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A MODULUS ITERATION METHOD FOR
NONNEGATIVELY CONSTRAINED

PHOTOACOUSTIC IMAGE
RECONSTRUCTION∗

Shuo Wang1, Li Sun1, Yumei Huang1,†

Abstract The photoacoustic tomography (PAT) is a new biomedical imag-
ing modality. Its assistance in early clinical diagnosis has become more and
more important in the medical field. In the PAT imaging system, when a beam
of short-pulsed laser irradiates the biological tissue, the photoacoustic effect
results in the generation of the acoustic waves in the tissue. The initial acous-
tic pressure appearing in the tissue reveals the structures of the tissue. The
PAT reconstruction problem aims to obtain the initial acoustic pressure in the
tissue from the collected photoacoustic signal informations. In this paper, we
propose a nonnegatively constrained PAT reconstruction model regularized by
a hybrid Gaussian-Laplacian mixture term. The model can be reformulated as
a nonnegatively constrained quadratic programming problem with a positive
definite coefficient matrix and it is shown to be equivalent to a linear comple-
mentarity problem. We apply a modulus iteration method to solve the linear
complementarity problem and its convergence is also demonstrated. Numeri-
cal results illustrate that the proposed method is competitive with the existing
efficient methods for the PAT reconstruction problem.

Keywords photoacoustic tomography reconstruction, quadratic program-
ming problem, linear complementarity problem, modulus iteration method

MSC(2010) 65K15, 90C90, 92C55.

1. Introduction

The photoacoustic tomography (PAT) is a new non-invasive biomedical imaging
modality. The PAT can obtain high resolution and high contrast images of deep
biological tissue structures in vivo. This technology has a revolutionary impact on
clinical medical imaging and it has been widely applied in brain functional imaging,
vasculature imaging, breast cancer screening and imaging tumor metastases at the
sentinel lymph nodes [1–4]. The PAT mechanism is based on the photoacoustic
effect [5]. When a beam of short-pulsed laser irradiates the biological tissue, the
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temperature of the tissue rises and the thermal expansion of the tissue happens,
which results in the generation of the acoustic waves in the tissue. A set of trans-
ducers around the biological tissue surface collect and record these photoacoustic
signals. The initial acoustic pressure reveals the structures of the tissue. The pur-
pose of the photoacoustic image reconstruction is to design effective mathematical
methods to obtain the initial acoustic pressure in the laser irradiated area by uti-
lizing the collected photoacoustic signal informations. The initial acoustic pressure
is proportional to the optical absorption distribution that characterizes the internal
structural information of the tissue, so we also can reconstruct the optical absorp-
tion distribution. Compared with other medical imaging modalities, such as X-ray
computed tomography (CT) and ultrasonic imaging, the PAT allows high spatial
resolution and contrast, obtains the images of tissues deep in the biological body,
and is free from ionizing radiation. Therefore, the PAT has been playing an impor-
tant role in the field of medical imaging.

The propagation of the photoacoustic pressure wave is mathematically governed
by the following inhomogenous wave equation:

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= − β

Cp
u(r)

∂I(t)

∂t
, (1.1)

where u(r) represents the initial acoustic pressure that we need to determine, r
denotes the tissue position, p(r, t) is the acoustic pressure at the propagation time
t, c is the speed of sound transmitted in the tissue medium, Cp is the specific
heat, β denotes the thermal expansion coefficient. I(t) is the temporal illumination
function. In most cases, I(t) is short enough to be approximated by the Dirac delta
function, i.e., I(t) = δ(t).

By using the Green’s function, we get the analytical expression of the acoustic
pressure p (r, t) (t 6= 0) from the wave equation (1.1) as follows:

p (r, t) =
β

4πCp

∂

∂t

‹
|r′−r|=ct

u (r′)

t
dr′. (1.2)

Since the acoustic pressure p (r, t) is detected by the transducers and it is known, the
back-projection methods [6–10], the inverse Radon transformation methods [11,12]
have been constructed for the PAT reconstruction and the closed-form analytic
inversion formula of the initial acoustic pressure is given. The time reversal meth-
ods [13–15] have also been proposed for the PAT reconstruction. These methods
are simple to implement and the computational burden is low. However, in these
methods, densely detected photoacoustic signals are required and the reconstructed
photoacoustic images suffer from steak-type artifacts and the loss of low-frequency
information as well as negative values [16]. In practical applications, due to the
limited detection angles of the transducers and the under-sampling data for the
purpose of fast data acquisition, the PAT reconstruction problem is an ill-posed
inverse problem. Model-based methods can reconstruct the PAT for limited-view
and sparse-view photoacoustic signals. In the reconstructed images obtained from
the model-based methods, the artifacts caused by the limited-view data and the
noises in the photoacoustic signal are removed well.

