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The study on the cyclic generalized anti-periodic boundary
value problems of the tripled fractional Langevin differential
systems

Jinxiu Liu, Tengfei Shen*, Xiaohui Shen
School of Mathematics and Statistics, Huaibei Normal University, Huaibei, Anhui, 285000, P.R. China.

Abstract

The purpose of this paper is to deal with the cyclic generalized anti-periodic boundary value problems
of the tripled fractional Langevin differential systems. By using some fixed theorems, the existence and
uniqueness of solutions to the problem have been obtained. Moreover, the Ulam-Hyers stability of the
problem has also been presented. Furthermore, some examples are supplied to verify our main results.
Keywords: Fractional Langevin differential system, Boundary value problem, Well-posedness,
Ulam-Hyers stability, Fixed point.
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1. Introduction

In this paper, we are concerned with the following generalized anti-periodic boundary value problems

of the tripled fractional Langevin differential systems.

bs (CDgy +N) @ (1) = gs (t, a1 (t) 22 () 23 (), € (0,1), i =1,2,3,
a(z1(0) + xz( )) = = (z2(1) + 23(1)), “Df 21 (0) + “Dg 22 (0) = — (“Df a2 (1) + “Dg 23 (1))
a (22(0) +23(0)) = (xz( ) +21(1)) , D22 (0) + D a5 (0) = = (“Dgas (1) + Dy (1))
a(x3(0) +21(0)) = — ( (1)), “Dgya3 (0) + “Dgy 21 (0) = = (“Dgya1 (1) + “ D22 (1))
(1.1)
where CDg‘ " and CDg stand for the Caputo fractional derivative of order a and S with 0 < a < 1, 0 <
B<l, 1<a+p<2 g:[0,1] x R® - R,i=1,2,3 represent continuous functions, a, A € (0, +0oc).
With the continuous development of fractional calculus, the research on the basic theory of fractional
differential equation has become more and more popular. The main reason is that the problems of frac-
tional differential equations can greatly describe the real world and has been applied in many practical
research fields such as biology, physics, fluid mechanics (see [1-4]). Therefore, it is meaningful to con-
sider the well-posedness and Ulam-Hyers stability of boundary value problems for fractional differential
equations.
It is well-known that the Caputo fractional differential equation is an important part of fractional

differential equations. Its boundary value problems have been extensively investigated by many scholars
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(see [5-14] and references therein). For example, Ahmad and Nieto [6] considered the existence of
solutions for the following fractional anti-periodic boundary value problem via Leray-Schauder degree

theory.

“Dg,x(t) = f (t, (1)t € [0,T],

(1.2)
z(0) = —z(T), 2/(0) = —2'(T),

where ¢ € (1,2], f:]0,1] xR — R is continuous. Since the Langevin equation has strong physical signif-
icance, which was established by Langevin in 1908 according to Newton’s laws (see [15]), its fractional
boundary value problems have consequently attracted many scholars’ attention. Yu, Deng and Luo [16]
investigated the solvability of a class of initial value problem for fractinal Langevin equation via the

Leray-Schauder nonlinear alternative as follows.

§D] (§Dy +~)x(t) = f(tx (1), t € (0,1),
2%(0) = pr, 0< k <, (1.3)

2Tk (0) = 1,0 < k < m,

where OCD,’? and §' D¢ stand for the Caputo fractional derivative of order 8 and « with 3 € (n—1,n],a €
(m—1,m], m,n € N, [ =max{n,m}, f:[0,1] x R — R is continuous, v € R. Subsequently, Baghani,
Alzabut and Nieto [17] dealt with the existence and uniqueness of solutions to the anti-periodic boundary

value problems for a coupled system of factional Langevin equation by Banach fixed point theorem.

DA (D™ 4 x1)a (t) = f (L (t),y (1),t € (0,1),
D (D* + x2)y (t) = g (t,z (1) ,y (1)) ,t € (0,1),

2(0) + 2(1) = 0, D¥2(0) + D*1x(1) = 0, D2¥2(0) + D215(1) = 0,
y(0) +y(1) = 0, D*2y(0) + D*?y(1) = 0, D>**2y(0) + D>**2y(1) =0,

(1.4)

where D% and D# stand for the Caputo fractional derivative of order «; and 3; with o; € (0,1], 8; €
(1,2],i=1,2, f,g:[0,1] x R — R are continuous, x1, x2 € R. Furthermore, for more papers related to
boundary value problems of fractional Langevin equation, please refer to [18-21] and references therein.

The cyclic boundary value problem has a far-reaching influence and is widely used in many research
fields [22-26]. The cyclic boundary conditions are particularly prominent in the study of channel flow
and has been used to construct railway track coupling dynamics models [23]. Moreover, it can effectively
describe the repeated behavior of the fluid on the boundary surface. In general, these boundary conditions
help to approximate regions of infinite length to smaller regions. Furthemore, the cyclic boundary
conditions also play an important role in the study of lattice particles [24]. In addition, the cyclic
boundary value problems are also widely used in the variational principle of Hamiltonian systems [25]
and in solving the problems of Schrédinger operator [26].

Recently, the cyclic boundary value problems of fractional differential system have become a hot
research topic. Its characteristic is that the equations and boundary conditions are coupled. Hence,
compared to decoupling boundary conditions with coupling equation, these types of problems are more

complex and challenging(see [27-29]). For example, Zhang and Ni [29] dealt with a class of the tripled
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system of fractional Langevin equations with the cyclic anti-periodic boundary value conditions as follows.

