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Abstract. In this paper, a new nonlinear four-dimensional Lorenz system is 

proposed. Nonlinear dynamical properties of this system, including the sta-

bility of the fixed points, Lyapunov exponents, the bifurcation behaviors and 

sensitivity to initial conditions, are considered by using chaos theory and nu-

merical simulations. It is very interesting that we find that this system exhibits 

chaos phenomena for a new set of parameters. The global exponential attrac-

tive set of this system has been obtained according to Lyapunov stability the-

ory. Synchronization has been realized between two identical hyperchaotic 

systems via globally exponential approach and sliding mode control method 

by using the results of the global exponential attractive set, Vaidyanathan’s 

theorem and Dini derivative. The novelty of the paper lies in that the global 

exponential attractive set of the system is obtained firstly, then the result of 

the global exponential attractive set is used to study chaos control and chaos 

synchronization. Furthermore, the precise mathematical expression of the 

controller is obtained according to the boundedness of this system. Finally, 

the synchronization process is simulated by MATLAB to illustrate the effec-

tiveness of the theoretical analysis. The results of numerical simulations show 

that two control methods for chaos synchronization are effective. 

Keywords: Lorenz system, stability theory, qualitative theory, global expo-

nential synchronization, sliding mode control. 
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1. Introduction  
Unpredictability is a phenomenon in nonlinear dynamics that discovered by Henri Poin-

care [1] who is a famous scientist and mathematician in the world when he studied the 

three-body problem: earth, moon, and sun move under their mutual gravitational inter-

actions. He found that a small change in the initial condition of this problem can cause 

a large error in the final phase that would become known as chaos. However, Poincaré’s 

results did not attract much attention at the time. In 1975, Li and Yorke [2]coined the 

mathematical, physical concept of “chaos” which is known as “Li-Yorke chaos”. In 

1963, the meteorologist E.N. Lorenz [3] built nonlinear weather models to predict the 

weather forecast and he found that this nonlinear system could exhibit very complex 

behaviors and chaos due to the sensitive dependence upon the initial conditions which 

is known as the butterfly effect. The scientific gateway to chaos research was reopened. 
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Since then, chaos phenomena arising from nonlinear systems have attracted much at-

tention from many scientists. To discover new chaotic systems for exploring the mech-

anism of chaos is an important research direction of chaos research. In 1976, the Rossler 

system was discovered [4]. In 1986, the Chua circuit system was found by Leon O. 

Chua in a physical experiment [5, 6]. In 1996, the Swedish physicist Stenflo [7] estab-

lished a four-dimensional Lorenz system to describe the dynamics of acoustic-gravity 

waves, namely, the Lorenz-Stenflo system. In 1999, Chen and Ueta found a new chaotic 

system, namely, the Chen system [8]. In 2002, Lu and Chen found a novel chaotic sys-

tem which connected the Lorenz system and the Chen system [9]. In 2002, Lu et al. in-

troduced the unified chaotic system[10]. Since then, many chaotic systems have been 

discovered and studied [11-22]. Chaos phenomena have been found and studied in en-

crypted communication, biology, engineering technology, neural network, fluid me-

chanics and other fields by many researchers [11-23]. 

  The technique for controlling chaos is predictive control and synchronization control. 

The phenomenon that the dynamical behaviors of two chaotic systems become con-

sistent is known as chaos synchronization. Carroll and Pecora [24] initially proposed 

the concept of synchronization in order to design the appropriate controllers to synchro-

nize two chaotic systems with distinct initial conditions. There are variety of control 

strategies, such as active control, sliding mode control, adaptive control, and others. 