In the model-based methods, by integrating both sides of equation (1.2) with
respect to time t, we have

4πCpt

β

ˆ t

0

p (r, t) dt =

‹
|r′−r|=ct

u (r′) dr′. (1.3)
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Based on (1.3), we can see that reconstructing the photoacoustic image u from
the collected photoacoustic signal p is an inverse problem. The forward model is
obtained by discretizing (1.3). In the discretization of the right hand side of the
equation (1.3), the integral is defined along the arc |r′ − r| = ct, so the discretized
points required for the integral computation are located on this arc. We know that
u is the reconstructed photoacoustic image, and its discretization values usually
need to be determined at rectangular grids. Therefore, in the integral discretiza-
tion, interpolation methods are often applied to express the values of u located on
the arc by the values of u located on the rectangular grids. For example, bilin-
ear interpolation method is used in [17] and circular interpolation method is used
in [18]. By considering the discretization errors and noises in the process of the
photoacoustic imaging, the discretization result from the above discretized process
can be expressed as follows:

g = Ru+ η, (1.4)

where g ∈ Rst is the known photoacoustic signal collected by s transducers, each
of which collects the signal at t instants, and u ∈ Rmn is the photoacoustic image
expressed in a vector form. R ∈ Rst×mn is the model matrix, which depends only
on the speed of sound in the medium and the geometry of the photoacoustic set-up,
such as the number and the position of the transducers. Electronic system noise and
thermal noise from the transducer are the primary source of noises in the PAT [19].
Therefore, η ∈ Rst is modeled as the additive Gaussian noise with zero mean and
standard deviation σ. We focus on the reconstruction of photoacoustic image u
from the given photoacoustic signal g.

Reconstructing u from (1.4) is an ill-posed inverse problem. Regularization
methods have been proposed for this problem. Shaw et al. [20] and [21] proposed
Tikhonov regulariztion models for the PAT reconstruction. Zhang et al. [22] con-
structed a total variation based model for the sparse-view photoacoustic image
reconstruction problem, and the gradient descent algorithm was applied to solve
the model. Wang et al. [23] proposed a total variation based model for the PAT re-
construction problem with limited sampling data, and alternating direction method
of the multipliers (ADMM) algorithm was applied to solve the model. John et
al. [24] and Dong et al. [25] also proposed total variation based models for the PAT
reconstruction problem, and the split Bregman algorithm and semismooth New-
ton scheme were applied to solve the models, respectively. Yalavarthy et al. [26]
proposed a total variation constrained model for PAT reconstruction, and a non-
local means based filtering method was used to improve the effect of reconstruction.
Sparsity-based regularization methods have also been proposed for the PAT recon-
struction problems. Han et al. [27] proposed a sparsity based reconstruction model
for three-dimensional optoacoustic reconstruction and the gradient descent with
Barzilai-Borwein linear search algorithm was used to solve the model. Li et al. [28]
proposed an optoacoustic tomography image reconstruction model which involved
non-local and sparsity regularization terms, and a tailored two-step optimization al-
gorithm was designed to solve the model. In addition, in recent years, some efficient
deep learning-based methods [29–32] have been proposed for PAT reconstruction.
Although these methods have improved the results of PAT reconstruction, they still
have limitations, such as being time-consuming and demanding a large quantity of
data.

In the PAT reconstruction, the pixel values of the photoacoustic images are non-
negative. In most methods for PAT reconstruction, the nonnegative constraint was
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either completely ignored or simply enforced by setting negative values to zero [33].
Some methods considered the nonnegative constraint. For example, Ding et al. [34]
constructed a nonnegatively constrained PAT reconstruction model and proposed
an accelerated projected conjugate gradient algorithm to solve the model; Prakash
et al. [35] proposed a PAT reconstruction model based on entropy maximization,
where the nonnegative constraint was achieved by adding the relative entropy func-
tion of photoacoustic images to the cost function. In [36], a total variation model
with pixel value nonnegative constraint was proposed for PAT reconstruction and
it was solved by the ADMM algorithm. For the nonnegatively constrained image
restoration problem, when the minimization model can be transformed into a linear
complementarity problem (LCP), the modulus-based iteration method is an efficient
method to solve it. For example, the modulus-based iteration method was applied
to solve the nonnegatively constrained Tikhonov, TV and lp − lq regularizations
models in [37], [38] and [39], respectively.

In this paper, we propose a nonnegatively constrained hybrid Gaussian-Laplacian
mixture regularized PAT reconstruction model. By decomposing the image gradi-
ent to be the difference of its nonnegative and nonpositive parts, we transform the
proposed model into a nonnegatively constrained quadratic programming (NNQP)
problem, which can be described as an LCP by utilizing the KKT optimization
conditions. We apply an inexact modulus iteration method to effectively solve the
LCP and give the theoretical analysis of the proposed method.

The rest of the paper is organized as follows. In Section 2, we give a brief
review of the LCP. In Section 3, we propose a nonnegatively constrained hybrid
Gaussian-Laplacian mixture regularized PAT reconstruction model and show that
this model is equivalent to an LCP. In Section 4, an inexact modulus iteration
method is applied to solve the LCP and its convergence analysis is presented. In
Section ??, numerical results are given to illustrate the effectiveness of the proposed
method. Finally, conclusions are given in Section 6.

