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Abstract We delve into the existing effective degree model and dynamical survival analysis
model for network epidemic dynamics. By employing the integrating factor method, we elaborate
on the mutual derivation process between the two models, demonstrating their equivalence.
Leveraging this result, the effective degree model is simplified to an equation that only involves
susceptible individuals.
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1 Introduction

Infectious diseases, which are caused by a variety of pathogens and capable of being transmitted be-
tween humans and animals, have attracted considerable attention from scholars who have employed
mathematical models to study these diseases [1-3]. Due to the profound application of network
transmission dynamics in the context of infectious diseases, various network-based infectious dis-
ease models have emerged [4-7], and these models represent contact as a random graph of N nodes
formed using a configuration model [8,9]. Rand [10] and Keeling’s pairwise model [11] takes the
binary and ternary groups formed by adjacent nodes as the basic variables of the model, and adopts
a pairwise approximation method to close the model. Keeling’s model provides a basic reproduction
number that differs from those presented by [12] and [13], as it employs a rough approximation of
the degree of a given edge node. Volz’s edge-based compartmental model [14], on the other hand,
utilizes the probability of a susceptible node remaining susceptible at a given time and the proba-
bility generating function, making it suitable for any configuration network, and Decreusefond et
al. [15] demonstrate that it is the large N limit of a stochastic SIR epidemic on a configuration

model network. Unlike the first two models, the effective degree model established by Lindquist et



al. [16] focuses on the degree and state of nodes, as well as the states of their neighboring nodes,
tracking the changes in neighbor states to investigate the dynamic properties. Notably, Miller [17]
has demonstrated that these three models are equivalent under certain assumptions, implying that
different models may possess similar predictive capabilities and effects when describing the same
infectious disease transmission process.

Jacobsen and colleagues [18] successfully derived the large graph limit system for the stochastic
SIR model in multilayer networks using a statistical inference approach. KhudaBukhsh and others
[19] applied this system to a single-layer network to study the prevalence of COVID-19, referring to
it as dynamical survival analysis (DSA) [20,21]. In their recent work, Kiss et al. [22] further named
the single-layer network form of the Jacobsen model as the DSA model and proved that under precise
closure, the pairwise model is equivalent to the DSA model. Additionally, they demonstrated that
the Volz model is also equivalent to the DSA model under any distribution. Unfortunately, there
are no relevant research on the relationship between the effective degree model and the DSA model.
In this paper, we focus on the equivalence between the effective degree model and the DSA model,
leveraging an integral factor approach and variable relationships to prove this point, providing a
detailed mutual transformation process between the two models.

The remainder of this paper is organized as follows. In Section 2, we present the formulations of
the effective degree model and the DSA model and prove two relationships regarding the variables
of the DSA model, which will assist in the subsequent proof of equivalence. Section 3 first describes
the process of transforming the effective degree model into the DSA model and then provides the
reverse process from the DSA model to the effective degree model. In Section 4, we demonstrate the
advantages of the equivalence between the DSA model and the effective degree model, and derive
an equation for susceptible individuals from the effective degree model. In Section 5, we elaborate

on some details regarding the equivalence of the models and conclude with a closing remark.

2 Network-based infectious disease model

The model considered in this paper is the SIR model, where individuals in the network have three
states: susceptible (S), infected (I), and recovered (R). It is assumed that the infectious disease
spreads in a static network of size N with a configuration model structure, which can be generated
by a specific algorithm. Infected individuals are assumed to transmit the disease to each of their
partners independently at a rate [ according to a Poisson process and recover independently at a
rate v according to a Poisson process. The infectious period and the Poisson processes are assumed

to be independent.



