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Abstract

In this paper, we investigate the existence of ground state rotating periodic solutions for a class
of p-Hamiltonian systems by variational methods in critical point theory.
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1 Introduction and main result

In this paper, we consider the following p-Hamiltonian systems
— (WP W) = —A@®)|uf~2u+ VG(tu),  ae. te0,T), )
w(T) = Qu(0), w'(T') = Qu'(0),

where p > 1,7 > 0,N > 1 and VG (t,u) := (ﬁ 96 .. ﬁ). Besides, G(t,0) = 0 and

Ouy’ Ous’ ? Qupn
VG(t+T,u) = QVG (t,Q 'u) for some @ € O(N). Here, O(N) denotes the orthogonal
matrix group on RY. A(t) := (a;;(t))y,y 18 a continuous symmetric positive definite
matrix with A(t +7) = QA(t)Q~'. Moreover, there is a constant p > 0 such that
(A(t)|uP~?u,u) > pluf? for all u € RN and a.e. t € [0,T]. G : [0,T] x RY — R satisfies
the following assumption:

(A) G(t,z) is measurable in ¢t for every z € RY, continuously differentiable in x for
a.e. t € 0,T] and there exist a € C(R*,R"), b € L'(0,T;R") such that

G, 2)] < a([z))b(t), VG 2)| < a(lz])b(t)

for all z € RY and a.e. t € [0,T].

Our goal in this paper is to find nontrivial solutions with the form u(t + 7T') = Qu(¢)
of system (1). In [21], this type of solutions of system (1) are called rotating periodic
solutions or Q-rotating periodic solutions. If QQ = I, where Iy is identity matrix in R,
this type of solutions are periodic solutions. If Q% = Iy for some k € ZT with k > 2,

they are subharmonic solutions. If Q¥ # Iy for any k € Z7, this type of solutions are
quasi-periodic solutions. Besides, a solution is called a ground state solution to system
(1) if the solution is nontrivial with least energy.
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Actually, if u(t) satisfies (1), then one has

!/
- (Jle e+ T+ T))

= (=t + T+ 7))

=Q ' (At +D)|ut+T)P?u(t+T)+ VGt + T,u(t +T)))

=—QQAMQ ut + T *u(t +T) + QT'QVG(t, @ u(t + T))

= — AW |Q  ult + D)2 Q u(t + T) + VG (1, Q u(t + T)).
On the one hand, it means that Q@ *u(t+T) is a solution of system (1). On the other hand,
by the uniqueness of solution, we have Q@ 'u(0 + T) = u(0) and Q'/(0+ T) = u/(0).
So, we deduce that Q@ 'u(t + T) = u(t), i.e., u(t + T) = Qu(t) for a.e. t € [0,T]. Hence,

u(t) is a rotating periodic solution of system (1).
Let Wér}) be the Sobolev space defined by

Wé’fi:{ w:[0,T] — RY

u is absolutely continuous,
u(T) = Qu(0),v € L (0,T;RY) |~

= ([ o+ [ oy dt);

Denoting || - [|eo = Supseiory | - |, | - | is the usual norm on RV, and

ful = ( [ ) \u(tﬂpdt)’l’

(Al ~2u,w) = [P~ Y ay(tuu;

with the norm

Note that

i,j=1
N N
<[ul™ Y la ()] uil Jus] < (Z IIaij(t)Iloo> [ul?,
i,j=1 i,j=1

then there exists a constant g > Zgjzl llai; ()], such that (A(t)|ulP~?u,u) < plul? for
all u € RY. Since (A(t)|u[P~?u, u) > p|ufP for some p > 0. So, there is

plul? < (@)l 2u,u) <
for all u € RY, and it follows that
min{1, p}{lul]” < Jlullfy < max{1, a}|ul/,

where

Sl

lulla = (/OT|u’(t)|p dt+/0T (ABu(®) P u(t), u(t)) dt)

Hence, the norms || - || and || - || 4 are equivalent.



