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Abstract

In this paper, we investigate the existence of ground state rotating periodic solutions for a class
of p-Hamiltonian systems by variational methods in critical point theory.
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1 Introduction and main result

In this paper, we consider the following p-Hamiltonian systems{
−
(
|u′|p−2 u′

)′
= −A(t)|u|p−2u+∇G(t, u), a.e. t ∈ [0, T ],

u(T ) = Qu(0), u′(T ) = Qu′(0),
(1)

where p > 1, T > 0, N ≥ 1 and ∇G (t, u) :=
(
∂G
∂u1
, ∂G
∂u2
, · · · , ∂G

∂uN

)
. Besides, G(t, 0) = 0 and

∇G(t+ T, u) = Q∇G (t, Q−1u) for some Q ∈ O(N). Here, O(N) denotes the orthogonal
matrix group on RN . A(t) := (aij(t))N×N is a continuous symmetric positive definite

matrix with A(t + T ) = QA(t)Q−1. Moreover, there is a constant µ > 0 such that

(A(t)|u|p−2u, u) ≥ µ|u|p for all u ∈ RN and a.e. t ∈ [0, T ]. G : [0, T ] × RN → R satisfies
the following assumption:

(A) G(t, x) is measurable in t for every x ∈ RN , continuously differentiable in x for
a.e. t ∈ [0, T ] and there exist a ∈ C(R+,R+), b ∈ L1(0, T ;R+) such that

|G(t, x)| ≤ a(|x|)b(t), |∇G(t, x)| ≤ a(|x|)b(t)

for all x ∈ RN and a.e. t ∈ [0, T ].
Our goal in this paper is to find nontrivial solutions with the form u(t + T ) = Qu(t)

of system (1). In [21], this type of solutions of system (1) are called rotating periodic
solutions or Q-rotating periodic solutions. If Q = IN , where IN is identity matrix in RN ,
this type of solutions are periodic solutions. If Qk = IN for some k ∈ Z+ with k ≥ 2,
they are subharmonic solutions. If Qk 6= IN for any k ∈ Z+, this type of solutions are
quasi-periodic solutions. Besides, a solution is called a ground state solution to system
(1) if the solution is nontrivial with least energy.
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Actually, if u(t) satisfies (1), then one has

−
(∣∣Q−1u′(t+ T )

∣∣p−2
Q−1u′(t+ T )

)′
=Q−1

(
− |u′(t+ T )|p−2

u′(t+ T )
)′

=Q−1
(
−A(t+ T )|u(t+ T )|p−2u(t+ T ) +∇G(t+ T, u(t+ T ))

)
=−Q−1QA(t)Q−1|u(t+ T )|p−2u(t+ T ) +Q−1Q∇G(t, Q−1u(t+ T ))

=− A(t)
∣∣Q−1u(t+ T )

∣∣p−2
Q−1u(t+ T ) +∇G

(
t, Q−1u(t+ T )

)
.

On the one hand, it means that Q−1u(t+T ) is a solution of system (1). On the other hand,
by the uniqueness of solution, we have Q−1u(0 + T ) = u(0) and Q−1u′(0 + T ) = u′(0).
So, we deduce that Q−1u(t + T ) = u(t), i.e., u(t + T ) = Qu(t) for a.e. t ∈ [0, T ]. Hence,
u(t) is a rotating periodic solution of system (1).

Let W 1,p
QT be the Sobolev space defined by

W 1,p
QT =

{
u : [0, T ]→ RN u is absolutely continuous,

u(T ) = Qu(0), u′ ∈ Lp
(
0, T ;RN

) }
,

with the norm

‖u‖ =

(∫ T

0

|u(t)|pdt+

∫ T

0

|u′(t)|p dt
) 1

p

.

Denoting ‖ · ‖∞ = supt∈[0,T ] | · |, | · | is the usual norm on RN , and

‖u‖p =

(∫ T

0

|u(t)|pdt
) 1

p

.