2. Linear complementarity problem

The linear complementarity problem LCP (q, A) is described as follows:

Az + q ≥ 0, z ≥ 0, z>(Az + q) = 0, (2.1)

where z ∈ Rn is the unknown variable that needs to be determined in LCP (q, A),
A ∈ Rn×n and q ∈ Rn are the known matrix and vector, “≥” represents the
component-wise partial ordering between two vectors, (·)> denotes the transpose
of the corresponding vector or matrix. When A is symmetric positive definite, the
LCP (2.1) has a unique solution [40]. The splitting iteration methods have been de-
signed in the literature to obtain the numerical solutions of (2.1). For instance, the
projected successive over-relaxation (SOR) iteration method [41], the general fixed-
point iteration methods [42–44], the matrix multisplitting iteration methods [45–47],
and so on. In addition to the splitting iteration methods, modulus iteration meth-
ods are efficient methods for solving (2.1). In the modulus iteration methods, the
projection of the current iterate onto the first orthant {z|z ∈ Rn, z ≥ 0} is not
required in the iteration process. The original modulus iteration method was pro-
posed by Bokhoven in [48]. In recent years, many modified modulus-based iteration
methods have been proposed. For example, by introducing a shifting parameter
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into the modulus iteration methods proposed in [49], Dong and Jiang constructed a
new modulus iteration method in [50] for the LCP arising from nonnegatively con-
strained least squares problems. In [51], Bai established a class of modulus-based
matrix splitting iteration methods by reformulating the LCP as implicit fixed-point
equations based on the following theorem.

Theorem 2.1. (see [51]) Let A = M−N be a splitting of the matrix A ∈ Rn×n, Ω1

and Ω2 be n× n nonnegative diagonal matrices, Ω and Γ be n× n positive diagonal
matrices such that Ω = Ω1 +Ω2. For the LCP (q, A) (2.1), the following statements
hold true:

(i) if z is a solution of the LCP (q, A) (2.1), then x = 1
2 (Γ−1z − Ω−1(Az + q))

satisfies the implicit fixed-point equation

(MΓ + Ω1)x = (NΓ− Ω2)x+ (Ω−AΓ)|x| − q; (2.2)

(ii) if x is a solution of the implicit fixed-point equation (2.2), then

z = Γ(|x|+ x)

is the solution of the LCP (q, A) and Az + q = Ω(|x| − x).

The modulus-based matrix splitting iteration method to get the solution of the
LCP (q, A) (2.1) is given in [51], which contains the detailed splitting iteration
method for solving (2.2). We describe it briefly as follows.

Method 2.1. Modulus-Based Matrix Splitting Iteration Method [51]

(1) Give an arbitrary initial vector x0 ∈ Rn and set k = 0;

(2) Compute
bk = (NΓ− Ω2)xk + (Ω−AΓ)|xk| − q;

(3) Compute xk+1 by solving the system of linear equations

(MΓ + Ω1)x = bk;

(4) Set zk+1 = 1
γ (|xk+1|+ xk+1). If xk+1 satisfies the termination criterion, then

stop; otherwise, set k = k + 1, go to step (2).

In the modulus-based matrix splitting iteration method shown in Method 2.1,
the fixed matrices Ω1 = Ω with Ω being a nonnegative diagonal matrix, Ω2 = 0,
Γ = 1

γ I with γ > 0 and I being the identity matrix are often adopted. Then at
each iteration of the modulus-based matrix splitting iteration method, the system
of linear equations (2.2) becomes

(Ω +M)x = Nx+ (Ω−A)|x| − γq. (2.3)

For the large and sparse LCP defined in (2.1), the problem (2.3) is large and sparse,
and iterative methods are often applied to solve it. Iterative methods usually gen-
erate an approximate solution with a prescribed accuracy for the linear system.
Specifically, in [52], by solving (2.3) using iterative methods, Dong et al. proposed
an inexact modulus iteration method for solving the LCP (2.1). The computing
process of this inexact modulus iteration method is shown in Method 2.2.
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Method 2.2. Inexact Modulus Iteration Method [52,53]

(1) Give an arbitrary initial vector x0 ∈ Rn and set k = 0;

(2) Compute

bk = Nxk + (Ω−A)|xk| − γq, rk = (Ω +M)xk − bk;

(3) Solve the system of linear equations

(Ω +M)y = bk

by a iterative method with the initial guess xk, such that the approximate
solution ŷ satisfies

(Ω +M)ŷ = bk + pk,

where
‖pk‖ ≤ εk‖rk‖ with εk → 0 as k →∞;

(4) Set xk+1 = ŷ, zk+1 = 1
γ (|xk+1| + xk+1). If xk+1 satisfies the termination

criterion, then stop; otherwise, set k = k + 1, go to step (2).

When the matrix A is symmetric positive definite, the convergence of the inexact
modulus iteration method was also demonstrated in [52] .