Define the corresponding functional I on WéTp by

I(u) :1/0 \u’(t)\pdt—i—%/o (A@®) )P u(t), u(t)) dt—/ G(t,u(t))dt

p 0

for all u € Wé;ﬁ From assumption (A), I is continuously differentiable on Wér_’p’ So, we
have

(I'(u),0) = / (o) w'(),v' (1)) dt + / (AWt u(t), o(0)) dt
—/0 (VG(t,u(t)),v(t)) dt

for all u,v € Wé; Ifue Wéﬁz is a critical point of I, then for any v € Wé’%, we obtain
0=(I"(u),v)

_ /O ' (|u'(t)|p*2 u’(t),v'(t)) dt + /0 ) (AW u()P~>u(t), v(t)) dt
- [ wowu). v
= [ (TP 4/ (T)o(T) — | (0)[ >/ (0)u(0) — /O ' ((\u’(t)l“ u’(t))/,v@)) dt
+ /O ' (A u(t)P~2u(t), v(t)) di — /0 ) (VG(t, u(t)), v(t)) dt
:4@wwﬂpQmexm«n—hmmF2umnwm—1AT(0waw7%mwy,ww)dt
+ /0 ' (A u(t)|P~2ult), v(t)) dt — /0 ) (VG(t,u(t)), v(t)) dt
- [ (- (wor=ve) + avpor-ue - Ve ) o) i

which means that the solutions of system (1) are equivalent to the critical points of
functional I. So, we can employ the variational approaches in critical point theory to
study the existence of solutions for system (1).

Over the past few decades, the existence and multiplicity of periodic solutions for p-
Hamiltonian systems have been extensively investigated, see [6,7,11,14-17] and references
therein. If @ = Iy and A(t) = 0, system (1) becomes

{ Do) =966, - ac 1<) @)
() = u(0), o/(7) = (0).

Jebelean and Papageorgiou [11] studied the existence and multiplicity of periodic solutions
for system (2) by applying the linking method and the second deformation theorem. By
using the generalized mountain pass theorem, Li, Agarwal and Ou [14] proved that system
(2) has a nonconstant T-periodic solution. In [15], Li, Agarwal and Tang got the existence
of infinitely many periodic solutions of system (2) by minimax methods in critical point
theory.

If p =2, system (1) degenerates as

{ " = —A(t)u + VG(t)u), a.e. t e [O,T]> (3)
u(T) = Qu(0), «/(T) = Qu'(0).
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Recently, many authors are interested in the existence of solutions for system (3), and a
variety of existence results are obtained by variational methods. Liu, Li and Yang [23]
used Morse theory to study the existence and multiplicity of solutions for system (3).
In [21], Liu, Li and Yang investigated system (3) with resonance at infinity and obtained
the existence of solutions by applying the Morse theory and the technique of penalized
functionals. If A(t) = 0, by using topological degree theory, Li, Chang and Li [18] proved
that system (3) with Hartman-type nonlinearity has nontrivial solutions. In [30], by
employing the index and the Leray-Schauder degree theory, Ye, Liu and Shen obtained
the existence of nontrivial solutions for system (3). For more results about rotating
periodic solutions, see [22,24,29] and references therein.

For the past few years, there have been a range of existence results about the ground
state solutions for differential equations, but most of the existence results are related to
the Schrodinger equation, such as Schrédinger-Poisson system, Schrodinger-KdV system,
Chern-Simons-Schrodinger system and so on, see [4,8, 12,13, 19, 20, 32] and references
therein. However, there are only a few works on the existence of ground state solutions
for second-order Hamiltonian systems. When @ = Iy, Ye and Tang [31] got the existence
of ground state T-periodic solutions for system (3). Basing on a variant generalized weak
linking theorem introduced by Schechter and Zou [26], Chen and Ma [3] obtained the
existence of at least one nontrivial ground state T-periodic solution for system (3). In [5],
by using generalized Nehari manifold method, Chen, Krawcewicz and Xiao established
the existence of ground state periodic solutions with the prescribed minimal period to
system (3). To our best knowledge, there is no literature on the existence of ground state
periodic solutions for p-Hamiltonian systems.

Motivated by [21,23,31], we are interested in the existence of ground state rotating
periodic solutions for system (1). Now we state the main result of this paper.

Theorem 1.1. Suppose that G satisfies (A) and the following conditions:

|[?

(Hy) ‘llim Glr) — 4 oo uniformly in a.e. t € [0,T).

T|—00
(Hs) ‘lilmom%:f)‘ =0 wuniformly in a.e. t € [0,T].

T|—
(H3) There exists 0 > 1 such that

G(t,Tx) < 0G(t,v)

for all (t,x) € [0,T] x RN and 7 € [0, 1], where G(t,x) := (VG(t,x),z) — pG(t, x).

Then system (1) possesses at least one ground state rotating periodic solution.

Remark 1.2. If p = 2 and Q = In, under conditions (Hy), (Hy), (Hs), Ye and Tang
[31] obtained the existence of at least one ground state T-periodic solution for second-
order Hamiltonian systems. So, our theorem generally extends the result of [31]. In fact,
inspired by a general monotonicity technique developed by Struwe (see [27,28]), this kind
of condition (Hs) was first introduced by Jeanjean in [9], which was originally used to
study the existence of positive solutions for semilinear problems on RV .

