

where

E(q⃗) =

∫
|ux|2 +

α

2
|u|4 + v|u|2 + 1

3
v3dx, (18)

J =

(
− i

2

(1− ∂2x)
−1∂x

)
, (19)

E ′(q⃗) =

(
−2uxx + 2α|u|2u+ 2vu

|u|2 + v2

)
. (20)
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According to T ′
1(0) = JM1, T

′
2(0) = JM2 [16, 17], we haveM1 =

(
−2i∂x

∂2x − 1

)
,M2 =(

2
0

)
. Defining the following functional

Q1(q⃗) =
1

2
⟨M1q⃗, q⃗⟩ =

1

2
Re

∫
−2iuxū+ (vxx − v)vdx, (21)

Q2(q⃗) =
1

2
⟨M2q⃗, q⃗⟩ = Re

∫
|u|2dx. (22)

The corresponding Fréchet derivatives of Q1 and Q2 are Q′
1(q⃗) =

(
−2iux
vxx − v

)
and Q′

2(q⃗) =(
2u
0

)
. By simple computation, it can be proved that E(q⃗), Q1(q⃗) andQ2(q⃗) are invariants

under T1 and T2.

Proposition 3.1. For any m1, m2 ∈ R , we have

E(T1(m1)T2(m2)q⃗) = E(q⃗),

Q1(T1(m1)T2(m2)q⃗) = Q1(q⃗),

Q2(T1(m1)T2(m2)q⃗) = Q2(q⃗),

(23)

and ∀ t ∈ R, E(q⃗(t)) = E(q⃗(0)), Q1(q⃗(t)) = Q1(q⃗(0)), Q2(q⃗(t)) = Q2(q⃗(0)).

Proof.

dE

dt
=

d

dt

∫
|ux|2 +

α

2
|u|4 + v|u|2 + 1

3
v3dx

=

∫
−ūxxut − uxxūt + α|u|2ūut + α|u|2uūt + |u|2vt + vūut + vuūt + v2vtdx

= 0,

dQ1

dt
=

1

2

d

dt
Re

∫
−2iuxū+ (vxx − v)vdx = 0,

dQ2

dt
=

d

dt
Re

∫
|u|2dx = 0.

For ψ⃗, by using (5), we deduce the following equation holds

E ′(ψ⃗)− cQ′
1(ψ⃗)− ωQ′

2(ψ⃗) =

(
−2a′′ + 2ba+ 2α|a|2a+ 2ica′ − 2ωa

|a|2 + b2 + cb− cb′′

)
=

(
0
0

)
. (24)
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For ψ⃗ = (a, b), ϕ⃗ = (ϕ1, ϕ2) ∈ X, we have

E ′′(ψ⃗)ϕ⃗ =

(
−2ϕ1xx + 2bϕ1 + 2αa2ϕ̄1 + 4α|a|2ϕ1 + 2aϕ2

aϕ̄1 + āϕ1 + 2bϕ2

)
,

Q′′
1(ψ⃗)ϕ⃗ =

(
−2iϕ1x

ϕ2xx − ϕ2

)
,

Q′′
2(ψ⃗)ϕ⃗ =

(
2ϕ1

0

)
.

Let us define the operator Hω,c : X → X∗

Hω,c = E ′′(ψ⃗)− cQ′′
1(ψ⃗)− ωQ′′

2(ψ⃗). (25)

Since T ′
1(0)ψ⃗ =

(
−a′
−b′
)
, and T ′

2(0)ψ⃗ =

(
−ia
0

)
, we have

Hω,cT
′
1(0)ψ⃗(x) = 0, Hω,cT

′
2(0)ψ⃗(x) = 0. (26)

Hω,c is a self-adjoint operator, that is, I−1Hω,c is a bounded self-adjoint operator. The
operator Hω,c has a spectrum composed entirely by real numbers λ such that Hω,c−λI is
non-invertible (I is identity operator). Set K = {k1T ′