CDg, (D§y +A) i (1) = fi (b1 (8) w2 () 23 (1))t € (0,1),7 = 1,2,3,
21(0) + 22(1) =0,  ©Dg,21(0)4C DG, x2(1) = 0

x2(0) + z3(1) = 0, CDO 22(0)+°Dg, x3(1) = 0,
23(0) + 22(1) =0, ©Dg, 23(0)+° Dy z1(1) =0

(1.5)

b

where © D " and ODg . stand for the Caputo fractional derivative of order a and 3 with 0 < a <1, 0 <
B<l, 1<a+pB<2 fi:0,1] x R® = R,i=1,2,3 are continuous, A € (0, +00). Based on some fixed
point theorems, the well-posedness of solutions to (1.5) are acquired. Furthermore, the Ulam-Hyers and
Ulam-Hyers-Rassias stabilities for the problem are also obtained.

Motivated by the works mentioned above, we are concerned with the generalized cyclic anti-periodic
boundary conditions to the tripled fractional Langevin differential system (1.1). By Krasnoselskii fixed
point theorem and Banach contraction mapping theorem, the well-posedness of solutions to (1.1) has
been obtained. Moreover, the Ulam-Hyers stability of (1.1) has also been presented. Let’s describe the
contributions of this paper as follows.

e Our model includes the special case (1.5). Thus, our main results extend the conclusions of [23].

e Since the equations and boundary conditions are coupled. Therefore, it is more complex and
challenging than the case of decoupling boundary conditions with coupling equation.

e Studying the anti-periodic boundary value problem itself is very meaningful. Moreover, there are
few papers considering the cyclic boundary value problems of tripled fractional Langevin differential

system. Our main results enhance and upon some previous results.

2. Preliminaries

For the classical definitions and properties of Riemann-Liouville fractional integrals and Caputo
fractional derivatives, one can refer to [1]. So, we won’t repeat it here.
Lemma 2.1 ([3] Krasnoselskii fixed point theorem) Assume that X is a Banach space and the nonempty
subset 2 C X is bounded, convex and closed. Let A and B be two operators satisfying
(i)Az + By € Q for all z,y € Q;
(ii).A is an operator of complete continuity;
(iii)B is a contraction mapping.
Then there exists z € Q such that z = Az + Bz.
Considering the Banach space X = C10,1], with the norm defined by ||z|c = max;c(o 17 |z(t)]. Let

X =X x X x X be equipped with the following normal

(21, 2, 23) || x = [[21]loo + [|22]loc + |23,

where (z1,22,23) € X. Clearly, (X, | -||x) is also a space that is a Banach space.
Lemma 2.2 Fori = 1,23, let 1 < a+ 8 <2, T; € AC[0,1]. Then, if and only if x = (21,29, 23) € X

is a solution of the following linear system of integral equations

CDY(CDg, + Nai(t) = Ti(t) (2.1)
3



with the boundary conditions

a (@1(0) + 22(0)) = — (22(1) + 23(1)) ,© DG 21 (0) + D2 (0)
a (22(0) +23(0)) = — (23(1) + 21(1)) , “ DG, w2 (0) + D23 (0) = —

= — (°Dg,x2 (1) + “ DG a3 (1)) ,(2.2)

(“Dg, x5 (1) + “Dgxq (1)), (2.3)

a(z3(0) + 21(0)) = — (21(1) + 22(1)), “Dg, 23 (0) + “Dg, 71 (0) = — (YD a1 (1) + D 22 (1)) .(2.4)

Its form of x; is given by

1

t A t
T = — —8) B (s)ds — —— —8)% g, (s)ds
(1) [ =) d | = e

I'a+p I'(a)

N —M;1(t) + My (6)A /1 (1 — 5)*B=1 (15 (s) + T3 (s)) ds
0

I'(a+p)
—Mis(t) + Mis()A [ _ g)etBs-l s 5)) ds
» a4 M /O (1—s) (T3 (s) + Y1 (s))d
—Mis(t) + Mig(ON 11 ki1 oy s)) ds
B /0 (1—s) (T1(s) + T2 (s))d

. — ; 2 !
+J\4:1(t)>‘F (a]\)/[l‘l(t))‘ /0 (1—5)*" (22 (s) + 23 (s)) ds

s -9 @ (9) () s
My (t) [* _
B F4ﬁ()) /0 (1—5)""" (Y2 (s) + Y3 (s)) ds
Mis(t) [*
— FSﬂ())/O (1—5)P"1(T5(s) + Y1 (s))ds
Mig(t) [* .
- Ffé))A (1_5)'871 (Tl (5)+T2 (3)) dsa 1=1,2,3,
where
t(l (e}
Mo Bt By Moi(t) = —— Foe 4 Exs
1J(t) F( +1) 1j + Ly, 2](t) F(a+1) 25 + 54,
te Mo )
M3](t)_r( +1)E3]+E6]a ETj:ij T7.]:172a3a455767
4N (—a+1)
= ————2 Lt da)(— 1)+4
mi I () +4dai(—a+1) + 4,
4a)?(— 1
— “F((;L)*)Hm(aﬂ)—u,
AN3 (—a?2 4+2a—1 8\? (a?2 -1
mis = ((F(a))2 )+ ]_—(‘(a) )—4GA(G+1)—4A,
222(a® —3a®> +3a—1 2X(—3a® + 3a? -1
S (a a J; a )+ (=3a°+3a* +a )+2a3+2,
(T(a)) I (a)
2X2(—a® +3a%2 —3a+1) 2Xa® —a? —3a+3
S (a+a2 a+)Jr (a®° —a a+)+2a3+2,
(I (@) I'(a)
2X%(—a® + a? —1)  2X(3a® — a? -3
mig = (za”+a :a )+ (Ba” —a” +a )—6(a3+1),
(T'()) I (a)
3,2 _ 2(,2 _
—— AN (—a® + 2a 1)+8)\ (a 1)—4)\(a2+a+1),

