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1 Introduction

It is well known that the nonlinear Schrödinger (NLS) equation is one of the most generic

soliton equations, and arises from a wide variety of fields, such as quantum field theory,

weakly nonlinear dispersive water waves and nonlinear optics. To study the effect of

higher-order perturbations, various modifications and generalizations of the NLS equa-

tions have been proposed and studied. Among them, there are three celebrated equations

with derivative-type nonlinearities, which are called the derivative nonlinear Schrödinger

(DNLS) equations. One is the Kaup-Newell equation [1-5]:

iqt + qxx + i(|q|2q)x = 0, (1)

which is usually called DNLSI equation. The second type is the Chen-Lee-Liu equation

[6-9]:

iqt + qxx + i|q|2qx = 0, (2)

which is called DNLSII equation. The last one takes the form [10]:

iqt + qxx − iq2q∗x +
1

2
q3(q∗)2 = 0, (3)

which is called the Gerjikov-Ivanov (GI) equation or DNLSIII equation. In equation (3),

q∗ denotes the complex conjugation of q.

These equations have been studied by many authors[11-37]. As an important gener-

alization of the Kaup-Newell model given in equation (1), in 2018, Triki and Biswas [38]

introduced a novel class of DNLS equations given by

iqt + aqxx + ib(|q|2nq)x = 0, (4)

which incorporates the non-Kerr dispersion term (|q|nq)x for the case n ≥ 2. This new

model can be used as a basis for the description of the pulse propagation in highly

nonlinear optical fibers beyond the Kerr limit. By considering the representation of the

complex field q(x, t) in the form: q(x, t) = ρ(ξ)ei[θ(ξ)−ωt], where ρ(ξ) and θ(ξ) are real

functions of the traveling coordinate ξ = x− vt. Here v is the wave velocity, and ω is the

frequency of the wave oscillation. The authors of [38] demonstrated that this nonlinear
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wave equation offers a very rich model that supports envelope soliton solutions of different

waveforms and shapes. In Saima [39], the author again studied Triki-Biswas equation

(4) by using two strategic and efficient integration schemes. In [40], two first integrals

were discovered for the Triki-Biswas equation, demonstrating its transformation into a

nonlinear first-order ordinary differential equation. We shall show that their obtained

exact solutions in [38], [39] and [40] are not complete.

As an generalization of the Chen-Lee-Liu equation (2), we introduce the equation

iqt + aqxx + ib|q|2nqx = 0, (5)

where n ̸= 1 and n = 2, 3, 4, · · · .

We seek the exact explicit solutions of the above two equations with the form:

q(x, t) = ϕ(ξ) exp [i(κx− ωt+ θ(ξ))], ξ = x− ct, (6)

where c is the wave velocity and ϕ(ξ), θ(ξ) are two functions with variable ξ, the param-

eters κ and ω are constant.

The purpose of this paper is to study whether or not existence exact solutions

in explicit form (6) for the above two equations (4) and (5) by using the method of

bifurcation theory of dynamical systems.

(i) Substituting (6) into equation (4) and separating the real and imaginary parts,

respectively, we have

aϕ′′ = bθ′ϕ2n+1 + (2aκ− c)θ′ϕ+ a(θ′)2ϕ+ (aκ2 − ω)ϕ+ bκϕ2n+1, (7)r

aθ′′ϕ+ 2aθ′ϕ′ + (2aκ− c)ϕ′ + b(2n+ 1)ϕ′ϕ2n = 0. (7)i

Integrating (7)i, it follows that (2aκ− c)ϕ+ bϕ2n+1 + aθ′ϕ+ a
∫
θ′dϕ = C1, where C1 is

an integral constant. Taking C1 = 0, we obtain

θ′ =

(
c

2a
− κ

)
− b(2n+ 1)

2a(n+ 1)
ϕ2n, θ(ξ) =

(
c

2a
− κ

)
ξ − b(2n+ 1)

2a(n+ 1)

∫
ϕ2n(ξ)dξ. (8)

Substituting (8) into (7)r, we obtain the following two order equation:

ϕ′′ +
1

a

(
c2

4a
− cκ+ ω

)
ϕ− bc

2a2
ϕ2n+1 +

(2n+ 1)b2

4a2(n+ 1)2
ϕ4n+1 = 0. (9)
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Write that α1 = − 1
a

(
c2

4a − cκ+ ω
)
, α2 = bc

2a2
, α3 = − (2n+1)b2

4a2(n+1)2
. Then, equation (9) is

equivalent to the following planar dynamical system:

dϕ

dξ
= y,

dy

dξ
= α1ϕ+ α2ϕ

2n+1 + α3ϕ
4n+1 (10)

with the first integral:

H(ϕ, y) =
1

2
y2 − 1

2
α1ϕ

2 − α2

2n+ 2
ϕ2n+2 − α3

4n+ 2
ϕ4n+2. (11)

(ii) Substituting (6) into equation (5) and separating the real and imaginary parts,

respectively, we obtain

aϕ′′ − bθ′ϕ2n+1 − (2aκ− c)θ′ϕ− a(θ′)2ϕ− (aκ2 − ω)ϕ− bκϕ2n+1 = 0, (12)r

aθ′′ϕ+ 2aθ′ϕ′ + (2aκ− c)ϕ′ + bϕ′ϕ2n = 0. (12)i

Integrating (12)i, it follows that (2aκ − c)ϕ + b
2n+1ϕ

2n+1 + aθ′ϕ + a
∫
θ′dϕ = C2, where

C2 is an integral constant. Taking C2 = 0, we obtain

θ′ =

(
c− 2aκ

2a

)
− b

2a(n+ 1)
ϕ2n, θ(ξ) =

(
c− 2aκ

2a

)
ξ − b

2a(n+ 1)

∫
ϕ2n(ξ)dξ. (13)

Substituting (13) into (12)r, we obtain the following two order equation:

ϕ′′ +
1

a

(
c2

4a
− cκ+ ω

)
ϕ− bc

2a2
ϕ2n+1 +

(2n+ 1)b2

4a2(n+ 1)2
ϕ4n+1 = 0. (14)

Equation (9) and (14) have the same form, so we only need to further discuss system 10.

Let ϕ = ψ
1
2n . Notice that ϕ′ = 1

2nψ
1
2n

−1ψ′, ϕ′′ = 1
2n

(
1
2n − 1

)
ψ

1
2n

−2(ψ′)2+ 1
2nψ

1
2n

−1ψ′′.

The substitution of the above expression into equation (9) yields the subsequent equation:

2nψψ′′ − (2n− 1)(ψ′)2 − 4n2ψ2(α3ψ
2 + α2ψ + α1) = 0. (15)

Then, system (10) becomes that

dψ

dξ
= y,

dy

dξ
=

(2n− 1)y2 + 4n2ψ2(α3ψ
2 + α2ψ + α1)

2nψ
. (16)

System (16) has the first integral

Hn(ψ, y) = y2ψ−2+ 1
n − 4n2ψ

1
n

[
α3

2n+ 1
ψ2 +

α2

n+ 1
ψ + α1

]
= h. (17)
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Remark 1 The authors of [38] , [39] and [40] did not obtain system (16) and integral

(17). They used the first integral (11) to make transformation. Therefore, obtained exact

solutions of equation (4) by [38], [39] and [40] are not complete.

Remark 2 We see from (17) that

y2 = hψ2− 1
n + 4n2ψ2

[
α3

2n+ 1
ψ2 +

α2

n+ 1
ψ + α1

]
. (18)

By using the first equation of (16), we have

ξ =

∫ ψ

ψ0

dψ√
hψ2− 1

n + 4n2ψ2
[

α3
2n+1ψ

2 + α2
n+1ψ + α1

] . (19)

It is evident that the integral (19) can only be integral when h = 0 for all n ≥ 2.

The case of n = 1 has already been addressed in [41].

Systems (16) is a four-parameter planar dynamical system depending on the pa-

rameter group (n, α1, α2, α3). Since the parametric representations of the phase orbits

defined by the vector fields of systems (16) give rise to all exact solutions with the form

(6) of equation (4) and (5), we need to investigate the bifurcations of phase portraits for

system (16) in the (ψ, y)-phase plane as the parameters are changed [42-47].