3. Proposed model for photoacoustic image recon-
struction

Based on (1.4), a regularized model for PAT reconstruction is proposed as follows:

min
u≥0

1

2
‖Ru− g‖22 +

µ

2
||∇u||22 + β||∇u||1, (3.1)

where || · ||1, || · ||2 denote the `1 norm and the Euclidean norm, respectively.
β||∇u||1 + µ

2 ||∇u||
2
2 is the hybrid Gaussian-Laplacian mixture regularization term

[54]. The total variation term ||∇u||1 can effectively preserve the image edges in the
recovered images but the stair-case artifacts often appear. The hybrid Gaussian-
Laplacian mixture regularization term can efficiently prevent the stair-case artifacts
and preserve the edges in the recovered images. µ and β are the regularization pa-
rameters which control the balance among the data-fidelity term ‖Ru−g‖22 and the
two regularization terms ||∇u||22 and ||∇u||1.

The discrete gradient operator ∇: Rmn×1 → R2mn×1 is defined by:

∇u ≡ Du =

Dxu

Dyu

 (3.2)

with

(Dxu)i,j =


ui,j+1 − ui,j if j < n,

ui,1 − ui,j if j = n;

(Dyu)i,j =


ui+1,j − ui,j if i < m,

u1,j − ui,j if i = m,
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for i = 1, 2, · · · ,m, j = 1, 2, · · · , n, where ui,j denotes the ((j − 1)m+ i)th entry of
the vector u. Let

v = Du

and

v+ = max (v, 0) ≥ 0, v− = max (−v, 0) ≥ 0, (3.3)

we can write

v = v+ − v−.

The minimization problem (3.1) can be reformulated as
min

u,v+,v−
{ 1

2‖Ru− g‖
2
2 + β(1>v+ + 1>v−) + µ

2 ||v
+ − v−||22}

s.t. Du = v+ − v−, u ≥ 0, v+ ≥ 0, v− ≥ 0,

(3.4)

where 1 ∈ R2mn×1 denotes the vector of all ones. By using the penalty method for
the constraint Du = v+ − v− and the definitions of v+ and v− shown in (3.3), the
solution of (3.4) can be obtained by solving the following minimization problem:

min
u,v+,v−≥0

E(u, v+, v−) (3.5)

with

E(u, v+, v−) =
1

2
‖Ru−g‖22+β(1>v++1>v−)+

ρ

2
‖Du−v++v−‖22+

µ

2
(‖v+‖22+‖v−‖22),

where ρ is the penalty parameter. Defining

g̃ = [g>, 0>, 0>, 0>]>, l̃ = [0>,1>,1>]>,

and

z = [u>, v+>, v−
>

]>, q = [−g>R, β1>, β1>]>, (3.6)

we have

E(u, v+, v−) = 1
2z
>H>Hz − g̃>Hz + βl̃>z + 1

2 g̃
>g̃

= 1
2z
>Wz + q>z + 1

2 g̃
>g̃,

where

H =



R 0 0

√
ρD −√ρI √ρI

0
√
µI 0

0 0
√
µI


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and I ∈ R2mn×2mn is an identity matrix, as well as

W = H>H =


R>R+ ρD>D −ρD> ρD>

−ρD (ρ+ µ)I −ρI

ρD −ρI (ρ+ µ)I


. (3.7)

Therefore, we can reformulate the minimization problem (3.5) as a nonnegatively
constrained quadratic programming (NNQP) problem with respect to the variable
z ∈ R5mn×1 as follows:

min
z≥0

1

2
z>Wz + q>z. (3.8)

The following conclusion shows that the matrix W defined in (3.7) is symmetric
positive definite under some conditions.

Theorem 3.1. Let the matrices R be defined in (1.4), D be defined in (3.2) and I
be the identity matrix. If Ker(R) ∩Ker(D) = {0}, then the matrix W defined in
(3.7) is symmetric positive definite, where Ker(·) is the kernel or null space of the
corresponding matrix.

Proof. Since µ > 0, ρ > 0 and Ker(R)∩Ker(D) = {0}, it is obvious that H is a
full column rank matrix, so the matrix W = H>H is symmetric positive definite.

Based on the above theorem, the NNQP problem (3.8) is equivalent to a lin-
ear complementarity problem LCP (q,W ) [37, 55]. We easily obtain the following
corollary.

Corollary 3.1. Let the vectors z and q be defined in (3.6), and the matrix W be
defined in (3.7), the NNQP (3.8) resulting from the minimization problem (3.5) for
the photoacoustic image reconstruction problem is equivalent to the linear comple-
mentarity problem LCP (q,W ) when Ker(R) ∩Ker(D) = {0}.

Therefore, the solution of the minimization problem (3.5) can be obtained by
solving the linear complementarity problem LCP (q,W ).