(T())? I (a)

4
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M54

mss

mse =

4N (—a+1)

+4X—a® +a+1),

I(e)
W +4X(a* +a — 1),
202(—ad+a? +a—1) 2X3a®—a?+a-3) 6
() ra) pey
202(a® —3a® +3a—1)  2X\(—3a®+3a®>+a—1) I
(@) I rHey
202(—a® +3a%2 —3a+1)  2X(a® —a® —3a +3) o3
(T )’ rw ey
4€1>\2F((0(41)Jr1) +4X(a® +a—1),
4X\3(—a? a— A2(a? — 9
( T (:)?2 DI I(‘(Oz) D) —4X(a*+a+1),
W +4XN(—a® +a+ 1),

20%(—a® + 3a® — 3a + 1)

2X\(a® — a® — 3a + 3)

a3
M) M
202(—ad+a?+a—1) 2X3a®—a®+a+3) 6 6d®
(T (a))* T'(a) ’
2202(a® —3a? +3a—1)  2XA(=3a®+3a®>+a—1) o3
(F(a))2 T () + 2+ 2a”,
2X3(a? —2a+1)  2X0%(=3a2+2a+1) 2X\(3a®> —a+1) P
(@)’ (T (@) O
2X3(—a?+2a—1)  6X%(@®—1) 2X(-3a®>—a—1) 244
@) 0 )] M s
2X3(a? —2a+1)  2X\%(=3a?+2a+1) 2X\(3a®*+a—1) M+ a
)y 0 ) ACEE
20%(a? —2a+1)  2X(=3a®>+2a+1) 6a%+2a —2
(T (@) (T (a))” I' ()
20°(=a* +2a—1)  6Ma®—1) 20°+6a+2
(T (@)’ (T (a))* T(a)
220%(a®? —2a+1)  2XM—a®>—2a+3) —2a®>+2a+6
(T (@) (I (@))* I' (@)
2X3(a? —2a+1)  2X\%(=3a2+2a+1) 2X\3a®*+a—1) BT
) 0 a) CEE
2X3(a? —2a+1)  22%(=3a2+2a+1) 2X\(3a®> —a+1) P
) 0 a)) ORI
2X3(—a?+2a—1)  6X%(a®—1) 3 2X(3a® +a+1) S
0 @) @) o) Herenl
22%(a? —2a+1)  2X(—a?*—-2a+3) —2a*>+2a+6
(T ()’ (T ()’ T'(e)
220%(a? —2a+1)  2X(=3a®*+2a+1) 6a*+2a—2
(T (@) (T (a))” I' ()
203 (—a?+2a—1)  6A(a®—1) B 2a” + 6a + 2
(T (@))® (T (@))* I'(e)



—2X3(a? —2a+1) 2X%(=3a*+3) 2X\(Ba®+a+1)

me1 = 5 4(—a® —a+1 ,
’ (T (@) (T'(@) () ( 0
o 20 (=a®*+2a—1) 2X*(3¢® —2a—1) 2\(=3¢®> —a+1) 2t
= @) (@) () e rat
e 2\ (=a®*+2a—-1) 2X*(3¢®> —2a—1) 2\(=3¢® +a—1) M a1
o (@) (@) I (a) (@ —at )
e —2)\°(a® —2a+1) 2X\(=3¢”+3) 2a*+6a+2
o (T () (T (a))? C
e —2)\(=a*+2a—-1) 2X(@*+2a-3) 2a®—2a—6
o (T ())? (T (a))? T(a)
N —2)\%(—a? 4 2a — 1) B 2X(3a? — 2a — 1) B —6a? — 2a + 2
©o (T (a))? (T (a))? INC
. — AMa—-1) u A(a? —2a+1)  M—a®+1) 2 —a
G “*”)< TP T 'H>

Proof. Applying the operator Iéi_ to both sides of (2.1), we can deduce
CDS+$i(t) = I(’;’:r'rz(t) — )\(El(t) +¢i1,C1 € R, 1=1,2,3.

Using the operator I§, to act on both sides of (2.6), it follows

tDé

zi(t) = IS‘IﬁTi(t) — Mgy wi(t) + )Cil +ci2, ci,ce €R, =123

IMNa+1
Next, by (2.6) and (2.7), we can derive

o N 1
2; (0) = cio, (1) = Ig7 05 () vy~ Moy )],y + TS + cio,

CDgs (0) = =Aas (0) + e, “Dgens (1) = I, Te(0)] = Aai (1) + ean,

which together with the cyclic anti-periodic boundary conditions (2.2)-(2.4) yield that