2.1 Effective degree model

We define “ineffective” partnerships as those through which we know infection will never be trans-
mitted. The definition of “effective” partnerships hinges on the assumption of which partnerships
we know will disseminate infection. If a partnership has not transmitted infection and neither
individual is recovered, then it is an effective partnership. However, the effective degree model
presented in this paper does not require tracking the number of partners an infected individual has;
thus, we augment our definition by stating that an effective partnership must involve at least one
susceptible individual. With this definition in place, there is no need to track partnerships among
infected individuals. To investigate the effective degree, we define x; as the number of susceptible
nodes with an effective degree of j, and y; as the number of infected nodes with an effective degree
of 7. S, I and R represent the number of susceptible nodes, infected nodes, and recovered nodes,
respectively. (I) is the probability that a randomly selected effective partner is infected, and v is
the total number of effective links between susceptible and infected nodes. The following effective

degree model [17] is established:

2y =) [(j + Dxjr1 — jos] — BU)jzj,
V== B+ v+ B0 -21) D 56 - D,

S = Z wj,
J
I=N-S—-R,
R= ~vI.
Note that the model implicitly includes y; since v =) ;JYj- Assuming that the maximum degree
of nodes in the network is M, it is not difficult to observe that the number of differential equations
in the effective degree model is M + 3, which is far fewer than the number of differential equations

in the effective degree model proposed by Lindquist et al. [16]. Therefore, model (1) is also referred

to as the reduced effective degree model. The initial conditions are:

z;(0) = &5,

v(0) = Npup

= 2)
S(0) = N(1- p),



where 0 < p<1,6; >0, p>0and > ;e; = N(1—p).

2.2 Dynamical survival analysis model

In Jacobsen et al.’s work [18], the derived stochastic process was difficult to analyze. Subsequently,
using a limiting theorem, when the number of nodes approaches infinity, the stochastic process
converges to a system of ordinary differential equations. This limiting system, under the context
of a single-layer network, is referred to as the dynamical survival analysis model. Define zg as the
probability that an initially degree-1 susceptible node remains susceptible at time ¢ in an infinite

network. [A] represents the number of nodes in state A , [AB] represents the number of pairs formed
[A] [AB]

by nodes in state A and nodes in state B, x4 denotes lim ~ > and x4p denotes lim =3, where
N—o0 N—o0
A, Be€ {S,I,R}. The following dynamical survival analysis model [22] is established:
. ST
Tg = — ,
o =—0 7 (z9)
_ V" (o)
Tgg = 25$szfﬂss e )2
igr = xgr |B(wss — 3351) ) - B+, (3)

tg = —PBxsy,

Ty = Brsr —yrr.

Here, ¥(xg) = io: prxh is the probability generating function [23], representing the probability that
a randomly selgc:toed node remains susceptible at time ¢, p; represents the degree distribution, which
is the probability that a randomly selected node in the network has a degree of k. mlg denotes
the probability that an initial susceptible node with degree k£ remains susceptible at time ¢. The

variables xg, 7 and z g satisfy the constraint xg 4+ x; + xg = 1. The initial conditions are:

x5(0) = z9(0) =1 — p,

33[(0) =0 (4)
xSS(O) = M
z51(0) = pp.

where 0 < p <1 and p > 0.



We will now prove that (zgs + xsr + xSR)/z/)/(acg) = xg and xg = ¥(xg). Define [Sg] as the

number of degree-k susceptible nodes at time ¢, then we have the following;:

lim 15k] = pph, (5)

k[Sk] _ [SS|+[SI+[SR]
N

since the series Z is convergent, then

. K[Sk] 1 ’
J SR =3 i B = S ek = v S ke <ot . @
SO
i SS|+ [SI|+ SR /
fim (S ISI+ [SE] = r55 + 51 + sk = 2o (24), (7)
N—oo N
namely
TsS +Tsr+ TSR
7 = Lo 8
V' (z0) a
Similarly, since the series > % = % is convergent, then
k
. [Sk]
d 32 = g = Y - ©
SO
zs = P(g). (10)

These two results will play a role in the derivation of the effective degree model from the DSA model

in the subsequent sections.