Complete synchronization, anti-synchronization, compound synchronization, differ-

ence synchronization and others have been developed to control the chaotic behaviors 

of chaotic systems [25-32]. Among all the control techniques for chaos synchronization, 

Linear feedback controller is simple in structure and easy to operate in practice. Many 

researchers have used the linear feedback controllers to synchronize and control chaos 

in various chaotic and hyperchaotic systems [33, 34]. Among them, the sliding mode 

control method is a variable structure control method, which has strong robustness in 

the face of external interference and parameter disturbance, and the theory of using 

sliding mode control to realize chaos synchronization has been studied more and more 

deeply. In 2014, Vaidyanathan and his collaborators used the sliding mode control 

method to realize global chaos synchronization of two identical three-dimensional cha-

otic systems [35] and they proposed a new sliding mode control method [36]. In 2023, 

Dinesh Khattar et al. [37] studied a sliding mode control problem of a three-dimensional 

chaotic system according to the sliding mode control method that proposed by 

Sundarapandian Vaidyanathan. Compared with the previous research [35-36], this pa-

per extends the sliding mode control method from the three-dimensional chaotic system 

to the four-dimensional hyperchaotic system. These control techniques are too appeal-

ing and have been widely used due to their simplicity in configuration. In this paper, 

linear feedback control approach has been used to achieve the globally exponentially 

synchronization [38, 39] and Lyapunov stability theory ensure the global stability of 

the nonlinear systems. Since hyperchaotic systems have more complex dynamical be-

haviors and the sliding mode control method has the advantage of being insensitive to 

system parameters, this research has an important role in promoting the development 

of secure communication [32, 40]. 

   The structure of this article is arranged as follows: Section 2 introduces a new non-

linear four-dimensional Lorenz system and discusses the dynamical behaviors of this 

system. Section 3 studies the global exponential attractive set of this system. Section 4 

studies globally exponential synchronization through linear feedback controller. Sec-

tion 5 studies synchronization through the sliding mode control method. Section 6 pro-

vides the conclusions of this paper. 
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2. Complex dynamics  

2.1. System model and hyperchaotic attractor 

In this paper, a new hyperchaotic system is proposed  

 

( ) ,

,

,

,

x a y x w

y bx xz y

z xy cz

w x dw

  


  


 
   

 (2.1) 

where the parameters , , ,a b c d are real constants of system (2.1). When the parameters 

10, 25, 3, 2,a b c d     system (2.1) is hyperchaotic. When the initial position of 

system (2.1) is selected as
0 0 0 0( , , , ) (0.1,0.2,0.1,0.2)x y z w  , then the three-dimensional 

hyperchaotic attractor of system (2.1) can be obtained, as shown in Figure 1. The evo-

lution process of all variables over time t is shown in Figure 2. 

 

 

Figure 1. The hyperchaotic attractors of system (2.1) in the 3D space. 
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Figure 2. The evolution process of each variable of system (2.1) over the time t. 

2.2. Dissipation  

The vector field of system (2.1) is denoted as 

 

 

 

 

 

1

2

3

4

, , , ( )

, , ,
, , , .

, , ,

, , ,

f x y z w a y x w

f x y z w bx xz y
F x y z w

xy czf x y z w

x dwf x y z w

    
   

        
   
     

 

System (2.1) is dissipative under the condition 1 0,a c d     since we have  

 

       
 1 2 3 4, , , , , , , , , , , ,

= 1 .
f x y z w f x y z w f x y z w f x y z w

V a c d
x y z w

   
        

   
 

2.3. Fixed points and their stability  

The fixed points of system (2.1) are determined by solving the following equations 

                          

( ) 0,

0,

0,

0.

a y x w

bx xz y

xy cz

x dw

  


  


 
  

                        (2.2) 

Solving the above equation (2.2), the real equilibrium points of system (2.1) can be 

obtained as the following four cases:  

(i) If 0, 0a c  , there is only one real fixed point  0 0,0,0,0 .S   
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(ii) If 0, 0,a c   there are an infinite number of real fixed points. 
(iii) If 0, 0a c  , there are an infinite number of real fixed points. 