1 1
I'(a+1) I'(a+1)
= — I (P2 (1) + T3 (1)) + MG, (22 (1) + 25 (1)),

C21 + c31 + acia + (a+ 1)cos + c32

c11 + 31 + c12 + acae + (a + 1)cso

1 1
F'(a+1) I'(a+1)
= —IgFP (Y1 (1) + T3 (1) + A, (w1 (1) + 23 (1)),

1 1
I'(a+1) I'(a+1)
= I (01 (1) + T2 (1)) + AI§, (1 (1) + 22 (1)),

ci1 + c21 + (a+ 1)ci2 + co2 + acso

A A
c11 + (2 - M) co1 + (1 - M) €31 — Ac12 — 2Aca2 — Acza

= MGT7 (02 (1) + T3 (1) = NI, (w2 (1) + 23 (1)) — I5, (T2 (1) + T3 (1)),

6



A A
1] — ——— 22— — — Ac1g — Acag — 2
< F(a+1)) Cc11 + C21 + ( I‘(a+1)> C31 C12 C22 C32

= M7 (05 (1) + Y1 (1) = NI (w3 (1) + 21 (1) — I5, (Y5 (1) + Y1 (1)),

A A
22— — 1— —— — 2)c12 — Acgr — A
( F(a+1)> c11 + ( F(a+1)> C21 + €31 C12 €22 C32

= M7 (01 (1) + Yo (1) = NIy (21(1) + a2(1)) — Ij, (T4 (1) + T2 (1))

3 So, we only need to solve the following system of linear equations to get the values of ¢;1, 2,71 = 1,2, 3,

0 ﬁ ﬁ a a+1 1 c11
Tt 0 T 1 a a+1 o1
ﬁ ﬁ 0 a+1 1 a ¢ |

1 2o lorem A 2 A P

1—% 1 2—% D W W)} 22
Q—ﬁ 1-% 1 2\ =X =) 33
—Ig7 (02 (1) + T3 (1)) + AIg (w2 (1) + 23 (1)

— 15 (Y5 (1) + 1 (1)) + Mg (23 (1) + 21 (1))

—IGTP (T (1) + T (1)) + M (w1 (1) + 22 (1)

AL (T (1) + T3 (1)) — NG (22 (1) + 23 (1)) — 15 (To (1) + T3 (1))
AL (05 (1) + Y1 (1) = NIy (23 (1) + 21 (1) — 15 (T3 (1) + L1 (1))
MG (005 (1) + 11 (1) = KI5 (21 (1) + 2 (1) = 15, (Y1 (1) + T2 (1))

(2.10)

s It’s simple to demonstrate that the determinant of the coeflicient matrix associated with the linear system

s (2.10) is not zero. Therefore, (2.10) admits the unique solution.

mM1161 + M12S2 + M13G3 + M14S4 + M15S5 + M16Se

C11 = )
e

o1 = M21G1 + M22S2 + M23G3 + M2gSs + Ma5Ss5 + mzs%7
e

- M3161 + M32G2 + M33S3 + M34S4 + M3565 + m36§67
e

Ly = M4161 + My2G2 + M43$3 + MyaSs + MysSs + m46§67
e

oy = M5161 + M352S2 + M5363 + M54S54 + Mi565 + m56§67
(&

Cop = Me1S1 + Me2S2 + Me3S3 + MeaSs + MesSs + m66§6,
e

7 where



10

@ = rag L 09T T ) ds s [ (1) (1) s
1 1
@ = ~rr ) O T T ) ds i [ 0= () (1) s
@ =t (1_s>a+ﬂ-1m<1>+rz<1>>ds+FAQ) 1= T @ () 22 (1) ds
1 2 1
= g ) G ) T i [0 ) () ds
_ﬁ/o (1= )71 (T2 (1) + Y3 (1)) ds,
1 2 1
%= ﬁ/o <18>"‘*“(T3(1>+T1<1>>d3F(a)/o (1) (w5 (1) + 21 (1)) ds
_ﬁ/o (1= )51 (s (1) + Ty (1)) ds,
1 2 1
6 = ﬁ/{) (1s)a+61(T1(1)+T2(1))d5F(a)/o (1—s)* (21 (1) + 22 (1)) ds
1

I'(5)

T®) / (1— )" (11 (1) + T2 (1)) ds.

So, putting the values of ¢;1,¢2,7 = 1,2, 3 into (2.7), we get the desired solution (2.5).

On the contrary, it is easy to verify that (z1,z9,z3) € X given by (2.5) satisfies the system (2.1) and
the boundary conditions (2.2)-(2.4). O

3. The well-posedness of (1.1)

For convenience, let ¢;(t) = gi(t, z1(t), z2(t), z3(t)), ¢ = 1,2,3, t € [0,1]. According to Lemma 2.2,

define the operator T': X — X by

(T)(t) :

where

(Tir) (1) =

r

+

= ((Thx)(t), (Tox)(t), (T3x)(t))

= (Taon,w,25) (1) Tolar, 2, 25) 1), T, 2, 2)(1), -1
_Mil]_'gl(tl_:_]ﬁw)i‘l(t)/\ /01 (1= )51 (6o (5) + dbs (5)) ds
_ MZ.F@(L J; ]\;I;5(t))\ /01 (1= )% (g (s) + b1 (5)) ds
MZ.BF(,E)O;J\E;G@A /01 (1= )21 (b (s) + s (5)) ds
Mﬂ(t)AF—(aAfm(tw / (1= )" (a (s) + 3 (s)) ds
Mig(t))\r—(aj\)/fif)(t))‘z /0 (1= ) (s () + 1 () d



2

3

. —_ 1 2 !
+M13(t))\ M6 (H)A / (1—8)2" 1 (zy (5) + 22 (s))ds
0

(1 =87 (1 (s) + 2 (s))ds i=1,2,3.