Note that

(
A(t)|u|p−2u, u

)
= |u|p−2

N∑
i,j=1

aij(t)uiuj

≤ |u|p−2

N∑
i,j=1

|aij(t)| |ui| |uj| ≤

(
N∑

i,j=1

‖aij(t)‖∞

)
|u|p,

then there exists a constant µ̄ ≥
∑N

i,j=1 ‖aij(t)‖∞ such that (A(t)|u|p−2u, u) ≤ µ̄|u|p for

all u ∈ RN . Since (A(t)|u|p−2u, u) ≥ µ|u|p for some µ > 0. So, there is

µ|u|p ≤
(
A(t)|u|p−2u, u

)
≤ µ̄|u|p

for all u ∈ RN , and it follows that

min{1, µ}‖u‖p ≤ ‖u‖pA ≤ max{1, µ̄}‖u‖p,

where

‖u‖A =

(∫ T

0

|u′(t)|p dt+

∫ T

0

(
A(t)|u(t)|p−2u(t), u(t)

)
dt

) 1
p

.

Hence, the norms ‖ · ‖ and ‖ · ‖A are equivalent.
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Define the corresponding functional I on W 1,p
QT by

I(u) =
1

p

∫ T

0

|u′(t)|p dt+
1

p

∫ T

0

(
A(t)|u(t)|p−2u(t), u(t)

)
dt−

∫ T

0

G(t, u(t))dt

for all u ∈ W 1,p
QT . From assumption (A), I is continuously differentiable on W 1,p

QT . So, we
have

〈I ′(u), v〉 =

∫ T

0

(
|u′(t)|p−2

u′(t), v′(t)
)
dt+

∫ T

0

(
A(t)|u(t)|p−2u(t), v(t)

)
dt

−
∫ T

0

(∇G(t, u(t)), v(t)) dt

for all u, v ∈ W 1,p
QT . If u ∈ W 1,p

QT is a critical point of I, then for any v ∈ W 1,p
QT , we obtain

0 = 〈I ′(u), v〉

=

∫ T

0

(
|u′(t)|p−2

u′(t), v′(t)
)
dt+

∫ T

0

(
A(t)|u(t)|p−2u(t), v(t)

)
dt

−
∫ T

0

(∇G(t, u(t)), v(t))dt

= |u′(T )|p−2
u′(T )v(T )− |u′(0)|p−2

u′(0)v(0)−
∫ T

0

((
|u′(t)|p−2

u′(t)
)′
, v(t)

)
dt

+

∫ T

0

(
A(t)|u(t)|p−2u(t), v(t)

)
dt−

∫ T

0

(∇G(t, u(t)), v(t)) dt

= |Qu′(0)|p−2
Qu′(0)Qv(0)− |u′(0)|p−2

u′(0)v(0)−
∫ T

0

((
|u′(t)|p−2

u′(t)
)′
, v(t)

)
dt

+

∫ T

0

(
A(t)|u(t)|p−2u(t), v(t)

)
dt−

∫ T

0

(∇G(t, u(t)), v(t)) dt

=

∫ T

0

((
−
(
|u′(t)|p−2

u′(t)
)′

+ A(t)|u(t)|p−2u(t)−∇G(t, u(t))

)
, v(t)

)
dt,

which means that the solutions of system (1) are equivalent to the critical points of
functional I. So, we can employ the variational approaches in critical point theory to
study the existence of solutions for system (1).

Over the past few decades, the existence and multiplicity of periodic solutions for p-
Hamiltonian systems have been extensively investigated, see [6,7,11,14–17] and references
therein. If Q = IN and A(t) = 0, system (1) becomes{

−
(
|u′|p−2 u′

)′
= ∇G(t, u), a.e. t ∈ [0, T ],

u(T ) = u(0), u′(T ) = u′(0).
(2)

Jebelean and Papageorgiou [11] studied the existence and multiplicity of periodic solutions
for system (2) by applying the linking method and the second deformation theorem. By
using the generalized mountain pass theorem, Li, Agarwal and Ou [14] proved that system
(2) has a nonconstant T -periodic solution. In [15], Li, Agarwal and Tang got the existence
of infinitely many periodic solutions of system (2) by minimax methods in critical point
theory.