(iv) If 0, 0a c   , then system (2.1) has only one real fixed point  0 0,0,0,0S 

when
2

( 1)
0

( 1)

abcd c d
p

d d

 
 


. When

2

( 1)
0,

( 1)

abcd c d
p

d d

 
 


 system (2.1) has the fol-

lowing three fixed points:  

 0 0,0,0,0 ,S 
( 1) ( 1)d p c d

S = d p bc p
a ad



  
    
 

， ， ，  and 

( 1) ( 1)d p c d
S = d p bc p

a ad


  
   

 

， ， ， . 

In the following, we will study the stability of the fixed points of system (2.1) with 

parameters 10, 25, 3, 2.a b c d     Consider the parameters of system (2.1) when

10, 25, 3, 2a b c d    , which satisfies the second category in case (iv) above, so the 

system (2.1) has three fixed points. To study the stability of  0 0,0,0,0 ,S   we will 

calculate the Jacobian matrix of system (2.1) at 
0S  as follows: 

 
0

10 10 0 1

25 1 0 0
.

0 0 3 0

1 0 0 2

S
J

 
 

 
 
 
  

 

The eigenvalues of matrix 
0S

J  are calculated as
1= 21.9073,  2 =10.9112,  

3= 2.0039,  and
4 = 3   by using computer software. Since there exists positive ei-

genvalue of matrix 
0

,
S

J  so  0 0,0,0,0S   is an unstable fixed point of system (2.1). 

The stability analysis of S
 and S

 by using the same method yields that S
 and 

S
 are both stable fixed points of system (2.1).  

2.4. Lyapunov exponents and Lyapunov dimension 

When the parameters are selected as 10, 25, 3, 2,a b c d     with the initial value 

0 0 0 0( , , , ) (0.1,0.2,0.1,0.2)x y z w  , the Lyapunov exponent of system (2.1) is calclated 

as
1
=0.8133,L 2

=0.0036L ,
3
= 2.0368L  and

4
= 14.7765,L   respectively. And the 

Lyapunov dimension of the attractors of system (2.1) is calculated as [15,16, 17] 

1

1 ,
i

j

j

L

i
L

L

D j






 


 

such that j  is the largest integer that guarantees the inequality 
1

0.
i

j

L

i




  And the 

Lyapunov dimension of system (2.1) in this case is 
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 1 2

3

2 2.4011
L L

L

L

D
 




   . 

Since system (2.1) has two positive Lyapunov exponents, it indicates that system (2.1) 

is a hyperchaotic system. Moreover, the Lyapunov dimension of system (2.1) is positive 

fractional dimension, which indicates that the chaotic attractor of system (2.1) is frac-

tional dimension. The Lyapunov exponent of system (2.1) is shown in Figure 3. 

 
Figure 3. The Lyapunov exponent chart of system (2.1). 

2.5. Effects of the changes in system parameters 

If parameters 25, 3, 2b c d   of system (2.1) are fixed, the value of parameter a  is 

changed and the initial value 0 0 0 0( , , , ) (0.1,0.2,0.1,0.2)x y z w   is fixed. When 

[0,50],a the Lyapunov exponents (LE) of system (2.1) with respect to parameter 

a  can be obtained, as shown in Figure 4. The bifurcation diagram of the state variable 

x  of system (2.1) with respect to parameter a  is shown in Figure 5. 
It can be found from Figure 4 that when 0 7.07a  , the Lyapunov exponents of 

system (2.1) are all less than 0, and this system is in a stable state. When 

7.07 11.05a  , the largest Lyapunov exponent of the system is always greater than 

0, and the system is in a chaotic state. However, there are also some points in small 

intervals corresponding to two positive Lyapunov exponents, so the system is in a hy-

perchaotic state. When 11.05 50a  , the Lyapunov exponents of the system are all 

less than zero, except the smallest Lyapunov exponent, which is generally decreasing 

with the increase of a , and the other three Lyapunov exponents change very little, so 

the system is in a stable state. Observing the bifurcation diagram in Figure 5, the results 

of Figure 5 also confirm the above dynamical characteristics of this system. 



 

 7 

 

Figure 4. Lyapunov exponents diagram of system (2.1) with [0,50]a . 

 

Figure 5. Bifurcation diagram of state variable x  versus a . 