T (@)
_gﬁ?ARLﬂw*wu@+mw»w
_ﬁﬁg{i%l—@ﬂlwu@+¢MSMs
MMUA

Therefore, the solution to problem (1.1) corresponds to the function x = (x1,x9,x3), given that z =
(z1,x2,23) is a fixed point of the operator T'. By the Krasnoselskii’s fixed point theorem, we proceed to
establish the existence of solutions for the system (1.1).
Theorem 3.1 Assume that the following conditions hold.
(H1) gi : [0,1] x R?* —» R,i = 1,2,3 are continuous.
(Hsy) For all (t,u,v,w) € [0,1] x R3, there exist nonnegative functions k}, k2, k3, k} € C[0,1],i = 1,2,3
satisfying

Jgi(t, w0, 0)| < BL(E) + KOl + KO0l + b (D)ol

Then the system (1.1) admits at least one solution with the condition that

3
T(a+1)>T(a+ 1)(E+n+r) Y L+ 3Ny + 1) A+ 3N2\?, (3.2)

i=1
where

6 = L+ | Mol + [ Masl| A + [Masll o, + (M6l oA n | Mis]| o, + | M6l o
1 - 9

la+B+1) r(B+1)
& = L+ [[Ma1 o + [[Moall oA + [[Mas] o + [[Ma6] oA n ([ Maal o + ([ M26]] o
T(a+B+1) CE
6 = Lt IMsillee + IMsallo A + [ Msollog + [ MssllacA | [Msalloe + | Ms5 oo
Tla+B+1) L(B+1) ’
- 1M floo + 1M1allooA + [Mslloc + [Mi6]lacA | [M14lloo + [Mislloe.
T(a+pB+1) rB+1)
- 1Mo floo + 1MaallooA + [ Masllog + [Ma5]looA | [Maalloo + [ Ma5]loe.
D(a+B+1) L(B+1)
b = [ M2 |0 + [1M35]| oA + [ M5l o + 1M36]l 00X | [1M35]1 o + [ M3l
T(a+B+1) NCE
by = Mullee +[MiaflooA + [Mazflog + [Mislloc | [1Mrallo + 1M1l
Fa+p5+1) r'p+1) ’
= 1Mo2loq + 1125 looA + [ Maslloc + [Ma6]locA | [1M25 o0 + [ Masllo.
T(a+B8+1) L(g+1)
vy = 1Moo + [ Msallooh + [ Msslog + [ Msslloo , [1Maallo + M6 loc
T(a+p+1) L(B+1)

f = max {517 €25 £5}~
7 = max {11, 2,3},

v = max {’7’3: V35 7'5}

9



3

2 —

o=

Proof. Fix § > 0 such that

o>

KLY, K2 = K2 (1), K= ki (t
Jax [k (0)], k7 = max [ki(D)] Jnasc [KE ()],

max [ki(t)], 6=k +k +kY i=1,2,3.
tef0,1]

(E+n+y)T (a+1)23:

=1

Consider the set

MNa+1) —T'(«a +1)(§+n+7)23j [3N1+1)A+3N2/\2]

i=1

Qs = {x = (21, 29,23) € X° : ||z x <6}

Define the operators F,G : Qs — X by

(Giz) (1) =

((Frz)(t), (Fax)(t), (F3z)(t))
= (Fi(x1, 2o, 23)(t), Fa(xy, 22, 23)(t), F5(x1, 22, 23) (1)),
((G1z)(1), (G22)(1), (G3x)(t))

(Gi(1, 2, 23)(1), Ga(21, T2, 23) (1), Gs(21, 22, 23)(1)),

(t —s)* La;(s)ds

i5 (1) A2 /0 (1= 5)*" (z3(s) + 21(s)) ds

I'(a)
Mﬁ(t»r—aﬂ)@ﬁ(tw / (1 - )" (1(s) + wa(s)) ds
Mﬂ(t)AF—az;m(t)A? /01 (1= ) (wals) + w3(s)) ds, i = 1,2,3,
| (- 5)* 515 (5)ds
_M“r(t()o:r J\g;-zx(t)A /0 ! (1= 5)°H1 (éo (5) + s (5)) ds
Mgr(zé)atr Ag;S(t)A A U1 ) (g (5) + by (5)) ds.
_ M“}(?a ++ ]\g;e;(t))\ /01 (1= )™ (¢ () + o (5)) ds
AI{M? / L= 97 (0 (5) + 6 () ds
s e <§> / (1= 5)"" (63 (5) + 61 (s)) ds
_AI{(G/E? / (1= 5)7 (1 (s) + 62 (s))ds, i =1,2,3.

Now, in terms of Krasnoselskii’s fixed point theorem, our proof can be divided into three steps.