4. Modulus iteration method for the proposed model

The linear complementarity problem LCP (q,W ) with q being defined in (3.6) and
W being defined in (3.7) is solved by the inexact modulus iteration Method 2.2
shown in section 2. In Method 2.2, we set

M = W, N = 0, Ω = ωΩ̂,

where ω is a positive constant and

Ω̂ = diag(W ),

diag(·) denotes the diagonal matrix with the diagonal elements being the diagonal
elements of the corresponding matrix. From Theorem 3.1, we know that Ω̂ is positive
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definite when the condition of the theorem satisfies. The fixed-point equation (2.3)
can be expressed as:

(ωΩ̂ +W )xk+1 = (ωΩ̂−W )|xk| − γq. (4.1)

By utilizing the structure of the matrix W , we can write the diagonal matrix Ω̂ as

Ω̂ = diag(Ω1,Ω2,Ω3) = diag(diag(R>R+ ρD>D), (ρ+ µ)I, (ρ+ µ)I). (4.2)

Let

P =


I ρ
ρ+θD

> − ρ
ρ+θD

>

0 θ
θ−ρI

ρ
θ−ρI

0 I I


,

with θ = (1 + ω)(ρ+ µ). We write

xk+1 =


x

(k+1)
u

x
(k+1)
v+

x
(k+1)
v−


, bk =


b
(k)
u

b
(k)
v+

b
(k)
v−


= P (ωΩ̂−W )|xk| − γPq,

where x
(k+1)
u , b

(k)
u ∈ Rmn×1, x

(k+1)
v+ , x

(k+1)
v− , b

(k)
v+ , b

(k)
v− ∈ R2mn×1. By multiplying P on

both sides of the fixed-point iteration equation (4.1), we can transform the equation
(4.1) into the following system of linear equations

(R>R+ ζD>D + ωΩ1)x
(k+1)
u = b

(k)
u ,

x
(k+1)
v+ = 1

ρ+θ (ρDx
(k+1)
u + b

(k)
v+ ),

x
(k+1)
v− = −x(k+1)

v+ + 1
θ−ρb

(k)
v− ,

(4.3)

where ζ = ρ(θ − ρ)/(θ + ρ) > 0, and the matrix Ω1 is symmetric positive defi-
nite when Ker(R) ∩ Ker(D) = {0}. For the first linear system in (4.3), the pre-
conditioned conjugate gradient method combined with the preconditioning matrix
K = diag(R>R) + ζD>D + ωΩ1 is applied to solve it. The incomplete LU de-

composition is used in the computation. Once x
(k+1)
u is known, x

(k+1)
v+ , x

(k+1)
v− can

be calculated straightforwardly from the second and the third formulae in (4.3),
respectively.

The inexact modulus iteration method for solving LCP (q,W ) with W and q
being defined in (3.7) and (3.6) is described in Algorithm 1. The convergence of
Algorithm 1 is also shown in the following theorem.

Theorem 4.1. Let ω and γ be positive constants shown in Algorithm 1. Suppose
Ker(R)∩Ker(D) = {0} and the condition (4.12) holds. Then for any initial vector
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x0 ∈ R5mn×1, the iterative sequence {zk}∞k=0 generated by Algorithm 1 converges to
the unique solution z∗ of LCP (q,W ) which is equivalent to the photoacoustic image
reconstruction problem (3.5), where q is defined in (3.6) and W is defined in (3.7).

Proof. Let ω and γ be positive constants in Algorithm 1. Since the matrix W
defined in (3.7) is symmetric positive definite, by utilizing Corollary 2 in [37], we
know that LCP (q,W ) has a unique solution z∗. Let Ω̂ be the diagonal matrix
defined in (4.2). From Theorem 2.1, x∗ = 1

2 ( 1
γ z∗−(ωΩ̂)−1(Wz∗+q)) is the solution

of the following implicit fixed-point equation

P (ωΩ̂ +W )x = P (ωΩ̂−W )|x| − γPq. (4.4)

Given an initial vector x0 ∈ R5mn×1, after k iteration steps of

P (ωΩ̂ +W )xk+1 = P (ωΩ̂−W )|xk| − γPq + pk, (4.5)

a sequence of the inexact solutions xk+1(k = 0, 1, 2, · · · ) of (4.4) is generated by

Algorithm 1. We represent xk = [(x
(k)
u )>, (x

(k)
v+ )>, (x

(k)
v− )>]> with x

(k)
u ∈ Rmn×1,

x
(k)
v+ , x

(k)
v− ∈ R2mn×1. By making use of the special structure of the coefficient

matrix P (ωΩ̂ + W ) shown in (4.3), we can obtain the solution xk+1 of (4.5) by

solving x
(k+1)
u , x

(k+1)
v+ and x

(k+1)
v− separately. According to the computing process

shown in Algorithm 1, x
(k+1)
u can be obtained by solving the first linear system in

(4.3) using the preconditioned conjugate gradient method and x
(k+1)
v+ , x

(k+1)
v− can be

directly obtained by using the second and third formulae in (4.3). From (4.11) and

(4.13), we have pk = [(p
(k)
u )>, 0>, 0>]>, where p

(k)
u is considered as a perturbation

of b
(k)
u in (4.11). Suppose x∗ is the exact solution of (4.4), for k = 0, 1, 2, · · · , we

obtain

xk+1 − x∗ = (ωΩ̂ +W )−1(ωΩ̂−W )(|xk| − |x∗|) + (ωΩ̂ +W )−1P−1pk. (4.6)

Assume that p
(k)
u satisfies ‖p(k)

u ‖2 ≤ εk‖rk‖2 with εk → 0 as k → ∞, where rk is
defined in (4.10). We have

‖pk‖2 = ‖p(k)
u ‖2 ≤ εk‖rk‖2 with εk → 0 as k →∞.