If parameters 10, 3, 2a c d   of system (2.1) are fixed, the value of parameter b  is 

changed, and the initial value 0 0 0 0( , , , ) (0.1,0.2,0.1,0.2)x y z w    is fixed. When

[0,50],b the Lyapunov exponents of system (2.1) with respect to parameter b  can 

be obtained, as shown in Figure 6. The bifurcation diagram of the state variable x of 

system (2.1) with respect to parameter b  is shown in Figure 7. 

   It can be found from Figure 6 that when 0 24.55b  , the Lyapunov exponents of 

system (2.1) are all less than 0, and the system is in a stable state. When 5 24.55b  , 

the largest Lyapunov exponent and the second largest Lyapunov exponent of the system 

change in basically the same magnitude, and the third largest Lyapunov exponent is 

almost unchanged. When 24.55 50b  , except for some points in small intervals, 
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system (2.1) basically has two Lyapunov exponents greater than 0, so the system is in 

a hyperchaotic state. These dynamical features of the system can also be observed from 

Figure 7. 

 

Figure 6. Lyapunov exponents diagram of system (2.1) with [0,50]b . 

 

Figure 7. Bifurcation diagram of state variable x with respect to parameter b . 

2.6. Sensitivity analysis to initial values  

Parameters for system (2.1) are selected as 10, 25, 3, 2a b c d    , and the initial 

value is 
0 0 0 0( , , , ) (0.1,0.2,0.1,0.2).x y z w    Let the initial value of the system (2.1) 

changes slightly. If the initial value of system (2.1) is changed into 

0 0 0 0( , , , ) (0.2,0.3,0.2,0.3)x y z w   for the first time and the initial value 
0 0 0 0( , , , )x y z w  

of system (2.1) is changed into 
0 0 0 0( , , , ) (0.2,0.3,0.2,0.3)x y z w   for the second time, 
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then Matlab software is used to simulate the evolution of this system under three dif-

ferent initial values. The comparison diagram of the phase trajectory of this system with 

the initial value changing is shown in Figure 8. From the analysis of Figure 8, it can be 

found that even though the initial value of hyperchaotic system (2.1) has only a small 

change, the dynamical behavior of this system has a great difference, so this system is 

strongly sensitive to initial values. 

 

Figure 8. Initial value sensitivity map of system (2.1). 

In the following part, we will study the globally exponential attractive set of hyper-

chaotic system (2.1) in order to provide theoretical basis for the control and synchroni-

zation of the hyperchaotic system (2.1). 

3. Global exponential attractive set 

Theorem 3.1.  

Let                      0 0 0 0 0, , , , , , , ,X t x t y t z t w t X t x t y t z t w t 

2 2( )
.

4 2

a b c
M

c





When      0 ,V X t M V X t M   and 

1 1 1
, , , 0,

2 2 2
a c d b     

we have the estimate of the exponential inequality with respect to the globally expo-

nential attractive set of system (2.1) 

      0

0 .( ( )) e
t t

V X t M V X t M
      

In particular,  

2 2 2 2
2 2

= (
(

) )
2

)
(

4

a b
Ω X V X M X x y a b w

c

c
z  

is the global exponential attractive set of system (2.1). 

Proof. Construct 

     
22 2 21

, , , [ ].
2

V X V x y z w x y z a b w        

Let 
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2 2 2 2
21 ( )

( )( .
1

, 1
2

1 1
( , , ) )

2 2 2 2
F x y z w a x y c z w

a b
d a b c z

 



      
 

   
      
  

 

And 

 
 

   

2

2 2 2 2

2

(2.1)

2 2 2

,

[ ( ) ] ( ) ( ),

( ) ,

1 ( )
( ( )) ( )( 1) ,

2 2

= ( ( )) ( ( )).

d

d

1 1 1

2 2 2

V X
xx yy z a b z

t

z a b

a x y c z

ww

x a y x w y bx xz y xy cz w x dw

ax y cz dw a b cz

a b
V X t d a b

V

w c z

X t F X t



      

    

 




   

      



 
          

 







 
    

  

 

Let  

             

 

    

1 2 0

0

1 2 1 0

(1 2 ) 0.