If p = 2, system (1) degenerates as{
−u′′ = −A(t)u+∇G(t, u), a.e. t ∈ [0, T ],
u(T ) = Qu(0), u′(T ) = Qu′(0).

(3)
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Recently, many authors are interested in the existence of solutions for system (3), and a
variety of existence results are obtained by variational methods. Liu, Li and Yang [23]
used Morse theory to study the existence and multiplicity of solutions for system (3).
In [21], Liu, Li and Yang investigated system (3) with resonance at infinity and obtained
the existence of solutions by applying the Morse theory and the technique of penalized
functionals. If A(t) = 0, by using topological degree theory, Li, Chang and Li [18] proved
that system (3) with Hartman-type nonlinearity has nontrivial solutions. In [30], by
employing the index and the Leray-Schauder degree theory, Ye, Liu and Shen obtained
the existence of nontrivial solutions for system (3). For more results about rotating
periodic solutions, see [22,24,29] and references therein.

For the past few years, there have been a range of existence results about the ground
state solutions for differential equations, but most of the existence results are related to
the Schrödinger equation, such as Schrödinger-Poisson system, Schrödinger-KdV system,
Chern-Simons-Schrödinger system and so on, see [4, 8, 12, 13, 19, 20, 32] and references
therein. However, there are only a few works on the existence of ground state solutions
for second-order Hamiltonian systems. When Q = IN , Ye and Tang [31] got the existence
of ground state T -periodic solutions for system (3). Basing on a variant generalized weak
linking theorem introduced by Schechter and Zou [26], Chen and Ma [3] obtained the
existence of at least one nontrivial ground state T -periodic solution for system (3). In [5],
by using generalized Nehari manifold method, Chen, Krawcewicz and Xiao established
the existence of ground state periodic solutions with the prescribed minimal period to
system (3). To our best knowledge, there is no literature on the existence of ground state
periodic solutions for p-Hamiltonian systems.

Motivated by [21, 23, 31], we are interested in the existence of ground state rotating
periodic solutions for system (1). Now we state the main result of this paper.

Theorem 1.1. Suppose that G satisfies (A) and the following conditions:

(H1) lim
|x|→∞

G(t,x)
|x|p = +∞ uniformly in a.e. t ∈ [0, T ].

(H2) lim
|x|→0

|∇G(t,x)|
|x|p−1 = 0 uniformly in a.e. t ∈ [0, T ].

(H3) There exists θ ≥ 1 such that

G(t, τx) ≤ θG(t, x)

for all (t, x) ∈ [0, T ]× RN and τ ∈ [0, 1], where G(t, x) := (∇G(t, x), x)− pG(t, x).

Then system (1) possesses at least one ground state rotating periodic solution.

Remark 1.2. If p = 2 and Q = IN , under conditions (H1), (H2), (H3), Ye and Tang
[31] obtained the existence of at least one ground state T -periodic solution for second-
order Hamiltonian systems. So, our theorem generally extends the result of [31]. In fact,
inspired by a general monotonicity technique developed by Struwe (see [27, 28]), this kind
of condition (H3) was first introduced by Jeanjean in [9], which was originally used to
study the existence of positive solutions for semilinear problems on RN .

2 Proof of the main result

For u ∈ W 1,p
QT , let

ū =
1

T

∫ T

0

u(t)dt, ũ = u− ū,

and
W̃ 1,p
QT =

{
u ∈ W 1,p

QT : ū = 0
}
.

4



Then we have
W 1,p
QT = W̃ 1,p

QT ⊕⊕⊕ RN ,

and
‖u‖p ≤M0 ‖u′‖p (Wirtinger’s inequality)

‖u‖∞ ≤M0 ‖u′‖p (Sobolev inequality)

for all u ∈ W̃ 1,p
QT , where M0 is a positive constant.

For the convenience of readers, we first show the generalized mountain pass theorem [25,
Theorem 5.3]. As stated in [1], a deformation lemma was ensured under the weaker (C)
condition, which will be explained later. It turns out that the generalized mountain pass
theorem still holds under the (C) condition. Hence, one has the following result.