10



1 (i) The following property will be proved.
Gz + Fy € Qs for any © = (21,29, 23) € Qs and y = (y1, Y2, y3) € Qs.
> As a matter of fact, for any x,y € Qs, it follow ||z||x <9, ||y|lx < d. Then, from (Hz), we can get that

71 t — g)eth-l s)| ds
el DR YOI

| My (t)] 4 | M1a(t)| A
T'(a+B)
|Mi2(t)] + [Mis(1)[ A
T'(a+p)
|[Mys(t)] + | Mye(t)| A

a+B)

/ (1= 8)P (162 ()] + |3 (5)]) ds

[(Gra) ()] <

/0 (1= )25 (| (3)] + |3 (5)]) ds

1
/0 (1= )81 (g ()] + |61 (5)]) ds

/O (1= )25 (|y (3)] + |2 (5)]) ds

(
M
| 1 4 ‘

|M15 )| 8P (|3 (8)] + |1 (5)]) ds

'Mw“)'/ )P (11 (8)] + |2 ()]) ds

ki 460 || zllx | [Mu()]+ M)
Fa+p8+1) Fa+B8+1)
|Mi2(t)] + [Mis(t)] A
F'a+8+1)
|Mi3(t)] + [Mys(t)| A
F'(a+B+1)
| M4(1)]
rpg+1)
+ 0L 0 41+ 1+ el
[ M ()]
L(B+1)
< Ekp kg + ks + (§0+ 0l +vLs) 0.

IN

(ks + ks + Lozl x + Csll2llx)

(ki + k3 + ]zl + €3]] 5 )

(k1 + ks + Gzl y + Clllly)

(ks + ks + L]zl x + sl x)

+ (k1 + ks + Gzl y + Clllly)

3 Similarly, we also find

[(Gox)(t)| < Eky + nks + ki + (£02 + nls + v01) 6,

|(Gsz)(t)] < Ek3 + nki + kg + (£05 + 1ty + yL2) 6.

+ Moreover, we can get the following inequality

t 2 1
(O] < wg [ =92 i @) as+ BRI et (o) + (o)) ds

|Mis(t)| X + | Mig()| A2 [* _ gy
¥ ey [ o=

2 1
My (8)] ﬂ)mw : / (1= )" (lya(s)+| ya(s) ) ds

Hya ()] + lya(s)]) ds

11



A [Miz()| A+ [Mis (1) N>
S farplet = Tarn (sl +lb1l)
| Maa(£)| A+ [Mio (0)] N2
Tty Uil + el
| M1 (8)[ A+ [Ma(t)| A2
o+ 1) (2o + 1931 o)
< LM + [ Mia®)] + 1M (DA + (1Mas (8)] + [Mao(8)] + | Mra(8))N]8
- I'(a+1)
A
+m”y1“oo'
> Similarly, we have
A (M2 (8)] + [Mas ()] + Mo (8)]) A+ (1Mas(8)] + [Mas(£)] + | Maa(t)]) 3] &
(M (8)] + Mo (8)] + | M (8)]) A+ (1M ()] + [Mas (8)] + [ Mas (1)) X*] 6
(FEs)O] < sl + NCES .

3 For convenience, we introduce the following constants

Nui = [[Maz|l o + 1 Masll o + 1M1l Now = [[Muall o, + M5l + [ M6l
Nig = ||Maal| o + [[Masll o + |Ma1llo,  Noz = || Maal| o + | Mas]] o + | M2s6]] o,

Nig = [[Msa|l o + [[M33ll oo + 1M1, Noz = || Maall o + [[M3s]| o + | M36]] o »
+ where
Ny = max {Nu, Nio, le} , N2 = max {N217 Nao, N23}~

5 Therefore, we can obtain

NiX+ No)?
I'a+1)
N1+ No)?
la+1)
N1+ Ny)?
Ia+1)

(F) ()] < o + 5

_ A
(a+1)

(Fay)()] <

A
m“yzﬂm +

(Pa)®)] < prrp e +

7 According to the above results, we can obtain the following estimates immediately.

Myillee | NiA+ NoX?
INa+1) a+1) 7
/\”yQ”OO .N'l)\-I-.N'g)\2
I'a+1) la+1) 7
AMyslloe , N1A+ NaA?
T(a+1) T(a+1)

[(G1z)(t) + (Fuy)(t)| < ki + nks + vks + (E0 + nly +v03) 6 +

|(Gow)(8) + (Fay) ()| < &g + ks + vk + (E02 + nls + 701) 6 +

[(Ga)(t) + (Fay)(t)] < &k3 + nki + vky + (§03 + nly + yl2) 6 +

s Taking the norm for Gx + Fy on X, one has

|Gz + Fy||x |Gz + Fiylloo + [|G2z + Foy|l oo + ||Gsx + F3y|oo

:;1\/] +| +:;N2 2

< EHntn))] (K +06) + oD <
=1

12



Hence, Gx + Fy € Qs for all z,y € Q.
(ii) The operator F is a contraction on 5 will be shown. In fact, for any © = (z1, 22, 23) € Qs and
Y= (y1,92,93) € (s, it follows
Mz =yl | (NMA+N2A) (21 = w1l + 122 — w2l + 123 — y3ll.)
INa+1) Ia+1)
A (N1A + N2A?)
< — 2 o - A 2 e — vy

[(Fuz)(t) — (Fiy) ()] <

Similarly, we have

A (NIA+ NoA?)
[(Faz)(t) — (Fay)(t)] < mﬂl’z =2l + WHI —Ylxs
(N1)\+N2)\2)

(F)(0) = (Fs)(O)] < gy s =l + sy b =3l

Taking the norm Fx — Fy on X, we get

(3N1 + 1) A + 3No\2

[Fz— Fyllx <

By (3.2), we can get that F' is a contraction.