We can get the norm bound of (4.6) as

‖xk+1 − x∗‖2
=‖(ωΩ̂ +W )−1(ωΩ̂−W )(|xk| − |x∗|) + (ωΩ̂ +W )−1P−1pk‖2
≤‖(ωΩ̂ +W )−1(ωΩ̂−W )‖2‖xk − x∗‖2 + εk‖(ωΩ̂ +W )−1P−1‖2‖rk‖2
≤‖(I + (ωΩ̂)−1/2W (ωΩ̂)−1/2)−1(I − (ωΩ̂)−1/2W (ωΩ̂)−1/2)‖2‖xk − x∗‖2
+εk‖(ωΩ̂ +W )−1P−1‖2(‖P (ωΩ̂ +W )‖2 + ‖P (ωΩ̂−W )‖2)‖xk − x∗‖2
≤Lk‖xk − x∗‖2,

(4.7)

where
Lk = εkδ + µ (4.8)

with

δ ≡ ‖(ωΩ̂ +W )−1‖2‖P−1‖2‖P‖2(‖ωΩ̂ +W‖2 + ‖ωΩ̂−W‖2),

µ ≡ ‖(I + (ωΩ̂)−1/2W (ωΩ̂)−1/2)−1(I − (ωΩ̂)−1/2W (ωΩ̂)−1/2)‖2.
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As the matrix W is symmetric positive definite, and the matrix (ωΩ̂)−1/2 is a
positive definite diagonal matrix, the matrix (ωΩ̂)−1/2W (ωΩ̂)−1/2 is symmetric
positive definite. Therefore, it holds that

µ = max
λ∈σ((ωΩ̂)−1/2W (ωΩ̂)−1/2)

∣∣∣∣1− λ1 + λ

∣∣∣∣ < 1,

where σ((ωΩ̂)−1/2W (ωΩ̂)−1/2) denotes the set of eigenvalues of (ωΩ̂)−1/2W (ωΩ̂)−1/2;
see [56]. Since lim

k→∞
εk = 0, there is an integer k0 such that for all k ≥ k0 ≥ 1,

εkδ <
1− µ

2
. (4.9)

According to (4.7), (4.8) and (4.9), we have

Lk < θ :=
1 + µ

2
< 1,

and for k ≥ k0,

‖xk+1 − x∗‖2 ≤ θk+1−k0‖x0 − x∗‖2
k0−1∏
i=0

Li → 0, as k →∞.

By utilizing the result zk shown in (4.14) in Algorithm 1, we easily have

zk → z∗, as k →∞,

for any initial vector x0 ∈ R5mn×1.

5. Numerical experiments

In this section, we present numerical results to illustrate the performance and effec-
tiveness of the proposed method for the PAT reconstruction problem. Images “Sim-
ulation” which is a simulated phantom, “Breast” which is a breast phantom [57]
and “Tumor” which is a mouse brain phantom [58] are used in the experiments.
They are both with size 100× 100 and shown in Figure 1. We synthetically get the
photoacoustic pressure signals g in (1.4). The system matrix R in (1.4) is obtained
by using the method proposed in [22]. In the experiment, the speed of sound is
taken as 1500 m/s. 60 detectors are placed equidistantly on a circle that surrounds
the imaging tissue and each detector records information at 60 instants with equal
time intervals. Therefore, the size of the system matrix R is 3600 × 10000. The
white Gaussian noise with the standard deviations σ = 10 and σ = 20 are used
in the experiments for each image. The methods “ADMMTV+” proposed in [36]
and “SBTV-l2” proposed in [24] for the PAT reconstruction are utilized for all the
reconstruction tests in the experiments for the purpose of comparisons. Two mea-
sures peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [59, 60]
are applied for judging the reconstruction quality. In the experiment, we find that
if β is too large, the reconstructed PAT images are oversmooth, if β is too small,
there are residue noises in the reconstructed PAT images. And β = 2 is the best
for getting desirable reconstructed images. Small parameter µ is good and we set it
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Algorithm 1 Modulus Iteration Method for Photoacoustic Image Reconstruction

1 Set the positive valued of the constants ω, γ and the tolerances ε, εk, Let Ω̂
and Ω1 be the diagonal matrices defined in (4.2). Give an initial guess x0, we
have z0 = 1

γ (|x0|+ x0), use k be the iteration index, and set k = 0;

2 Compute

bk = P (ωΩ̂−W )|xk| − γPq, rk = bk − P (ωΩ̂ +W )xk, (4.10)

where bk = [(b
(k)
u )>, (b

(k)
v+ )>, (b

(k)
v− )>]>. Correspondingly, xk =

[(x
(k)
u )>, (x

(k)
v+ )>, (x

(k)
v− )>]>;