Theorem 2.1. [25] Let W be a real Banach space with W = W1⊕⊕⊕W2, where W1 is finite
dimensional. Suppose that I ∈ C1(W,R) satisfies (C) condition and:

(i) there are constants ρ, α > 0 such that I|∂Bρ∩W2
≥ α,

(ii) there are η ∈ ∂B1 ∩W2 and r > ρ such that if P =
(
B̄r ∩W1

)
⊕⊕⊕ {sη | 0 < s < r},

then I|∂P ≤ 0.

Then I possesses a critical value c ≥ α, which can be characterized as

c := inf
h∈Γ

max
u∈P

I(h(u)),

where
Γ = {h ∈ C(P̄ ,W ) | h = id on ∂P}.

Next, we will prove the main result.

Proof of Theorem 1.1. Our proof is composed of three steps.
Step 1. We show that I satisfies the (C) condition due to Cerami [2]. That is, for

every constant c and sequence {un} ⊂ W 1,p
QT , {un} has a convergent subsequence if

‖I ′ (un)‖ (1 + ‖un‖A)→ 0 and I (un)→ c as n→∞. (4)

Hence, we have

lim
n→∞

∫ T

0

(
1

p
(∇G (t, un) , un)−G (t, un)

)
dt = lim

n→∞

(
I (un)− 1

p
〈I ′ (un) , un〉

)
= c. (5)

Since the embedding
W 1,p
QT ↪→ C

(
0, T ;RN

)
is compact. By standard argument, it suffices to prove that {un} is bounded.

Arguing by controdiction, if {un} is unbounded, without loss of generality, we may
assume that

‖un‖A →∞ as n→∞.
Let zn = un

‖un‖A
, then ‖zn‖A = 1. So, there is a z ∈ W 1,p

QT such that

zn ⇀ z in W 1,p
QT ,

zn → z in C
(
0, T ;RN

)
.

(6)

If z ≡ 0, motivated by [9], let {τn} ⊂ R satisfy

I (τnun) = max
τ∈[0,1]

I (τun) .
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For any m > 0, denoting νn = p
√

2pmzn, then, one gets from (6) that

νn → 0 in C
(
0, T ;RN

)
. (7)

Observe that
p√2pm
‖un‖A

∈ (0, 1) for n large enough, and we have

max
τ∈[0,1]

I (τun) = I (τnun) ≥ I (νn)

=
1

p
‖νn‖pA −

∫ T

0

G (t, νn) dt

= 2m−
∫ T

0

G (t, νn) dt.

According to (7), it yields that

lim inf
n→∞

I (τnun) ≥ 2m−
∫ T

0

G(t, 0)dt > m.

Due to the arbitrariness of m, we obtain

lim
n→∞

I (τnun) = +∞. (8)

For the reasons of I(0) < +∞ and I (un)→ c as n→∞, one sees that τn ∈ (0, 1) and

0 = τn
dI (τun)

dτ

∣∣∣∣
τ=τn

= 〈I ′ (τnun) , τnun〉

=

∫ T

0

|τnu′n|
p
dt+

∫ T

0

(
A(t)|τnun|p−2τnun, τnun

)
dt−

∫ T

0

(∇G (t, τnun) , τnun) dt

(9)

for n large enough. Hence, from (8), (9) and (H3), we get∫ T

0

(
1

p
(∇G (t, un) , un)−G (t, un)

)
dt

=
1

p

∫ T

0

G (t, un) dt

≥ 1

pθ

∫ T

0

G (t, τnun) dt

=
1

θ

∫ T

0

(
1

p
(∇G (t, τnun) , τnun)−G (t, τnun)

)
dt

=
1

θ

∫ T

0

(
1

p
|τnu′n|

p
+

1

p

(
A(t) |τnun|p−2 τnun, τnun

)
−G (t, τnun)

)
dt

=
1

θ
I (τnun)→ +∞,

which contradicts with (5).
If z 6≡ 0, since

I (un) =
1

p
‖un‖pA −

∫ T

0

G (t, un) dt,
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by (4) and (6), we have