F
a x

x

F
y

y

F
c z a b c

z

F
d w

w


   


   

 

      

 

   



,

,

,

                       (3.1) 

We can get the solution of the equation (3.1)  

* * * *

( )( 1)
0, 0, , 0

2 1

a b c
x x y y z z w w

c

 
       


. 

To find the maximum value of the function  , , ,F x y z w  , the Hessian matrix of 

 , , ,F x y z w  at 
0 * * * *( , , , )P x y z w  can be obtained as 

0

2 2 2 2

2

2 2 2 2

2

0 2 2 2 2

2

2 2 2 2

2

z

1 2 0 0 0

0 1 0 0
H ( ) .

0 0 1 2 0

0 0 0 1 2

F

P P

F F F F

x x y x x w

aF F F F

y x y y z y w
P

cF F F F

dz x z y z z w

F F F F

w x w y w z w


    
 
       

      
   

          
      
   

         
 
    

        

 

According to the extreme value theory of multivariate functions, ( , , , )F x y z w  can ob-

tain a maximum value at 
0P  when the matrix 

0H ( )F P  is a negative definite matrix. 

If the parameters of system (2.1) satisfy the following condition (3.2), the matrix 

0H ( )F P is a negative definite matrix. 
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1
,

2

1
,

2

1
.

2

a

c

d














 (3.2) 

Since ( , , , )F x y z w  is quadratic and its local maximum is the global maximum, so  

 
* * * *4

2 2

, , ,
X R

( )
sup ( ) ( )

4 2x x y y z z w w

a b c
F X F X M

c   


 



 . (3.3) 

Therefore,  

                   
(2.1)

d ( ( ))
( ( )) .

d

V X t
V X t M

t
                      (3.4) 

From the exponential inequality (3.4), we can get  

                     0

0( ( )) ( ( .))
t t

V X t M V X t M e
 

                     (3.5) 

So, we can get  

lim ( ( )) ,
t

V X t M


 

which indicate that  

  2 2 2 2
2 2

= (
(

) )
2

)
(

4

a b
Ω X V X G X x y a b w

c

c
z

  
      




 

 
 

is the global exponential attractive set of system (2.1). 

The above Theorem 3.1 indicates that the trajectories of the system (2.1) are eventually 

attracted to a bounded region with an exponential rate, so that the trajectories of the 

system (2.1) are ultimately bounded. Hence, we can get the bounds of all variables of 

the hyperchaotic system (2.1) from the above theorem. The bounds of the variables of 

the hyperchaotic system (2.1) can be applied to study synchronization of two identical 

chaotic systems. 

4. Global exponential synchronization  
In the following, we firstly apply the linear controller to achieve global exponential 

synchronization with two identical hyperchaotic systems. 

Assume the drive system is 

                    

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

,

,

,

.

x ax ay w

y bx x z y

z x y cz

w x dw

   


  


 
   

                             (4.1) 

And the response system is 

2 2 2 2 1

2 2 2 2 2 2

2 2 2 2 3

2 2 2 4.

x ax ay w u

y bx x z y u

z x y cz u

w x dw u

    


   


  
    

，

，

，
                     (4.2) 

Let 2 1 2 1 2 1 2 1, , ,x y z we x x e y y e z z e w w        , then the error dynamical system 
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can be obtained as 

 

 

 

 

 

2 2 1

1

1

2 2 1

2

1 3

4

, ,

,

,

, , ,

, , ,

, , ,

,

,

,

x x y w x y z

y x y x y z

z z wx y z

w x w x y z

w

w

w

e ae e e u e e

e

e

e be x z x z e u e e e

e x y x y ce u e e e

e e de u e e e

a e

e

e

   

     


   


   

 

     (4.3) 

where   4,, , , 1,2,3,i i x y z weu u e e e i   are four controllers that meet the conditions 

(0,0,0,0) 0,iu  1,2,3,4i  . 