(iii) The G is equicontinuous on s will be obtained. As a matter of fact, since the functions g1, g2, g3
are continuous, this means that the operator G is continuous on 5. Therefore, we need to prove that G
is relatively compact on 5. In fact, for any = € Qs, by using (i), we obtain G is uniformly bounded on

Qs. For convenience, we have import the following constants.

i - [mar| + |maz] + |mas] + (|maa| + | mas| + [mas)) A [maa| + |mis| + |m16|:| 23: ) (5 .
T(a+pB+1) T(B+1) P

Next, for any = = (21, x2,x3) € Q5 and t1,t2 € [0,1] with 0 <t; <ty <1, we can obtain

|(Grz)(t2) — (Ghz)(t1)] < ki + (kﬁaki’;kll ”‘“X{/tl —5)2TAL () — 5)2 TP 1)ds

ta
*/ (t2 — 5)**7 7 ds}

(15— 49) [(Bn] + Bl 3) (8 + K + Loy + ]2l )|
I'a+1) M'Na+5+1)

(18 = 19) [(Buo| +Bus| A) (b + 1+ alzl + Esllel) |
T(a+1) T(a+B+1)

(15— #8) [(Ess] + [Brol N) (L + K + Ozl + 6]zl )|
Pla+1) | Fla+p+1)
(t5 —9) || Bval (k5 + k3 + Lozl + L3l x )
M(a+1) rB+1)
(t5 —t9) || Es| (K1 + K3 + Gzl x + sl x)
Fla+1) L+ 1)
(t5 —19) | [ Esl (K1 + k3 + Gilz] x + Lol x)
Fla+1) o+ 1)

S G Rl ALY T R Y
T(a+p+1) T(a+1)

13



10

11

12

13

14

15

Similarly, the following conclusions can also been obtained.

k% + (k% + kg + k%) Y <ta+5 _ ta+ﬁ> + t% - t%
T(a+p+1) 2 ! I(a+1)

ki + (k3 4+ k3 +k3) 6 (ta+5_ta+3) N 15—t 7
T(a+p+1) 2 ! Tla+1)

Based on the facts that t*t2 and t* are uniformly continuous on [0, 1], we can get

[(G2x)(t2) — (G27)(t1)] < L,

[(Gsz)(t2) — (Gaz)(t1)] <

|(Gix)(t2) — (Giz)(t1)] = 0, as ta — ¢ independent of z, i =1,2,3.

Thus, the operator G is equicontinuous on 5. Therefore, by the Arzeld-Ascoli theorem, we obtain that
G is a relatively compact on €25. Hence, all the conditions of Lemma 2.1 hold, then the operator G + F

has a fixed point, which means that it is a solution of the system (1.1). O

In the results below, the uniqueness of solution to the system (1.1) has been established by the
Banach’s contraction mapping theorem.
Theorem 3.2 Assume that the condition (H;) and the following conditions hold.

(Hj3) For for any t € [0,1], 2;,y; € R,4 = 1,2, 3, there exist constants L; > 0,7 = 1,2, 3 satisfying
9 (t, 21, 22, 23) — gi(t, Y1, ¥2,y3)| < Li(lzr — ya| + |22 — vl + |23 —ysl), i=1,2,3.
Then the system (1.1) admits the unique solution with the condition that
(Ay + Ay + A3)T(a+ 1) + (3BN; + 1) A+ 3N2)? < T'(a + 1), (3.3)
where
Ay = &Ly + Ly + L3, Ap = Lo + Ly + vL1, Ay = {L3 + nL1 + vLo.

Proof. Fix p > 0 such that

Pla+ 1)(§ +7+1) (wi +ws + ws) -
Ta+1)—3[(N + DA+ N2 —T(at )E+y+n) (L1 + Lo+ Ly) =7

where
= max t,0,0,0), = max t,0,0,0)|, = max t,0,0,0)|.
b te[g,l] |91 ( )| w2 te[(?,l] |92 ( )| ws te[g,l] |gg ( )|

To begin with, consider the set
Qp = {(z1,22,23) € X : [lz]x < p},
and show that TQ, C Q,. In fact, for any « = (z1, 22, x3) € €, from (Hs), it follows

‘gl(t,$1,$2,$3>| < |g1(t7x1,x2,m3) - gl(t?070a0)| + |gl(t7070a0)|

N

Ly (o1l o + llz2lloo + 173l o) + w1

LleHX =+ w1 S Llp —+ wq.
Similarly, by (H3), we can derive

lg2 (t, 21, 22, 23)| < Lallz| x + w2 < Lop + wo,

lgs (t, x1, T2, 23)| < Ls||lz| v + w3 < Lzp + ws.
14



1 Thus, it follows

Lap+w A (M1 ()] + [Mi4(t)| A) (Lap + w2 + Lsp + w3)
MNa+p+1) T(a+1) MNa+p+1)
(M1 ()] + [Mi2(8)] + [Miz(t)]) A+ (|Mia(t)] + [Mis(1)] + [ Mas(t)]) A*] p
P(a+1)
[Mia(t)] + [ Mas(t)[A) (Lsp + ws + Lip + w1)
Ma+p+1)
([Mas(t)] + [Mi6(t)| A) (Lip + w1 + Lap + wo)
Pla+58+1)
|Mi4(t)(t)] (L2p + w2 + Lap + w3)
L(B+1)
+\]\415(75” (L3p + w3 + Lip+wy)
r(B+1)
|Mi6(t)| (L1p + w1 + Lap + w2)
rB+1)
(N1 + 1) A+ NoA?] p
- [(a+1)

(i) ()] <

+

N

+

+

+ & (Lip+wi) +1(Lap +w2) +v (Lsp +ws) .