1

p
= lim

n→∞

∫ T

0

G (t, un)

‖un‖pA
dt = lim

n→∞

(∫
z=0

+

∫
z 6=0

)
G (t, un)

‖un‖pA
dt. (10)

From (H1), there exists M1 > 0 such that

G(t, x) ≥ 0

for all |x| ≥M1 and a.e. t ∈ [0, T ]. Uniting assumption (A), it follows that

G(t, x) ≥ −aM1b(t)

for all x ∈ RN and a.e. t ∈ [0, T ], where aM1 = max
|x|∈[0,M1]

a(|x|). Then, one obtains

∫
z=0

G (t, un)

‖un‖pA
dt ≥ − aM1

‖un‖pA

∫
z=0

b(t)dt

≥ − aM1

‖un‖pA

∫ T

0

b(t)dt

for all n ∈ N, which leads to

lim inf
n→∞

∫
z=0

G (t, un)

‖un‖pA
dt ≥ 0.

In addition, for t ∈ Ω∗ := {t ∈ [0, T ] : z(t) 6= 0}, one has |un(t)| → +∞ as n → ∞.
Therefore, one deduces from (H1) that

G (t, un)

|un|p
|zn|p → +∞ as n→∞.

Since meas(Ω∗) > 0, by the Lebesgue-Fatou lemma, it yields that∫
z 6=0

G (t, un)

‖un‖pA
dt =

∫
z 6=0

G (t, un)

|un|p
|zn|p dt→ +∞ as n→∞,

which contradicts with (10). Hence, from the both situations, we can draw a conclusion
that {un} is bounded in W 1,p

QT .
Step 2. We show that I satisfies conditions of Theorem 2.1.
On the one hand, from (H2), choosing ε = 1

2pMp
0

and 0 < δ < M0 such that

|∇G(t, x)| ≤ pε|x|p−1

for all |x| ≤ δ and a.e. t ∈ [0, T ]. Hence, one has

|G(t, x)| ≤ ε|x|p (11)

for all |x| ≤ δ and a.e. t ∈ [0, T ]. For u ∈ W̃ 1,p
QT with ‖u‖A ≤ δ

M0
, by Sobolev inequality, we

have ‖u‖∞ ≤ δ. From (11) and Wirtinger’s inequality, taking ‖u‖A = ρ with ρ ∈
(

0, δ
M0

)
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and α = ρp

2p
, it turns out that

I(u) =
1

p

∫ T

0

|u′(t)|p dt+
1

p

∫ T

0

(
A(t)|u(t)|p−2u(t), u(t)

)
dt−

∫ T

0

G(t, u(t))dt

≥ 1

p
‖u‖pA − ε

∫ T

0

|u(t)|pdt

≥ 1

p
‖u‖pA − εM

p
0‖u′‖pp

≥
(

1

p
− εMp

0

)
‖u‖pA

=
ρp

2p
.

One sees that
inf
u∈S

I(u) ≥ α > 0,

where S = W̃ 1,p
QT ∩ ∂Bρ. Hence, condition (i) of Theorem 2.1 holds.

On the other hand, choosing

η(t) = (sin (ωt) , 0, · · · , 0) ∈ W̃ 1,p
QT ,

where ω = 2π
T

. Let

W
1,p

QT = RN ⊕⊕⊕ span {η(t)} ,
and

P =
{
x ∈ RN : |x| ≤ r1

}
⊕⊕⊕ {sη : 0 ≤ s ≤ r2} .

Since dim
(
W

1,p

QT

)
<∞, notice the fact that all norms are equivalent in finite dimensional

spaces. So, for any u ∈ W 1,p

QT , there exists M2 > 0 such that

M2‖u‖2 ≤ ‖u‖p. (12)

At first, we claim that

G(t, x) ≥ 0 for all (t, x) ∈ [0, T ]× RN . (13)

As a matter of fact, according to (H3), it holds that

G(t, x) ≥ 1

θ
G(t, 0) = 0

for all (t, x) ∈ [0, T ]× RN , i.e.,

(∇G(t, x), x)− pG(t, x) ≥ 0 (14)

for all (t, x) ∈ [0, T ]×RN . Let us consider the following function β(τ) : [0, 1]→ R defined
by

β(τ) =
G(t, τx)

τ p
.