The rest of this paper is organized as follows. In section 2, the bifurcations of the

phase portraits of systems (16) are studied. In section 3, in given parameter regions, cor-

responding to the bounded level curves defined by Hn(ψ, y) = 0, exact explicit parameter

representations of system (16) are given. In section 4, we state the main conclusion of

this paper.

2 Bifurcations of phase portraits of system (16)

Consider the associated regular system of system (16):

dψ

dζ
= 2nψy,

dy

dζ
= (2n− 1)y2 + 4n2ψ2(α3ψ

2 + α2ψ + α1), (20)

where dξ = 2nψdζ, for ζ ̸= 0.

To find the equilibrium points of system (20), write that f(ψ) = α1 + α2ψ + α3ψ
2.

Clearly, if ∆ = α2
2 − 4α1α3 > 0, then, f(ψ) has zeros ψ1 = 1

2α3
(−α2 −

√
∆), ψ2 =
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1
2α3

(−α2 +
√
∆). It is easy to see that if ∆ > 0, system (20) has three equilibrium points

O(0, 0) and Ej(ψj , 0), j = 1, 2.

The assumption is made that at least one of ψ1 and ψ2 assumes a non-negative real

value. Additionally, it can be observed that in equation (9), α3 = − (2n+1)b2

4a2(n+1)2
is a real

number which is less than or equal to zero.

Let M(ψj , 0) be the coefficient matrix of the linearized system of system (20) at the

equilibrium point Ej . Let J(ψj , 0) be its Jacobin determinant. Then, one has

J(0, 0) = 0, J(ψj , 0) = −8n3ψ3
j f

′(ψj).

By the theory of planar dynamical systems, for an equilibrium point of a pla-

nar integrable system, if J < 0, then the equilibrium point is a saddle point; if J >

0 and (Trace(M(ψj , 0)))
2 − 4J(ψj , 0) < 0, then it is a center point; if J > 0 and

(Trace(M(ψj , 0)))
2 − 4J(ψj , 0) > 0, then it is a node; if J = 0 and the Poincaré index

of the equilibrium point is 0, then it is a cusp.

Now, write that h1 = Hn(ψ1, 0) =
2n3ψ

1
n
1 [∆+α2

√
∆−4nα1α3]

(n+1)(2n+1)α3
, h2 = Hn(ψ2, 0) =

21−
1
n n3ψ

1
n
2 [−∆+α2

√
∆+4nα1α3]

(n+1)(2n+1)α3
. For a given pair (α1, α2), when α3 =

(2n+1)α2
2

4(n+1)2α1
, we have

h2 = 0 or h1 = 0.

Based on the above results, we obtain the bifurcations of the phase portraits of

system (16) which are shown in Fig.1, Fig.2 and Fig.3.

(a) (b) The level curves Hn(ψ, y) = 0.

Fig.1 Bifurcations of phase portraits of system (16) when α1 > 0, α2 ∈ R,α3 < 0.
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(a) h1 < 0 < h2 (b) The level curves Hn(ψ, y) = 0.

Fig.2 Bifurcations of phase portraits of (16) when α1 < 0, α2 > 0,
(2n+1)α2

2
4(n+1)2α1

< α3 < 0.

(a) ψ2 = 0, h1 = 0 (b) The level curves defined by Hn(ψ, y) = 0.

Fig.3 Bifurcations of phase portraits of system (16) when α1 = 0, α2 > 0, α3 < 0.

3 Exact parametric representations of the level curves de-

fined by Hn(ψ, y) = 0 of system (16)

3.1 Exact homoclinic solution of system (16) when α1 > 0, α2 ∈ R(R is any

real number), α3 < 0 in Fig.1 (b).

Corresponding the level curves defined by Hn(ψ, y) = 0, there exist a homoclinic

orbits of system (16) to the origin O(0, 0), enclosing the singular point E1(ψ1, 0). Now,

(19)can be written as 2n
√

|α3|
2n+1ξ =

∫ ψa

ψ
dψ

ψ
√

(ψa−ψ)(ψ−ψb)
, ψa > 0 > ψb. It gives rise to the

following exact parametric representations of the homoclinic orbit of system (16):

ψ(ξ) =
2ψaψb

(ψa + ψb)− (ψa − ψb) cosh(ω1ξ)
, (21)

where ω1 = 2n
√

|α3|·ψa·|ψb|
2n+1 .