3 Using x
(k)
u as the initial guess, the preconditioned conjugate gradient method

with the preconditioner K = diag(R>R) + ζD>D + ωΩ1 is applied to solve
the system of linear equations

(R>R+ ζD>D + ωΩ1)y = b(k)
u ,

such that the approximate solution ŷ satisfies

(R>R+ ζD>D + ωΩ1)ŷ = b(k)
u + p(k)

u , (4.11)

where
‖p(k)
u ‖2 ≤ εk‖rk‖2 with εk → 0 as k →∞. (4.12)

We get x
(k+1)
u = ŷ and

x
(k+1)
v+ =

1

ρ+ θ
(ρDx(k+1)

u + b
(k)
v+ ),

x
(k+1)
v− = −x(k+1)

v+ +
1

θ − ρ
b
(k)
v− .

(4.13)

4 Calculate

zk+1 =
1

γ
(|xk+1|+ xk+1). (4.14)

Denote

Re =
‖zk+1 − zk‖2
‖zk‖2

. (4.15)

If Re < ε, break; otherwise set k = k + 1, go to step 2.
Output z = zk+1.

to be 0.005. When parameter ρ is located in the interval [0.1, 1], the reconstructed
results are fine. For parameter ω, we find that if it is too small, the consumed
time is longer, and ω = 0.2 is best for both the consumed time and reconstructed
effect. For parameter γ, we find that if it is set as the value in the interval [1, 3],
the reconstructed results are better. In the final experiment, the parameters are
set as µ = 0.005, ω = 0.2, γ = 2, ρ = 0.2, β = 2 respectively. Such parameters
can get the best reconstruction results. The stopping criteria parameters are set as
ε = 5 × 10−3 and εk = 1/k2 with k being the outer iteration step in Algorithm 1.
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The parameters in each compared method are selected to be those which make the
reconstructed PSNRs and SSIMs best in the experiments. All the computations are
performed using Matlab R2018a, on a personal computer with 3.00GHz CPU and
8 GB RAM.

Figure 1. The “Simulation” (left), “Breast” (middle) and “Tumor” (right) phantoms.

Table 1. Numerical results of the experiments when σ = 10.

Method Measure
Image

Simulation Breast Tumor
CPU 4.88 5.21 8.13

SBTV-l2 PSNR 36.30 22.76 28.52
SSIM 0.9894 0.9043 0.9038
CPU 4.68 5.07 6.46

ADMMTV+ PSNR 38.46 29.89 33.24
SSIM 0.9973 0.9894 0.9740
CPU 3.25 3.57 4.17

MODULUS PSNR 38.99 30.41 33.85
SSIM 0.9992 0.9925 0.9808

Table 2. Numerical results of the experiments when σ = 20.

Method Measure
Image

Simulation Breast Tumor
CPU 4.13 4.60 6.56

SBTV-l2 PSNR 30.80 22.26 28.04
SSIM 0.9735 0.8915 0.8837
CPU 4.38 4.33 4.88

ADMMTV+ PSNR 34.07 27.62 31.27
SSIM 0.9866 0.9811 0.9532
CPU 3.09 3.70 4.03

MODULUS PSNR 34.55 28.64 32.02
SSIM 0.9960 0.9875 0.9661

The numerical results of the experiments obtained by the proposed method and
the compared methods are shown in Table 1 and Table 2, where “CPU” represents
the computing time in seconds, and the best “CPU”, “PSNR” and “SSIM” are
shown in boldface. From these tables, we can see that the computing time con-
sumed in “MODULUS” method is less than that required in the compared meth-
ods for each experiment. We can also see that “PSNR” and “SSIM” obtained by
“MODULUS” method are the best in each experiment. For example, for the image
“Tumor”, when σ = 10, the “PSNR” obtained by the “MODULUS” method is 5.33
larger than that obtained by “SBTV-l2” method and 0.61 larger than that obtained
by “ADMMTV+” method; and the “SSIM” obtained by “MODULUS” method are
0.077 larger than that got by “SBTV-l2” method and 0.0068 larger than that got by
“ADMMTV+” method, which all indicate that the proposed “MODULUS” method
is more efficient than the compared methods. We also notice that the difference of



14 Shuo Wang, Li Sun, Yumei Huang

“SBTV-l2” “ADMMTV+” “MODULUS”

σ=10

σ=20

Figure 2. Experimental results for “Simulation” image. From the first to the second line, reconstructed
images for noise levels: σ = 10, 20, respectively; From the first to the third column, reconstructed images
by: “SBTV-L2”, “ADMMTV+” and “MODULUS”, respectively.