For all τ ∈ (0, 1] and using (14), one has

dβ(τ)

dτ
=

(∇G(t, τx), τx)− pG(t, τx)

τ p+1
≥ 0.
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By (H2), we get
lim
τ→0+

β(τ) = 0.

So, β(τ) ≥ 0 and it follows that G(t, x) ≥ 0 for all (t, x) ∈ [0, T ]× RN .

From (H1), for M3 = 2ωpT
pMp

2

(
T
2

)− p
2 + µ̄

p
, there exists M4 > 0 such that

G(t, x) ≥M3|x|p

for all |x| ≥M4 and a.e. t ∈ [0, T ]. So, uniting (13), we have

G(t, x) ≥M3|x|p −M3M
p
4 (15)

for all x ∈ RN and a.e. t ∈ [0, T ]. Now, we deduce from (12) and (15) that

I (x+ sη) =
1

p

∫ T

0

|sη′|p dt+
1

p

∫ T

0

(
A(t)|x+ sη|p−2(x+ sη), (x+ sη)

)
dt

−
∫ T

0

G (t, x+ sη) dt

≤ 1

p
ωp|s|p

∫ T

0

|cos (ωt)|p dt+
µ̄

p

∫ T

0

|x+ sη|p dt

−M3

∫ T

0

|x+ sη|p dt+M3M
p
4T

≤ 1

p
ωp|s|pT −

(
M3 −

µ̄

p

)∫ T

0

|x+ sη|p dt+M3M
p
4T

≤ 1

p
ωp|s|pT −

(
M3 −

µ̄

p

)
Mp

2

(∫ T

0

|x+ sη|2 dt
) p

2

+M3M
p
4T

=
1

p
ωp|s|pT −

(
M3 −

µ̄

p

)
Mp

2

(∫ T

0

(
|x|2 + |sη|2

)
dt

) p
2

+M3M
p
4T.

Since M3 = 2ωpT
pMp

2

(
T
2

)− p
2 + µ̄

p
, we have

I (x+ sη) ≤ 1

p
ωp|s|pT −

(
M3 −

µ̄

p

)
Mp

2

(∫ T

0

|sη|2 dt
) p

2

+M3M
p
4T

≤ −1

p
ωp|s|pT +M3M

p
4T,

(16)

and

I (x+ sη) ≤ 1

p
ωp|s|pT −

(
M3 −

µ̄

p

)
Mp

2T
p
2 |x|p +M3M

p
4T. (17)

Let

r1 =

(
pM3M

p
4

ωp

) 1
p

and r2 =

(
2M3M

p
4 pT

1− p
2

(pM3 − µ̄)Mp
2

) 1
p

.

For x+ r1η ∈ ∂P , from (16), one obtains that

I (x+ r1η) ≤ −1

p
ωp|s|pT +M3M

p
4T ≤ 0. (18)
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For x+ sη ∈ ∂P with 0 ≤ s ≤ r1, |x| = r2, from (17), one has

I (x+ sη) ≤ 1

p
ωp|s|pT −

(
M3 −

µ̄

p

)
Mp

2T
p
2 |x|p +M3M

p
4T ≤ 0. (19)

From (18) and (19), condition (ii) of Theorem 2.1 holds. Hence, there exists a nontrivial
critical point u∗ ∈ W 1,p

QT such that I (u∗) ≥ α > 0.
Step 3. We prove that there exist ground state solutions. Going after the argument

of Jeanjean and Tanaka [10], we denote

K =
{
u ∈ W 1,p

QT : I ′(u) = 0, u 6= 0
}
,

and
γ = inf{I(u) : u ∈ K}.

For any u ∈ K, applying (14), one sees

I(u) = I(u)− 1

p
〈I ′(u), u〉

=

∫ T

0

(
1

p
(∇G(t, u), u)−G(t, u)

)
dt

≥ 0.