1(0)ψ⃗ + k2T
′
2(0)ψ⃗|k1, k2 ∈ R}, then

K is the kernel of Hω,c.
In order to prove the orbital stability of solitary waves, we introduce the following

assumption.
Assumption 3.1. (Spectral decomposition of operator Hω,c [16, 17]). The space X

can be decomposed as a direct sum
X = F+K+ P, (27)

where F is a finite-dimensional negative subspace of X such that
⟨Hω,cq⃗, q⃗⟩ < 0, q⃗ ̸= 0 ∈ F, (28)

K = {k1T ′
1(0)ψ⃗ + k2T

′
2(0)ψ⃗|k1, k2 ∈ R} is a subspace of X such that

⟨Hω,cq⃗, q⃗⟩ = 0, q⃗ ∈ K, (29)
and P is a closed subspace of X, there exists a constant δ > 0 such that

⟨Hω,cq⃗, q⃗⟩ ≥ δ||q⃗||2X, q⃗ ∈ P. (30)

We define a mapping d(ω, c) : R× R → R in the form of

d(ω, c) = E(ψ⃗)− cQ1(ψ⃗)− ωQ2(ψ⃗), (31)

and let d′′(ω, c) be the Hessian matrix of d(ω, c).
Furthermore, p(d′′) represents the positive-eigenvalue’s number of d′′ while n(Hω,c) is

the negative-eigenvalue’s number of Hω,c.
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Theorem 3.1. (Abstract stability theorem [16, 17]) Assume that there exists three
functional E(ψ⃗), Q1(ψ⃗), Q2(ψ⃗) satisfying Proposition 3.1, solitary waves T1(ct)T2(ωt)ψ⃗(x)
satisfying (25) and operator Hω,c satisfying Assumption 3.1. If d(ω, c) is non-singular
and p(d′′) = n(Hω,c), the solitary waves T1(ct)T2(ωt)ψ⃗(x) of system (3) are orbital stable.

Now, the main result about the orbital stability of solitary waves of system (3) is as
follow.

Theorem 3.2. (Main theorem). Under the condition of Theorem 2.1 , if ω > −1
c
− c2

4

the solitary waves T1(ct)T2(ωt)ψ⃗(x) of system (3) are orbital stable.

4 The proof of Theorem 3.2
In order to prove the orbital stability of system (3), according to Theorem 3.1, we

only need to prove Assumption 3.1 holds and p(d′′) = n(H).

4.1 Proof of Assumption 3.1
For arbitrary ϕ⃗ = (ϕ1, ϕ2) = (ei

c
2
xz1, z2) ∈ X, where z1 = r1 + ir2, r1 = Rez1, r2 =

Imz1, r1, r2, z2 ∈ R, we have

⟨Hω,cϕ⃗, ϕ⃗⟩ =Re

∫
R

(
−2ϕ1xx + 2bϕ1 + 2αa2ϕ̄1 + 4α|a|2ϕ1 + 2icϕ1x − 2ωϕ1

)
ϕ̄1dx

+Re

∫
R

(
aϕ̄1 + āϕ1 + 2bϕ2 − cϕ2xx + cϕ2

)
ϕ2 + 2aϕ2ϕ̄1dx

=Re

∫
R
2

(
−z1xx − ωz1 −

c2

4
z1 + bz1 + 2αâ2z1

)
z̄1 + 2αâ2z̄21dx

+Re

∫
R
(−cz2xx + cz2 + 2bz2) z2 + 2âz2z̄1 + âz̄1z2 + âz1z2dx

=⟨L̃1r1, r1⟩+ ⟨L2r2, r2⟩+ ⟨L̃3z2, z2⟩+ 4Re

∫
R
âr1z2dx

=⟨L1r1, r1⟩+ ⟨L2r2, r2⟩+ ⟨L3z2, z2⟩

+

∫
R

(
2âr1

(c− 4cB2)
1
2

+
(
c− 4cB2

) 1
2 z2

)2

dx,

(32)

where
L̃1 = 2

(
− ∂2

∂x2
− c2

4
− ω + b+ 3αâ2

)
,

L1 = L̃1 −
4

c− 4cB2
â2,

L2 = 2

(
− ∂2

∂x2
− c2

4
− ω + b+ αâ2

)
,

7



L̃3 = −c ∂
2

∂x2
+ c+ 2b,

L3 = L̃3 − (c− 4cB2) = −c ∂
2

∂x2
+ 4cB2 + 2b.