Theorem 4.1. The linear feedback control law  

2 4 41 1 2 3 3, , , 0( 1,2,3,4),y z iwxu k e u k e u k e u k e k i      

can always be chosen such that the zero solution of system (4.3) is globally exponential 

stable, so that systems (4.1) and (4.2) achieve global exponential synchronization. 

Proof. Define the radial unbounded vector Lyapunov function  

 
T

( ) , , ,x wy zV X e e e e  

for system (4.3), and then its Dini derivative along the trajectory of system (4.3) is  

1( ) ,x x y wD e a k e a e e       

1 2 2( ) (1 ) ,y x y zD b z e k e x ee      

1 2 3z ( ) ,x y zy e x eD e c k e      

4( ) .ww xe d eD e k     

The above inequality can be written as the following matrix 

 

1

1 2 2

1 2 3z

4

0 1

1 0

0

1 0 0

x x x

y y y

z z

w ww

D e e ea k a

D e e eb z k x
C

y x c k e eD e

d k e eD e









        
 

          
      
 

   

 
 
 
 
 


  
 

   
  

. 

Let ( 1,2,3,4)iC i   be the i -order principal minor determinant of matrix .C  If matrix 

C  is a negative definite matrix, then the following condition (4.4) should be satisfied. 

 

1

1

1 2

1

1 2 2

4

1

1

2

2

3

3

0,

0

0,

0.

0,

1

1

C

b

C

a k

a k

b z k

a k

z k x

y x c k

a

a

C

C C



  



 



  

 

 





 

  














 (4.4) 

Combined with Theorem 3.1, it can be seen that when the parameters , , ,a b c d satisfy 

the condition (4.4), then there is the following exponential estimate of (4.1) and (4.2) 

 
22 2 21

[ ] , 1,2
2

i i i ix y z a b w M i       . 
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Therefore, substituting the maximum 

max 2 ,max 2 ,max 2 , 1,2,
i i i

i i i
x R x R x R

x M y M z M a b i
  

       into (4.4), we can 

obtain 

 

1

1

2

1

2

1 2 1 2

3

2

2

2 2 3

4

3

,

( )
1,

( )
,

(1 )( )
.

k a

a z b
k

a k

a k x a y x
k c

C

x k c k
k d

C

 


  
 


 
 


   
  



 (4.5) 

Therefore, when 1,2,3,4)(ik i   satisfy the condition of (4.5), the matrix C can be 

guaranteed to be a negative definite matrix. Moreover, it can be seen from (4.5) that 

there exist a number of 0( 1,2,3,4)ik i   such that (4.5) holds. 

Hence, we have  

    
T T

, , , , , ,xwx y z y z wD e e e e C e e e e . (4.6) 

Consider the comparing equation  

    4

T T

1 2 3 1 2 43

d
., , , , , ,

d
C

t
       

From the above differential inequality (4.6), we can obtain 

      0
T T

1 2 3 4 1 0 2 0 3 0 4 0 0, .( ), ( ), ( ), ( ) ( ), ( ), ( ), ( )
C t t

t t t t e t t t t t t       


  

Since the matrix C is a negative definite matrix, there exist 1G  and 0   such that 

   0 0

0,
C t t t t

e te tG
  

 . 

And since 

                 
T T

0 0 0 0 1 0 2 0 3 0 4 0, , , , ,x y z we t e t e t e t t t t t   ， , 
0t t , 

So, we have  

 
                 

          0

T T

1 2 3 4

T

1 0 2 0 3 0 4 0 .

, , , , ,

, , ,

x y z w

t t

e t e t e t e t t t t t

t t t t Ge


   

   
 





，
 (4.7) 

Notice that (0,0,0,0) is the zero solution of the error system (4.3). The above inequality 

(4.7) show that the zero solution of the error system (4.3) is global exponential stability, 

so system (4.1) and system (4.2) can achieve global exponential synchronization. 