3 Equivalence of models

3.1 From effective degree model to DSA model

During the derivation of the DSA model from the effective degree model, the variables in the DSA
model need to be assumed to appear “for the first time.” Therefore, the form of each variable in the
DSA model will be gradually defined. The key question is how the forms of these variables should
be related to the variables in the effective degree model. From the definition of v, it is proportional
to xgr. Similarly, > ;jJxj is proportional to xgg + xgr. Therefore, to define gy, it is necessary to

study ©. According to the second and third equations in model (1), we have

—(B+y)v+BI)(1 —-2( ij—l

—(B+7)v + B 233—1 B(I)? Zj(j_l) ' (11)
Z i =Dz
~(B+)v+ B Z”_l <>WV



D\
Here, an integrating factor method is employed to eliminate the term —g3(I >WV Define
5 JT5

. Introduce a variable zg and define

an integrating factor F(t) such that F'(t) = (I )M

> J%;
Tg = —5W. Simultaneously, define 1 (z9) = > ;. xk]\(,o) zk. Tt is clear that iy = —B%.
k N /%o
Furthermore, define % = vef'® and ”ff,(zﬁff = F'® Zj jzj, we have
d zgr F(t) "y F(t)
&w/(xe) :_(/3+7)V€ +/3<I>(1_<I>)zj:3(]_l)xje

~(8+9) s + AU >< ;@) ;ju—l):cje”ﬂ

) EE R0 3 (12)

1/)( ) 22577

rss ij(j — 1)z,
Y/ ( ) V'xe) 2w
rsr rss F/(t)

Fag) 0 (ag)

Next, we consider % > ;Jz;j. According to the first equation in model (1), we have
d . .
& 2 dwi = D3
J J
= D) Y [+ Diwjer — 5] = B 5%
J

J

—(B+7)

+ B{I)

—(B+7)

= () Z (G + Vi — 5%x;] — B Z(J'Qf'«“j —Jjzj + jrj)
= I Z [(G + V)jzjr — j2x;] — B) Z (G = D + ja]

=D D[+ Viwjen = %3] = B() Zj(j — 1)a; = 4(1) Zja:j

J

(13)

L . Z 30 :

=) Y [+ Dijwj — 2] = ) “La——— Z s Zy% B juj,
J J

using the same integrating factor F'(t) to eliminate —/3(I >% > ;jxj, it was previously de-

fined that % = eFt) >_jJxj, then

D = S G+ Vizses =)0 = D S e
- 7<I>{ SOG4 - (G4 D]y - foj}e”” _ p(ntss T ast
F 7 V(o) (14)
Tss + xSy

= (D) 3G + Dayel® = (D)
_ oy EsS TSI g gy TS+ TSI

V' (zp) V' ()

V' (zp)
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From 78l = vef'®) and xff;f)“ = ' >, jxj along with the third equation in model (1), we

can derive (I) = wfc&’e) g fﬁ(; ’Z)SI . Substituting this expression into equation (14) yields

d.x554_$51

ST = (B4 ) 15
@ v O ey 1

combining with equation (12), we obtain
d zss . Tss /(t) (16)

dt ¢/ (zg)  ¥'(zg)

Next, we introduce a new variable: zgr and define it as xgr = (xg — xfﬁ&ji’) -9/ (xg). Using

the previous results, it is straightforward to derive 4 a W(:v y = J(Szfg). We now claim that z; =

Zij xk(O)C’fc(xSSHSI) ( Zsk V=i We will verify the correctness of this claim by taking the

Y (z9) e
(wss +$51>j ( TSR >k_j
Y/ (xp) V' ()

derivative of x;:
i zs1  (Tss +xsI j_1< TSR )k_j
e+ g () (og

ro-ng (5t )]

e Erea e () ()T o

=2 @(0 Cia

k>j

=Y 3(0)CY

85 Y (g

V(5%
o) ()
(Sssﬂs?)z:x []Cjﬁ—i— ( +x31> (J/C(ZIZ))kj

W (zg) k>j

et (252) " ()|

= () [=(B +v)jz; + yzjml,

This is consistent with the first equation in model (1), thus our claim is verified. Therefore
Sz =33 a(0)C] (xss + 3551>j < TSR >“
~ 5 "\ ¥(z0) W' (x)
k
58 + 251 + TSR (18)
= (0
20 (=)

= Nip(zo).