By computation, we have L1(â
′) = 0, L2(â) = 0 and L3(b

′) = 0 while x = 0 is the
simple zero of â′ and b′. Then, according to the Sturm-Liouville theorem, 0 is the second
eigenvalue of L1 and L3 and 0 is the first simple eigenvalue of L2. Therefore, there only
exists one negative eigenvalue of L1 and L3, respectively, that is, L1(â

2) = −6B2â2 and
L3(−2bâ) = −5B2(−2bâ).

In addition, L1 = 2
(
−∂2x − ω − c2

4

)
+M1(x), L2 = 2

(
−∂2x − ω − c2

4

)
+M2(x) and

L3 = −c∂2x + 4cB2 +M3(x) where Mi(x) → 0 (i = 1, 2, 3) as |x| → ∞. Thus, thanks to
the Weyl’s essential spectral theorem [19], we get σess(L1) = σess(L2) = [2B2,+∞) and
σess(L3) = [4cB2,+∞).

Next, we will prove that n(Hω,c) = 1 and Assumption 3.1 holds.
We denote ϕ⃗− =

(
ei

c
2
x(r−1 + ir−2 ), z

−
2

)
, where r−1 = â2, r−2 = 0 and z−2 = −2bâ.

⟨Hω,cϕ⃗
−, ϕ⃗−⟩ = −6B2⟨â2, â2⟩ − 5B2⟨−2bâ,−2bâ⟩ < 0. (33)

Define ϕ⃗0,1 = (â′, 0, b′) and ϕ⃗0,2 = (0, â, 0), then they are the kernel of Hω,c. Let

F = {kϕ⃗−|k ∈ R}, (34)
K = {k1ϕ⃗0,1 + k2ϕ⃗0,2|k1, k2 ∈ R}, (35)
P = {p⃗ ∈ X|p⃗ = (p1, p2, p3), ⟨p1, â2⟩+ ⟨p3,−2bâ⟩ = 0,

⟨p1, â′⟩+ ⟨p3, b′⟩ = 0, ⟨p2, â⟩ = 0}. (36)

For arbitrary q⃗ =
(
ei

c
2 (r1 + ir2), z2

)
∈ X, let χ = ⟨r1,â2⟩+⟨z2,−2âb⟩

⟨â2,â2⟩+⟨−2âb,−2âb⟩ , χ1 =
⟨r1,â′⟩+⟨z2,b′⟩
⟨â′,â′⟩+⟨b′,b′⟩ , χ2 =

⟨r2,â⟩
⟨â,â⟩ , then we can represent q⃗ as

q⃗ = χϕ⃗− + χ1ϕ⃗0,1 + χ2ϕ⃗0,2 + p⃗, p⃗ ∈ P. (37)

By the above analysis, the following lemmas are given in [18].

Lemma 4.1. For any real functions r1 ∈ H1(R), there are positive numbers δ̃1 and
δ1 when ⟨r1, â2⟩ = ⟨r1, â′⟩ = 0 such that ⟨L1r1, r1⟩ ≥ δ̃1||r1||2L2 and ⟨L1r1, r1⟩ ≥ δ1||r1||2H1.

Lemma 4.2. For any real functions r2 ∈ H1(R), there is a positive number δ2 when
⟨r2, â⟩ = 0 such that ⟨L2r2, r2⟩ ≥ δ2||r2||2H1.

Lemma 4.3. For any real functions z2 ∈ H1(R), there are positive numbers δ̃3 and δ3
when ⟨z2,−2bâ⟩ = ⟨z2, b′⟩ = 0 such that ⟨L3z2, z2⟩ ≥ δ̃3||z2||2L2 and ⟨L3z2, z2⟩ ≥ δ3||z2||2H1.
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Lemma 4.4. For any p⃗ ∈ P given in (37), there is a positive number δ independent
of p⃗ satisfying ⟨Hω,cp⃗, p⃗⟩ ≥ δ||p⃗||X.
Proof. For any p⃗ ∈ P combining with Lemmas 4.1-4.3, we have

⟨Hω,cp⃗, p⃗⟩ ≥ δ1||p1||2H1 + δ2||p2||2H1 + δ3||p3||2H1

+

∫
R

(
2âp1√

(c− 4cB2)
+
√

(c− 4cB2)p3

)2

dx.