Exact Solutions of Two High Order Derivative NSE 8

We see from (21) that for θ(ξ) in (8) and (13), we have

∫
ϕ2n(ξ)dξ =

∫
ψ(ξ)dξ =

∫ ( 2ψaψb
(ψa+ψb)−(ψa−ψb) cosh(ω1ξ)

)
dξ

= −
√
2n+1

n
√

|α3|
arctan

(√
|ψb|
ψa

tan
(
1
2ω1ξ

))
.

(22)

3.2 Exact periodic solution of system (16) when α1 < 0, α2 > 0,
α2
2(2n+1)

4α1(n+1)2
<

α3 < 0 in Fig.2 (b).

Corresponding the level curves defined by Hn(ψ, y) = 0, there exists an periodic

orbit of system (16), enclosing the singular point E1(ψ1, 0). Now, (19)can be written

as 2n
√

|α3|
2n+1ξ =

∫ ψ
ψb

dψ

ψ
√

(ψa−ψ)(ψ−ψb)
, ψa > ψb > 0. It gives rise to the following exact

parametric representations of the periodic orbit of system (16):

ψ(ξ) =
2ψaψb

(ψa + ψb) + (ψa − ψb) cos (ω2ξ)
, (23)

where ω2 = 2n
√

|α3|ψaψb

2n+1 .

We see from (23) that for θ(ξ) in (8) and (13), we have∫
ϕ2n(ξ)dξ =

∫
ψ(ξ)dξ =

∫ ( 2ψaψb
(ψa+ψb)+(ψa−ψb) cos(ω2ξ)

)
dξ

=
√
2n+1

n
√

|α3|
arctan

(√
ψb
ψa

tan
(
1
2ω2ξ

))
.

(24)

3.3 Exact homoclinic solution of system (16) when α1 = 0, α2 > 0, α3 < 0

in Fig.3 (b).

Corresponding the level curves defined by Hn(ψ, y) = 0, there exists a homocinic

orbit of system (16), enclosing the singular points E1(ψ1, 0). Now, (19)can be written

as 2n
√

|α3|
2n+1ξ =

∫ ψM
ψ

dψ

ψ
√

(ψM−ψ)ψ
. It follows the exact parametric representations of the

homoclinic orbit of system(16):

ψ(ξ) =
4ψM

4 + ω2
2ξ

2
, (25)

where ω2 = 2nψM

√
|α3|
2n+1 .

We see from (25) that for θ(ξ) in (8) and (13), we have∫
ϕ2n(ξ)dξ =

∫
ψ(ξ)dξ =

∫ ( 4ψM

4+ω2
2ξ

2

)
dξ

= 2ψM
ω2

arctan
(
1
2ω2ξ

)
.

(26)
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4 Conclusion

The main results in the present paper are summarized as follows.

Theorem 1 Consider the solutions of equations (4) and (5) with the form q(x, t) =

ϕ(ξ) exp [i(κx− ωt+ θ(ξ))]. Then, the following conclusions hold.

(i) The function ϕ(ξ) is the solutions of the planar Hamiltonian systems (10). The

function θ(ξ) is given by (8) and (13), respectively.

(ii) In order to find the exact solutions of (10), by making the transformation ϕ(ξ) =

ψ
1
2n (ξ), system (10) has evolved into system (16). System (16) has the bifurcations of

phase portraits which are shown in Fig.1, Fig.2 and Fig.3.

(iii) Corresponding to the bounded level curves defined by Hn(ψ, y) = 0, system

(16) has exact explicit solutions ψ(ξ) given by (21), (23) and (25). The formulas (22),

(24) and (26) give rise to the exact solutions for θ(ξ) in (8) and (13).

(iv) Equation (4) and (5) have exact explicit envelope soliton solutions and envelope

periodic solution.
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