Now, we need to express F'(t) in terms of the variables in the DSA model. To achieve this, we

introduce two equations:
> Clip'd" —pZCinj g
§=0
_ JJ k=7
= p@ Z Clpq"
7=0
d k
= p@(p +4q)
= kpp+ )",
and
Zci;]]—l "~ ]—p2ZC;ZJJ—1)p7 g
7=0
) 2 = .. i
=P 13 Z Clp’q"™
P’ =
d2
= p2d72(p +q)"
= k(k—1)p*(p+ )"

Using these two equations, we can derive that

5,16 -V,
IVES
22 i -z (O)C’(Iffafgﬂ) [ Y=

F'(t) = p(I)

= B(I)

Sk 3 drn(0) CF (ES5EESL i (ks i
(Z85E2S0)2 37, k(k — 1)a(0)ag
(wss-i-xSI)Zk k::vk( ) k—1

B rss +xsr) ¥ (xe)
=) ("S55 ) Yo

sy V" (xg)

= B(I)

Next, we need to find g5 and <g7. The derivative of % is obtained as

d zgs  Essy'(we) - r55 S s
de 1//(370) N ¢,<1’9)2
_ i55(¢'(w))* + Brsszsiy” (xe)

- w/($6)3 ’

SO

] 1 d ’ "
55 = e (g ) ¥ = Srssasis e

8

(22)

(23)



using equations (16) and (21), we can obtain

igs = : <— 258 F,(t)lﬂ/(ﬂce)g—ﬁ$55$51¢'/($9)>

V(zg)? \ '(20)
_ ' " (wg)
= —wgsF"(t) — Brsswsr 5
V' () (24)
= —Prssrsr Ll (xe)Q — Brssrsr L (M)Q
V' () V' (z0)
= —2Bxg1xss Zf’ ((;;9))2
Similarly, The derivative of % is obtained as
d zg  Esry(zo) — TSI 5 gl
dt ' (zg) B ¢’(I9)2 (25)
_ ds1(¢'(2))? + Bag v (wo)
V' (z0)? ’
SO
51 = s | (G ) ¥o0f - Bk )| (26)
P'(9)? [\ dt Y/ (zp) 7
using equations (12) and (21), we can obtain
. 1 _ sy zss / / 3 a2
TSI = 1/)’(:69)2 {|: (6 +7)¢/(I9) + w/(xe)F (t)] w (x9) 51'511/} (‘TG)}
= —(B+Y)zsr +xssF'(t) — By, v (x9)2
V' () (27)
= —(B+7)zsr + Brsrzss :f, (529))2 — By, Zf/ (ze)l
=51 [B(xSS — zg7) :f, (:j;)g — (B + ’Y)] :
Finally, we define xg such that g = —fBxzgr and xy such that &7 = Bxg; — yx7. Therefore, the

DSA model (3) is derived from the effective degree model (1).

3.2 From DSA model to effective degree model

Now we proceed to derive the effective degree model from the DSA model. Similarly, during the
derivation process, the variables in the effective degree model need to be assumed to appear for the
“first time”. Here are the definitions:

m_ZN ci (Ess+Ts1 7 wer \*
7T L PR\ T () V(ze))

k>j

v = Nzgy,

ijj = N(QZSS + l‘S[),
J
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v TSI
I) = — = , 28
0 >t wss+wsy (28)

S = Nzxg,
I:NJ}[,
R = Nzp.

Based on the above definitions, we first take the derivative of x;:
. d $55+$31>j ( TSR >k_j
T; = NppCl— (
= 2l | Tt ) (S

k>

i—1 k—j

— N CJ TSI <$SS+~TSI>j <3USR)
2 NpCi =38+ s ) P (zo)

k>j
+v(k —j)¢ff(~5;6) (xsqj/(ﬂ;j)y)j <J&IZ)>1€J’11

6o (Basar) (o)

= 7(W xe) ZNka]