In the following part, we will perform numerical simulations to check the correctness 

of Theorem 4.1 in the paper. We will give numerical simulations of global exponential 

synchronization for 10, 25,a b  3, 2c d   and the initial conditions of the drive 

system and the response system at 
0 0t   are selected as 

1 1 1 1 2 2 2 2( (0), (0), (0), (0)) (1,3.5,0.5,4),( (0), (0), (0), (0)) (4,0.3,3,0.5).x y z w x y z w 

Choose
1 2 3 410, 53, 6350, 2,k k k k     then Theorem 4.1 can be satisfied. The di-

agram of linear synchronization process between system (4.1) and (4.2) is shown in 
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Figure 9. 

 

Figure 9. Synchronization of linear feedback control is illustrated for 

1 2 3 410, 53, 6350, 2.k k k k     

From Figure 9, we can see that the oscillations of the drive and response systems rapidly 

become totally indistinguishable which indicate that synchronization is achieved very 

quickly. 

The simulation results show that the linear feedback method can make system (4.1) and 

(4.2) achieve global exponential synchronization very quickly, which confirms that the 

linear feedback method is very effective. 

Next, we will apply sliding mode control method to system (2.1) to achieve globally  

asymptotical synchronization. Suppose (4.1) is still selected as the transmitting system 

and (4.2) as the receiving system and a controller will be designed to make systems (4.1) 

and (4.2) achieve globally asymptotical synchronization. We have the following results 

for the sliding mode control. 

 

5. Sliding mode control of synchronization  

Theorem 5.1. The parameters 10, 25, 3, 2a b c d     are selected for system (4.1) 

and system (4.2), and the controller is designed as 
1 1 1 2 2 2( , , , , , )u x y z x y z Qv  , 

where 

1

2

3

4

u

u
u

u

u

 
 
 
 
  
 

, 
1 1 2 2

1 1 1 2 2 2

2 2 1 1

0

( , , , , , )=

0

x z x z
x y z x y z

x y x y


 
 

 
 
 
 

, 

1

1

1

1

Q

 
 
 
 
 
 

and v  is the sliding 

mode controller. And when  
2

1 2 3 4 1 3 4 1 3 40.5 10 3.5 3 5(2 ) sgn(2 )v e e e e e e e e e e          , 

system (4.1) and system (4.2) can achieve globally asymptotical synchronization un-

der any initial states 
1 1 1 1( (0), (0), (0), (0))x y z w  and 

2 2 2 2( (0), (0), (0), (0))x y z w . 

Proof. Define a new control signal as 

                  
1 1 1 2 2 2( , , , , , )u x y z x y z Qv                        (5.1) 
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where 

1

2

3

4

u

u
u

u

u

 
 
 
 
  
 

, 
1 1 2 2

1 1 1 2 2 2

2 2 1 1

0

( , , , , , )=

0

x z x z
x y z x y z

x y x y


 
 

 
 
 
 

， 

1

1

1

1

Q

 
 
 
 
 
 

and v  is the sliding 

mode controller. Then the error dynamical system (4.3) can be transformed into the 

following matrix form: 

                   
1 1 1 2 2 2( , , , , , )e De x y z x y z u   .                   (5.2) 

where 

1

2

3

4

e

e
e

e

e

 
 
 
 
 
 

 and 

0 1

1 0 0

0 0 0

1 0 0

a a

b
D

c

d

 
 

 
 
 
  

. 

The sliding variable can be chosen to be 
1 3 4( ) 2 ,S e Re e e e     where 

(2,0,1, 1)R   . 

Let E  be the identity matrix and the parameters of hyperchaotic system (2.1) are 

chosen as 10, 25, 3, 2,a b c d    then the eigenvalues of the matrix  
1[ ( ) ]T E Q RQ R D    can be calculated as 

1 2 3 40, 1, 1.5, 3           . Ac-

cording to the literature [35], it can be shown that the sliding manifold is globally as-

ymptotically stable. 