(20)

Hence, it is easy to get that I(u∗) ≥ γ ≥ 0. Now, we assume that there exists {wn} ⊂ K
satisfying

I (wn)→ γ as n→∞.

Then according to step 1, one knows that {wn} is bounded. So, there is a w ∈ W 1,p
QT such

that
wn ⇀ w in W 1,p

QT ,

wn → w in C
(
0, T ;RN

)
.

Using (H2) again, there exist ε > 0 and M5 > 0 such that

|∇G(t, x)| ≤ ε|x|p−1 (21)

for all |x| ≤ M5 and a.e. t ∈ [0, T ]. Next, we want to prove that w 6= 0. Otherwise, if
w = 0, then by Sobolev inequality, there exist N1 > 0 such that

‖wn‖∞ ≤M5 (22)

for all n ≥ N1. Noting that {wn} ⊂ K, so it follows that

0 = 〈I ′ (wn) , wn〉 = ‖wn‖pA −
∫ T

0

(∇G (t, wn) , wn) dt (23)

for all n ∈ N. Then, one can get from (21), (22) and (23) that

‖wn‖pA ≤
∫ T

0

|∇G (t, wn) ‖wn| dt

≤ ε

∫ T

0

|wn|p−1 |wn| dt

≤ εT ‖wn‖p∞
≤ εTMp

5
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for all n ≥ N1. Owing to the arbitrariness of ε, it implies that ‖wn‖A = 0, a contradiction.
Therefore, w 6= 0. In accordance with (20) and Fatou’s lemma, it holds that

γ = lim inf
n→∞

I (wn)

= lim inf
n→∞

(
I (wn)− 1

p
〈I ′ (wn) , wn〉

)
= lim inf

n→∞

∫ T

0

(
1

p
(∇G (t, wn) , wn)−G (t, wn)

)
dt

≥
∫ T

0

(
1

p
(∇G(t, w), w)−G(t, w)

)
dt

= I(w)

≥ γ.

Hence, I(w) = γ. w is a nontrivial critical point of functional I with least energy. So, we
get at least one ground state rotating periodic solution for system (1).

3 Example

In this section, we give an example. We consider the following p-Hamiltonian systems{
−
(
|u′|p−2 u′

)′
= −λ|u|p−2u+∇G(t, u), a.e. t ∈ [0, T ],

u(T ) = Qu(0), u′(T ) = Qu′(0),
(24)

where

∇G(t, u) = p

(
3 + cos

2π

T
t

)(
ln (1 + |u|p) +

|u|p

1 + |u|p

)
|u|p−2u.

Hence, by simple calculating, one has

G(t, u) =

(
3 + cos

2π

T
t

)
|u|p ln (1 + |u|p) ,

and

G(t, u) := (∇G(t, u), u)− pG(t, u) = p

(
3 + cos

2π

T
t

)
|u|2p

1 + |u|p
.

In the following part, it is easy to verify that conditions G(t, u) ∈ C1
(
[0, T ]× RN ,R

)
with

∇G(t + T, u) = Q∇G (t, Q−1u) for some Q ∈ O(N), G(t, 0) = 0 and (H1), (H2) are
satisfied. Taking

f(τ) =
G(t, τu)

G(t, u)

=
(∇G(t, τu), τu)− pG(t, τu)

(∇G(t, u), u)− pG(t, u)

=
p
(
3 + cos 2π

T
t
) |τu|2p

1+|τu|p

p
(
3 + cos 2π

T
t
) |u|2p

1+|u|p

=
(1 + |u|p) τ 2p

1 + |τu|p
.
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By straightforward computation, we have

df(τ)

dτ
=
p (2 + |τu|p) (1 + |u|p) τ 2p−1

(1 + |τu|p)2 ≥ 0

for all τ ∈ [0, 1]. So, one can deduce that f(τ) ≤ f(1) = 1. Then there exists θ ≥ 1 such
that

G(t, τu)

G(t, u)
≤ θ for all (t, u) ∈ [0, T ]× RN .

Therefore, condition (H3) holds. By Theorem 1.1, there exists at least one ground state
rotating periodic solution for system (24).
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