2 Proof of the main result

For u € W7, let

and N
Wob ={ueWgh:u=0}.
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Then we have N
Woh =Wot @ RY,

and
Jull, < Mo |||, (Wirtinger’s inequality)

[ulloo < Mo [|u'||,  (Sobolev inequality)
for all u € Wé’fi, where M, is a positive constant.
For the convenience of readers, we first show the generalized mountain pass theorem [25,
Theorem 5.3]. As stated in [1], a deformation lemma was ensured under the weaker (C)

condition, which will be explained later. It turns out that the generalized mountain pass
theorem still holds under the (C) condition. Hence, one has the following result.

Theorem 2.1. [25] Let W be a real Banach space with W = W1 @ Ws, where W1 is finite
dimensional. Suppose that I € C*(W,R) satisfies (C) condition and:

(i) there are constants p, o > 0 such that I|yp w, =
(ii) there are n € 0By N Wy and r > p such that if P = (Br N Wl) @®{sn|0<s<r}
then I|,p <O0.
Then I possesses a critical value ¢ > «, which can be characterized as

¢ := inf max I (h(u)),

hel’ ueP

where

I'={heC(P,W)|h=id on OP}.

Next, we will prove the main result.

Proof of Theorem 1.1. Our proof is composed of three steps.
Step 1. We show that I satisfies the (C) condition due to Cerami [2]. That is, for

every constant ¢ and sequence {u,} C Wé’%, {u,} has a convergent subsequence if

I (un)]] (1 + |Junll 4) = 0 and I (u,) = ¢ as n — oo. (4)

Hence, we have

n—o0

Tr1 1
lim (Z_? (VG (t,uy) ,u,) — G (t, un)) dt = lim (I (uy) — ; (I' (uy) ,un>) =c (5)
n—oo 0
Since the embedding
Wb < C(0,T;R")

is compact. By standard argument, it suffices to prove that {u,} is bounded.
Arguing by controdiction, if {u,} is unbounded, without loss of generality, we may

assume that
|tnl|a — o0 as n — oo.

Let z, = ——, then ||z,]|, = 1. So, there is a z € Wéﬁf such that

l[unll 4

N 1 L,p
%=z in Wor, N (6)
Zn — 2 1nC’(O,T;R )

If z = 0, motivated by [9], let {7,,} C R satisfy

I (Thuy) = I (Tuy,).
(Tntin) max (Tun)
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For any m > 0, denoting v, = ¥/2pmz,, then, one gets from (6) that
v, >0 inC(0,T;RY). (7)

Observe that 2 ¢ (0,1) for n large enough, and we have

llunll.a

max [ (Tuy,) = I (thu,) > 1 (vy)
T€[0,1]

1 T
=—an||’2—/ G (t,vp)dt
b 0

T
=2m —/ G (t,v,)dt.
0

According to (7), it yields that

T
liminf I (7,u,) > 2m — / G(t,0)dt > m.
0

n—0o0
Due to the arbitrariness of m, we obtain

lim I (7,u,) = +o0. (8)

n—oo

For the reasons of I(0) < +o00 and [ (u,) — ¢ as n — 0o, one sees that 7, € (0,1) and

dl (Tuy)
0=,
" dr T=Tn
= (I' (Tpun) , Tlin) 9)

T T T
= / |7l |7 dt + / (A Taun P> T, Touy) dt — / (VG (t, Thtun) , Thty,) dt
0 0 0

for n large enough. Hence, from (8), (9) and (Hj), we get
el
/ <_ (VG <t7 un) 7un) -G (ta un)) dt
0o \P
T
| gt
0

1 T
>__
> / G (¢, Touy) dt

1
p

0

1 [T /1

1 / L (VG Tttn)  Tat) — G (£, Ttn) ) d
0 0 P

1 (/1 1
:_/ (— |l [P+ = (A(t) |Tnun]p_2 Tnln, Tnun) — G (t, Tnun)) dt
0 Jo p p

1
251' (Tntty) — +00,

which contradicts with (5).
If z # 0, since

1 T
I () = 7 el - / G (t,wy) dt,
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by (4) and (6), we have

1 T
2~ lim G“’“p" dt = lim </ / ) (t,in) gy (10)
p n—=oe Joo |lunlly n—00 #£0 HunHA

From (H,), there exists M; > 0 such that
G(t,x) >0
for all |z] > M; and a.e. t € [0,7]. Uniting assumption (A), it follows that
G(t,x) > —ap,b(t)

for all z € RY and a.e. t € [0,T], where ay;, = | ‘rrfa}]@]a(|x|) Then, one obtains
x|€[0,M;