  According to Vaidyanathan's theorem in the paper [36], sliding mode control v  

can be defined as 

                 1 2( ) ( ) [ ( ) sgn( )]v t RQ R kE D e qS S    .               (5.3) 

where k and q are sliding constants and sgn( )S  is a sign function with respect to S . 

The error dynamical system (5.2) can be written as the following form according to 

(5.1) and (5.3) 

 1 2( ) [ ( ) sgn( )]e De Q RQ R kE D e qS S    .              (5.4) 

  Define the Lyapunov function 21
( ) ( )

2
V e S e . The equation of sliding mode motion 

can be expressed by ( ) 0S e  , and ( ) 0S e  . Differentiate ( )V e  with respect to t  

along the trajectory of the system (5.4) 

(5.4)

1 2

2

2 3

d ( )
( ),

d

,

{ ( ) [ ( ) sgn( )]},

( sgn( )),

sgn( ),

0.

V e
S S e

t

SRe

SR De Q RQ R kE D e qS S

S kERe qS S

kS qS S







   

  

  



 

 Thus, the zero solution of the error system (5.2) is globally asymptotically stable, in-

dicating that system (4.1) and system (4.2) can achieve globally asymptotical synchro-

nization. 

When the sliding constants ,k q  are chosen as 10k  and 10q  , it can be obtained 

        2

1 2 3 4 1 3 4 1 3 40.5 10 3.5 3 5(2 ) sgn(2 )v e e e e e e e e e e          .     (5.5) 
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Compared with the previous research [36-37], this paper extends the sliding mode con-

trol method from the three-dimensional chaotic system to the four-dimensional hyper-

chaotic system. Since hyperchaotic systems have more complex dynamical behaviors 

and the sliding mode control method has the advantage of being insensitive to parame-

ter changes, this research has an important role in promoting the development of secure 

communication.  

In order to verify the correctness of the above theory, we will give some numerical 

simulations in the following part. In this section, we will give numerical simulations of 

the sliding mode synchronization for 10, 25,a b  3, 2c d   and the initial condi-

tions of the drive system and the response system at 
0 0t   are selected as 

1 1 1 1 2 2 2 2( (0), (0), (0), (0)) (1,3.5,0.5,4),( (0), (0), (0), (0)) (4,0.3,3,0.5).x y z w x y z w   

Choose 10,k  10,q  then the above Theorem 5.1 can be satisfied. The sliding mode 

synchronization of this hyperchaotic system is shown in Figure 10. 

 

    
(a)                             (b) 

   
(c)                              (d) 

Figure 10. Synchronization of sliding mode control is illustrated when 10, 10.k q   

From Figure 10, we can see that the oscillations of the drive and response systems rap-

idly become totally indistinguishable which indicate that synchronization is achieved 

very quickly. 

The simulations show that the sliding mode control method can both make system (4.1) 

and system (4.2) achieve synchronization very quickly, which confirms that the sliding 

mode control methods is very effective. 

6. Conclusions 
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In this paper, a new four-dimensional hyperchaotic system is proposed and analyzed by 

using chaos theory and numerical simulations. The three-dimensional phase diagram 

and time sequence diagrams of each variable of this hyperchaotic system are drawn by 

the computer software. The influences of parameters a  and b  for this hyperchaotic 

system are also analyzed. The sensitivity of this system to the initial value is also ana-

lyzed. Then, by using Lyapunov-like function method, the global exponential attractive 

set of this system is also obtained. Then by using the result of the global exponential 

attractive set, it is proved that this system can achieve global exponential synchroniza-

tion by applying linear feedback controllers, and the lower bound of linear feedback 

controller is calculated. Then, a suitable sliding mode controller is used to realize glob-

ally asymptotical synchronization for this new hyperchaotic system. Finally, two con-

trol methods are simulated by numerical simulations and the simulations show that both 

control methods are effective. The linear control method has the advantage of simple 

structure and it is easy to design in practical application. The sliding mode controller 

has the characteristics of simple design, insensitive to parameter disturbance and exter-

nal interference and strong robustness.  
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