(msst) i (29)
1 k—j—1
o $ss+l‘31>J ( TSR >
ik (5 P (o)
(JSxIe ) zss+xsr\’ [ wsg "
L) Lo () (32
(szs(ﬂ::i?) ,;j k! V' (z0) V' (z0)
1 k—j—1
I — i xss+£sz>j ( TSR )
vt (5 P (o)
= (D[=B+7)jzj+vzi],
and then the derivative of v:
= Nig;
= Nagr|B(zss — xs1) Ld (xg)Q —(B+ ’Y)]
V' (z0)
= ﬂNxSI(:L‘SS +xsr — QxSI) v ($9)2 —(B+v)Nxsr
V' (20)
= ﬁNxssxi'leI (rss + xs])(xgs +xsr — 21‘31) Zf ((339))2 —(B+y)v (30)
3 TS 2 B TS V" ()
(B+y)v+ 5Nxss ey (zss + xsr) <1 29055 n 3651) o (20)?
(Bt + AN (s + xsr) (1 — 2(1) L)
V' ()

rss +xsr

Y’ (o)

(B 4+ + BN(I) ( ) (1 2(1)) ¥ (xp)
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_ zss + w5\’ k2
= (4 500 (Y (1 0(0) S k- N
k

As mentioned earlier when introducing the DSA model, we have already derived the conclusion that

(xss + xsr + xSR)/wl (xg) = xg. Using this conclusion and equation (20), we can infer that

2 , i
e on (5 = Someins o (S5 ()7 o

given the expression z; = ;. Nka,z(xff,(fof )J(w’f(sm’z))k_j, equation (30) transforms into

v=—(B+y)v+ B0 -201)> i - . (32)

J
Finally, we perform transformations on the variables S, I and R. For > ;Tj, we have

p-g o (55 (G

k J

2
-3 Vo (CL‘SS + 2571 + $SR> (33)
!

V' (z0)
= Np(zg).

Using the conclusion zg = ¢(2¢), we have >, x; = Nzg, which implies that

S=> . (34)
J
Given that xg, z; and xg satisfy zg + 7 + zr = 1, it follows that Nxg + Nx;+ Nzr = N, which
means
I=N-S-—R. (35)
Also means that
R=-S-1
=—Nig— Nij
= NBzsr — N(Brsr — vxr) (36)
=Nz
=l.

So far, the effective degree model (1) has been derived from the DSA model (3).
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4 Swurvival analysis perspective of effective degree model

The significant advantage of proving the equivalence between the effective degree model and the
DSA model is that the effective degree model can inherit the statistical interpretation of the DSA
model. In [22], the notation S; := xg is employed to represent the survival probability of susceptible
nodes (i.e., the probability that a node that is susceptible at ¢ = 0 remains susceptible at ¢ > 0),
and it is demonstrated how to derive a single autonomous differential equation for S; := zg from
the DSA model. This equation allows for numerical calculations of the survival probability for any

t € [0,00) solely based on the parameters of the network model. In this section, we will proceed

to show how a single autonomous differential equation for s = % can be derived from the effective
degree model. In the effective degree model, the average degree of the network is given by %J]j;] ,
and the average excess degree is % Let the ratio of the average excess degree to the average
degree be denoted as k = 2 ]((]Z_J lj?ijgj 2= z(:gj(]]:)); 1S. Although S varies with time ¢,  remains

a constant due to the static nature of the network. Furthermore, let D = &, B = Z]. Jjrj — v, with

initial conditions D(0) = 1%’; and B(0) = uN, hence
B=Y jij—v
J
= ()Y [+ Dz — 7Pay) = I Y G — Dy — B D jay
J J J

— | =B+ + B Z]J—l <I>22j(j_1)1:J

=M G+ =G+ D]z — Y% p — BU) Zj(j — Va; — B(I) ijj

J J
+ B+ = BIOA ()Y (G — D+ I 4 — D, (37)
J J
= —y(I)Y _(j + Dy — ) ijj + B+ =281 (1)) (G — Dy

j ' ;
= —24(1 ZJJ—l

BZjJ( - )]

BRGNS TRHE
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Derived from (1), we obtain
S = Z;ﬁj
= Zv G+ Dajer — jag] =Y B{I)ja;

J
= —Z/BUUZEJ'
J
Zj prjx;
ijffj
= _/8V7
combining (37) and (38) leads to
: GG - Day
EZQBZJJ(J )z 5 B

TSy

integrating it with the initial conditions B(0) = uN and S(0) = N(1 — p) leads to

B(t) = g2

I—p
So
. S —uS
oSS
 —(BHS + BI)L—(1) 3,5 — DS — BU)? 3,5 — a8 + Br?
= 2
B —(B+7)vS + BrvB — Brr? + Br?
- 3
U c2r—1VY V.2 V.2
—(54—7) +5/~€ 5 S—BH(E) +5(§)

= B(1 - k)D? + Lﬁf"ps%l - (B+ v)] D.