/ Mdtg—%/ b(t)dt
a0 |uallly lunlly J2=0

for all n € N, which leads to
lim inf/ Gllum) s

n—=oo J,=0 HunHi N

In addition, for ¢t € Q, := {t € [0,T] : z(t) # 0}, one has |u,(t)] - +o0 as n — 0.
Therefore, one deduces from (H;) that

G (t,uy)

|un|p

Since meas(§2,) > 0, by the Lebesgue-Fatou lemma, it yields that

t t
/ G<’up")dt=/ M|n|pdt%+oo as n — 09,
#0

HunHA |Un|p

|z, — +00  asn — oo.

which contradicts with (10). Hence, from the both situations, we can draw a conclusion
that {u,} is bounded in Wé;‘p’

Step 2. We show that I satisfies conditions of Theorem 2.1.

On the one hand, from (Hs), choosing e = m and 0 < 0 < M, such that

[VG(t, )| < pelaf™!
for all |z] < ¢ and a.e. t € [0,7]. Hence, one has
|G(t, )| < elzf? (11)

for all || < d and a.e. t € [0,T]. Foru € Wé;ﬁ with |lul|a < Mio, by Sobolev inequality, we
have [|u||oo < 6. From (11) and Wirtinger’s inequality, taking ||u|l4 = p with p € (0, Mio)



and o = %, it turns out that

I(u) :1/0 \u’(t)|pdt+%/0 (A u(t)P>u(t), u(t)) dt—/o G(t,u(t))dt

p
1 T
z4wm—s/|wmwt
0

> =lully — Mg}

—3

1

> ——wﬁ)mm

3
o

M)
’B .

One sees that i
1n£](u) >a >0,
ue

where S = Wéfi N dB,. Hence, condition (i) of Theorem 2.1 holds.
On the other hand, choosing

U(t) = (SiIl (Wt> 707 e 70) S Wéjﬂea

where w = 2% Let
W = RY @ span {5(1)}

and
P:{xeRNim§T1}®{sn:0§s§r2}_

Since dim (Wi;;) < 00, notice the fact that all norms are equivalent in finite dimensional
spaces. So, for any u € Wg}, there exists M, > 0 such that
Ms|fullz < flull,. (12)
At first, we claim that
G(t,z) >0 forall (t,2) € [0,T] x RY. (13)
As a matter of fact, according to (Hs), it holds that
Gt z) > %g(t,o) ~0
for all (t,x) € [0,T] x R", ie.,
(VG(t,z),x) — pG(t,x) >0 (14)
for all (t,z) € [0,T] x RY. Let us consider the following function 3(7) : [0,1] — R defined

by
G(t,Tx)

TP

pr) =
For all 7 € (0, 1] and using (14), one has
ag(r)  (VG(t,tx),Tx) — pG(t, T2) >0

dr TPl -
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By (M), we get
lim g(7) = 0.

T—0F
So, B(7) > 0 and it follows that G(t,z) > 0 for all (¢,z) € [0,T] x RY.
From (Hy), for M3 = iﬁ;{ ($) 2+ %, there exists M, > 0 such that

G(t,z) > Ms|x|?
for all |z| > My and a.e. t € [0,T]. So, uniting (13), we have
for all z € RY and a.e. t € [0,T]. Now, we deduce from (12) and (15) that
L e -2
L tsn) =2 | st | (At snl”™ (@ 4 sn), (2 + sn)) dt
0 0
T
—/ G (t,z+sn)dt
0
1

T a [T
< —wp|s|p/ |cos (wt)[” dt + —/ |z + sn|” dt
p 0 b Jo

T
—M3/ |z + sn|” dt + MsMET
0

1 - T
< —WP|s|PT — | My — = x + sn|P dt + MsMPT

D 4

0

1 fi T 5
< ~wP|s|PT — (M3 — —> M? (/ |z + sn|2dt) + MsMPT

p p 0
_ 1 P|o|P Iz P ! 2 2 : p
= 5@) |s|PT — | M3 — » M; (|z|*+ |sn|*)dt ) + MsMZPT.