(i) If ||p3||L2 ≤ 2C0||p1||L2 , C0 = 2||â||L∞
c−4cB2 , then ⟨Hω,cp⃗, p⃗⟩ ≥ δ1||p1||2H1 ≥ δ1

2
||p1||2H1 +

δ1
2C2

0
||p3||2H1 .
(ii) If ||p3||L2 ≥ 2C0||p1||L2 , then∫

R

(
2âp1√

(c− 4cB2)
+
√

(c− 4cB2)p3

)2

dx ≥
(c− 4cB2)||p3||2L2

2
−

4||â||2L∞ ||p1||2L2

c− 4cB2

≥ c− 4cB2

4
||p3||2L2 .

To sum up, for any p⃗ ∈ P, ⟨Hω,cp⃗, p⃗⟩ ≥ δ||p⃗||X.

Therefore, by above analysis, we obtain that n(Hω,c) = 1 and Assumption 3.1 holds.

4.2 Proof of p(d′′) = 1

Now we prove p(d′′) = 1, that is det(d′′) < 0. Since d(ω, c) = E(ψ⃗)−cQ1(ψ⃗)−ωQ2(ψ⃗),

we have d′′(ω, c) =
(
dωω(ω, c) dωc(ω, c)
dcω(ω, c) dcc(ω, c)

)
, and

dω(ω, c) = −
∫
â2(ξ)dξ = −12c2

(
−ω − c2

4

) 1
2

(1 + 4ω + c2),

dc(ω, c) = −
∫

c

2
â2(ξ)dξ +

∫
18c2B4sech4(Bξ)− 72c2B6

(
sech4(Bξ)− 3

2
sech6(Bξ)

)
dξ

= −6c3
(
−ω − c2

4

) 1
2

(1 + 4ω + c2) + 24c2
(
−ω − c2

4

) 3
2

+
96

5
c2
(
−ω − c2

4

) 5
2

,

dωc(ω, c) = −24c

(
−ω − c2

4

) 1
2

(1 + 4ω + c2) + 3c3
(
−ω − c2

4

)− 1
2

(1 + 4ω + c2)

− 24c3
(
−ω − c2

4

) 1
2

,

dωω(ω, c) = 6c2
(
−ω − c2

4

)− 1
2

(1 + 4ω + c2)− 48c2
(
−ω − c2

4

) 1
2

,
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dcω(ω, c) = 3c3
(
−ω − c2

4

)− 1
2

(1 + 4ω + c2)− 48c2
(
−ω − c2

4

) 3
2

− (24c3 + 36c2)

(
−ω − c2

4

) 1
2

,

dcc(ω, c) = −18c2
(
−ω − c2

4

) 1
2

(1 + 4ω + c2) +
3

2
c4
(
−ω − c2

4

)− 1
2

(1 + 4ω + c2)

− 12c4
(
−ω − c2

4

) 1
2

+ 48c

(
−ω − c2

4

) 3
2

− 18c3
(
−ω − c2

4

) 1
2

+
192

5
c

(
−ω − c2

4

) 5
2

− 24c3
(
−ω − c2

4

) 3
2

.

det(d′′) = dωωdcc − dωcdcω

= −36c4(1 + 4ω + c2)2 − 576c3B2(1 + 4ω + c2) + 288c4B2(1 + 4ω + c2)

− 4608

5
c3B4(1 + 4ω + c2)− 2304c3B2 − 9216

5
c3B6

= −36c3
(
c((1 + 4ω + c2)− 4B2)2 +

128

5
B4((1 + 4ω + c2) + 2B2)

+16B2((1 + 4ω + c2) + 4B2 − cB2)
)
.

Thus, we obtain det(d′′) < 0 under the conditions ω > −1
c
− c2

4
and c > 0. Moreover,

we have p(d′′) = 1, that is, p(d′′) = n(Hω,c) and we complete the proof of Theorem 3.2.
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