By appropriately transforming the expressions regarding S and I in (1), we obtain

S =—8DS,

I =p3DS —~I,

D = B(1—k)D? + [5"“52“—1 —(B+ ’y)] D.

L—p
Further processing the Eq. (42) leads to

D D RE_ gon—2 B+y1
S+( Ii)S l—pS 55

When x # 1, the differential equation (43) is solved to obtain

D= k=1 H 26—1 B+~
R (O
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where C = ppN1=%(1 — p)=F + uN*(1 — p)*~! — ffﬂn)N ®(1 — p)~". Substituting equation (44)

into the first Eq.(42) leads to

ﬂ:u 52/4_6"’_’752 (45)

S =—-05" + 1 1—x

where Co = BupN1=%(1—p)~F+ BuN=(1—p)<~1 - %N*“(l —p)~". When k = 1, the differential

equation (43) is solved to obtain

p=FE7y, s-=s+ e (46)
3 1—
where C3 = B‘# In[N(1 = p)] = Nu— {£;. Substituting equation (46) into the first equation of Eq.
(42) leads to
~(B+7)SS + - 5” 52 C4S, (47)

where Cy = (B +v)In[N(1 —p)] — BNp — 5—“';. Regarding s = & as the survival probability of
susceptible nodes, it is easy to derive that
st NEL JlS%Nzn—l _ @52]\77 KA
— —K

p
— (B+7)sIn(Ns) + ﬁ_

(48)
2N — Cys, k=1

Since it is evident that $(co) = 0, Eq.(48) implies that the condition s(co) > 0 has to satisfy

_ _ _ _ +
CosF 2 NE 2:_5M 2K—2 \r2K—2 g 1 49
25 1 ps + 1_ g’ K 7é ) ( )
__ B _
(B47)In(Ns) = 1 sN + Cu, k=1 (50)
—p
Given that we observe the infection times (¢1,...,%;) for a randomly chosen subset of k initially

susceptible nodes within a time interval [0,7], where T is less than or equal to infinity, we can

formulate the approximate log-likelihood function as follows:

LBy, oy py N1, ...ty Zlns —kln(1 —s(T)). (51)

Equation (48) indicates that we only need a few parameters to obtain the value of s, without relying
on other variables, which is very convenient. This approach is similar to the single equation regarding
Sy obtained through the DSA model in [22]. It is worth mentioning that to obtain quantities other

than s, evaluation of additional ODEs is needed [24].
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5 Discussion

In the dynamics of network-based infectious diseases, three types of complex network models are
widely employed: the pairwise model [11], the edge-based compartmental model [14], and the
effective degree model [16]. Miller et al. [17] demonstrated the equivalence of these three models
under certain conditions. Recently, KhudaBukhsh et al. [19] derived the DSA model based on the
large graph limit system studied by Jacobsen et al. [18] Subsequently, Kiss et al. [22] further proved
the equivalence between the pairwise model, the edge-based compartmental model, and the DSA
model.

This paper demonstrates the equivalence between the network effective degree model and the
DSA model, strengthening the connections between network models. The greatest benefit of this
result is that the effective degree model can share the statistical interpretation of the DSA model,
especially in terms of statistical inference from data. We also simplify the effective degree model
into a differential equation regarding susceptible individuals, which can be represented by certain
parameters. Based on this, the effective degree model can be better applied to address practical
infectious disease issues in the future, such as effectively tracking infectious diseases and taking
corresponding measures.

As a future research direction, we propose to apply dynamical survival analysis to analyze data
arriving from the effective degree model. This approach, in addition to enabling the derivation of the
likelihood function presented in this paper, has the potential to yield insights into basic reproduction

number, dropout rates, recovery rates, the final epidemic size, and other key epidemiological metrics.
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