“SBTV-l2” “ADMMTV+” “MODULUS”

σ=10

σ=20

Figure 3. Experimental results for “Breast” image. From the first to the second line, reconstructed
images for noise levels: σ = 10, 20, respectively; From the first to the third column, reconstructed images
by: “SBTV-L2”, “ADMMTV+” and “MODULUS”, respectively.
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“SBTV-l2” “ADMMTV+” “MODULUS”

σ=10

σ=20

Figure 4. Experimental results for “Tumor” image. From the first to the second line, reconstructed
images for noise levels: σ = 10, 20, respectively; From the first to the third column, reconstructed images
by: “SBTV-L2”, “ADMMTV+” and “MODULUS”, respectively.
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Figure 5. “Re” versus “CPU” for “Simulation”, when (a) σ = 10; (b) σ = 20.

the results between the “MODULUS” method and the “ADMMTV+” method is
not big. Since the nonnegative constraint of the PAT images is taken into account in
both the “MODULUS” and “ADMMTV+” methods, we conclude that the consid-
eration of the nonnegative constraint in the construction of the PAT reconstruction
model is very important for the high quality of the reconstructed PAT images.

In Figure 2, we show the reconstructed “Simulation” images when the corre-
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Figure 6. “Re” versus “CPU” for “Breast”, when (a) σ = 10; (b) σ = 20
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Figure 7. “Re” versus “CPU” for “Tumor”, when (a) σ = 10; (b) σ = 20

sponding photoacoustic signals are contaminated by Gaussian noises with σ = 10
and σ = 20. The reconstructed “Simulation” images obtained by “SBTV-l2”, “AD-
MMTV+” and “MODULUS” methods are shown from the first column to the third
column respectively. In order to assess the reconstructed visual effects more clearly,
for every reconstructed image, we extract one small block encircled by white square
box and show it in the lower left corner of the image within a larger white square
box for the sake of saving space. Whether from the whole reconstructed image
or the enlarged square block, we can see that the edges are sharper in the re-
constructed images obtained by “MODULUS” method than in those obtained by
“ADMMTV+” and “SBTV-l2” methods. In Figure 3, we show the reconstructed
“Breast” images when the corresponding photoacoustic signals are contaminated
by Gaussian noises with σ = 10 and σ = 20. The images shown from the first col-
umn to the third column are reconstructed “Breast” images utilizing “SBTV-l2”,
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Figure 8. “PSNR” versus “CPU” for ‘Simulation”, when (a) σ = 10; (b) σ = 20.
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Figure 9. “PSNR” versus “CPU” for “Breast”, when (a) σ = 10; (b) σ = 20

“ADMMTV+” and “MODULUS” methods respectively. For every reconstructed
image, we extract one small block encircled by yellow square box and show it in
the lower left corner of the image within a larger yellow square box. From these
figures, we can see that whether from the whole reconstructed image or the enlarged
square block, the background of the reconstructed “Breast” image is smoother and
the edges of the pale blue parts are sharper in the reconstructed images obtained by
“MODULUS” method than in those obtained by “ADMMTV+” and “SBTV-l2”
methods, especially for larger noise level σ = 20. We note that the difference in the
visual effects of the reconstructed images between the “MODULUS” method and
the “ADMMTV+” method is not big. Figure 4 shows the reconstructed “Tumor”
images when the corresponding photoacoustic signals are contaminated by Gaussian
noises with σ = 10 and σ = 20 respectively. The reconstructed “Tumor” images ob-
tained by “SBTV-l2”, “ADMMTV+” and “MODULUS” methods are shown from
the first column to the third column, respectively. For each image in Figure 4, we
also extract one small block encircled by a red square box and show it in the lower
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Figure 10. “PSNR” versus “CPU” for “Tumor”, when (a) σ = 10; (b) σ = 20

left corner of the image within a larger red square box. From these figures, we can
see that the background of the reconstructed “Tumor” image is smoother in the
reconstructed images obtained by “MODULUS” method than in those obtained by
“ADMMTV+” and “SBTV-l2” methods. We also note that the difference in the
visual effects of the reconstructed images between the “MODULUS” method and
the “ADMMTV+” method is not big. The visual qualities are consistent with the
quantative results of reconstructed images shown in Table 1 and Table 2.

In Figures 5-7, we plot curves of the relative difference “Re” given in (4.15) in
Algorithm 1 versus “CPU” time for the six experiments. The figures show that the
convergence rate of the proposed “MODULUS” method is the fastest. In Figures
8-10, we plot curves of the “PSNR” versus “CPU” time for the six experiments.
From these figures, we observe that the proposed “MODULUS” method can con-
verge to a higher “PSNR” faster than the “SBTV-l2” and “ADMMTV+” methods,
which is in accordance with the quantative results of the reconstructed images pre-
sented in Table 1 and Table 2. From the convergence curves and numerical results,
we can conclude that the “MODULUS” method performs better in terms of the
reconstructed quality and computational efficiency.

6. Conclusions

In this paper, we propose a hybrid Gaussian-Laplacian mixture regularization model
for the PAT reconstruction. We formulate this problem as a nonnegatively con-
strained quadratic programming problem, which is equivalent to a linear comple-
mentarity problem. The modulus iteration method is applied to solve this linear
complementarity problem. Experimental results demonstrate the stability and ef-
ficiency of the proposed method for the PAT reconstruction problem in terms of
both the reconstructed quality of the PAT and computational efficiency.
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