0

I3

: _ 2T (T\"5 &
Since Ms; = D (2) + 5, we have

1 - T 5
I(z+sn) < —wP|sPT — (M3 — H) MY (/ |sn|2dt> + MsMJT
p p 0

1 (16
< ——wP|sPT + M3 MJT,
p
and ] _
I (x+ sn) < —wP|s|PT — <M3 - ”) MPT?|z|P + MsMPT. (17)
p p
Let 1 1
pMsMP » 1 IMsMEpT =2\
r = and ry = :
: wP ’ (pM; — ) My
For z 4+ rin € 0P, from (16), one obtains that
1
I(x+mrmn) < —=wP[s|PT + MsMJT < 0. (18)
p



For x4+ sp € OP with 0 < s <1y, |z| = rq, from (17), one has

1 .
I (2 +sn) < —wP|sPPT — <M3 - E) METE|x|P + MyMPT < 0. (19)
P P

From (18) and (19), condition (i) of Theorem 2.1 holds. Hence, there exists a nontrivial
critical point u* € Wclﬁ such that I (u*) > a > 0.

Step 3. We prove that there exist ground state solutions. Going after the argument
of Jeanjean and Tanaka [10], we denote

Kz{uEWé’%:[’(u)zO,u;éO},

d
o v =inf{I(u):u e K}.

For any u € K, applying (14), one sees
1
I{u) = I(u) — = (I'(u), u)
p

- /OT (l (VG(t,u),u) — G(t,u)) dt (20)

p
> 0.
Hence, it is easy to get that I(u*) > ~v > 0. Now, we assume that there exists {w,} C K
satisfying
I(w,) =7y asn— 0.

Then according to step 1, one knows that {w,} is bounded. So, there is a w € Wé; such
that

w, = w in Wé’:’;,
w, —w in C’(O,T;RN) )
Using (H,) again, there exist € > 0 and M5 > 0 such that
[VG(t,2)| < ez (21)

for all |x| < M5 and a.e. t € [0,7]. Next, we want to prove that w # 0. Otherwise, if
w = 0, then by Sobolev inequality, there exist N; > 0 such that

[[wnl| o < Ms (22)

for all n > N;. Noting that {w,} C K, so it follows that
T
0= (I"(wn), wn) = lwall’y —/O (VG (t,wy) ,wn) dt (23)
for all n € N. Then, one can get from (21), (22) and (23) that
T
Janlty < [ 196t w,)

T
SE/ lwn |~ |wn| dt
0

< eT ||wnle,
< eTM}
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for all n > N;. Owing to the arbitrariness of ¢, it implies that ||w,|| , = 0, a contradiction.
Therefore, w # 0. In accordance with (20) and Fatou’s lemma, it holds that

v = liminf I (w,)

n—oo

— lim inf (1 (wy) — % (I (wy,) ,wn>)

n—oo

~ liminf /0 ' (1 (VG (twy) ,wp) — G(t,wn)) dt

n—oo p

> /0 ' (]19 (VG [t w), w) — G(t,w)) dt

= I(w)

> 7.
Hence, I(w) = 7. w is a nontrivial critical point of functional I with least energy. So, we
get at least one ground state rotating periodic solution for system (1). O]
3 Example

In this section, we give an example. We consider the following p-Hamiltonian systems

{ — (WP W) = =NulP~2u+ VG(t,u), ae. tel0,T) (24)

w(T) = Qu(0), v(T') = Qu'(0),
where

VG(t,u) =p 3+COSQ—7Tt ln(1+\u|p)+|ui lulP2u
’ T 1+ |ulp '

Hence, by simple calculating, one has
2m
G(t,u) = (3 + cos ?t) |ulPIn (1 + |ul?),

and

B B 2m |u |
G(t,u) == (VG(t,u),u) — pG(t,u) = p (3 +cos Tt) 1+ |ulp’

In the following part, it is easy to verify that conditions G(¢,u) € C* ([0, T) x RV, ]R) with
VG(t + T,u) = QVG (t,Q ' u) for some Q € O(N), G(t,0) = 0 and (H,), (H,) are
satisfied. Taking

G(t,Tu)

G(t,u)
(VG(t,Tu), Tu) — pG(t, Tu)
(VG(ta U), U) - pG(t> U)
oo 2
) o)
(1 + Jul?) 7
1+ |rulp

f(r) =

11



By straightforward computation, we have

df(r) _p@+lrul’) A+ [uf) 771
dr (1+ |Tulp)? -

for all 7 € [0,1]. So, one can deduce that f(7) < f(1) = 1. Then there exists § > 1 such
that
G(t, Tu)
G(t,u)

Therefore, condition (Hjs) holds. By Theorem 1.1, there exists at least one ground state
rotating periodic solution for system (24).

<@ forall (t,u) € [0,T] x RY.
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