> Similarly, we also find

[(N1 +1D) A+ Nz)\Q] p
Ia+1)

(N1 + 1) A+ NoA?] p
IMNa+1)

(To) ()] <

+ v (Lip+wi) + & (Lap +wa) +n (Lsp + ws),

[(T5) ()] < +n(Lip +w1) +7 (Lep + wa) + £ (Lsp + ws).

3 Thus, we can get

3[(N1+ 1) A+ NoA?] p
INa+1)

[Tz 5 < +(E+v+n) (Lip+wi + Lap +wa + Lzp + w3) < p.

+ This means TQ), C ),. For convenience, let
¢w(t) = gi(ta ‘Tl(t)a :L‘g(t),l‘:;(t)% ¢zy(t) = gi(tvyl(t)a yZ(t)vyS(t))v te [Oa 1]7 1= 17 27 3.

s Now, we show that T is a contraction mapping on Q,. As a matter of fact, for any x = (1, 22,23) € X

s and y = (y1,y2,y3) € X, we have

[(Thz)(t) — (Thy) (D))

<t [ e ) - 6 0l
7 | (= 90 o () — n ()] ds
e | = I (2 (5) — 9oy (9] + [6se (5) — s (5))ds
el Rl | 0= 9 (50 (5) — y (5)] 4 I () — by (5)) s
Mug(8)] + [ Mas(6)] A

l—saﬂa*lls—ls 2x (8) — Goy (8 s
T (ot B) /0(1 ) (|12 (8) — 1y (8)| + P2z (8) — P2y (5)]) d

M1 (1) & afw)l X =97 (9 = 0 9)1 + s () =3 () s

15



M@ A+ Mis @ [ o
a2 [ =  (5) = v 9) o () = (5] s

|Mi3(t )|)\+ |M16( )[A% !
+ /

(1 =) (Jza(s) = ya(s)| + |w2(s) = y2(s)]) ds

|M14 | ﬁ Y (|p2a(s) — G2y (8)] + [d32(5) — P3y(s)|) ds
|M15 | ,8 1 (|p32(5) — d3y(5)] + |P12(5) — d14(5)]) ds
|M16 )

+ / (1= 8) ([f12(s) = S1y(5)] + D20 (5) — by (s)]) ds
0

(M1 ()| A+ [M1a(8)] A?) (|22 — yalloo + llzs — y3llo0)
INa+1)
N (|Ma2 ()| X + [Mas(6)] A2) ([|lws — ysll o + 21 — 91l)
I'a+1)
N (IMy3()| A+ [Mis(8)] A?) (|21 — y1llo + llz2 — w2llo0)
INa+1)

IN

Ly A
+WH~T -y, + Tla+1D)
L M@ + [Mia(®)] A) (La + Ls) Iz — gl

Fla+p+1) X
+(|M12(t)\ + [Mi5(t)[ A) (Ls + Lq)
Fla+6+1)

(IMy3(t)] + [Mig(t)| A) (L1 + Lo)
Fla+p+1)

[Mua(®)] (L2 + Ls) llz = ylly | [Mis()] (Es + L) |2 — wllx
L(B+1) I'(5+1)

[Mig(1)] (L1 + Lo) [z — yllx
r'g+1)

NiX + No)? A

m”x —yllx + Tat1)

21 =91l

e =yl x

+ =yl x

+

< Ml —yllx + 21 = y1lloo

Similarly, we can show that

N1+ No)? A
T: t) — (T ) <A — — || — - —
(@) = (Ta)(O] < Maller —lx + e = vl + oy e~ el
Nl/\+N2/\2
)||333—y3||oo

A
T: t) — (T ) <A — — ||z — -
(T5)(0) = (D) (0] < Asle =yl + g e —vilx + g
According to the above inequality, we have

(3N7 + 1)\ + 3N A2
Ia+1)

[Tz =Tyl x < [A1+ A2+ Az + =yl x-

(3.4)

By (3.3), it follows that T is a contraction. Then the operator T has the unique fixed point z € Q,,

which is the unique solution of the system (1.1).

4. Ulam-Hyers stability analysis of (1.1)

O

In this part, the Ulam-Hyers stability of the system (1.1) will be shown. For this purpose, we

first present the concept of stability related to our problem. For (i = 1,2,3), assume that ¢; > 0,¢; :

16
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20

21

[0,1] x R — R are continuous functions and ¥; : [0,1] — R* are non-increase continuous functions.

Now, let us show the following two inequalities.

‘CDO/B—F (CD(()XJr + >‘) g (t) — i (t7$1 (t) y L2 (t)am?) (t))‘ < eiat € [07 1] 7i = 1a273' (41)

‘CDg (CDa +)\) x; () — gi (b, 21 (), 22 (¢) , 23 (t))‘ <, (t)e,t€]0,1],i=1,2,3. (4.2)

Definition 4.1 If there is a constant ¢g, g4, 4, > 0 such that for each € = € (€1, €2,€3) > 0 and for each
v = (v1,v2,v3) € X satisfying the inequalities (4.1) and conditions (2.2)-(2.4), there exists a solution

u = (u1,uz,us) € X of (1.1) meeting

|| u—= UHX < Cg1,92,93€-

Then, the system (1.1) is called Ulam-Hyers stable.
Remark 4.2 The fuction v = (vy,v9,v3) € X is called a solution of (4.1), for ¢ = 1,2, 3, if there exist
functions ®; € C'[0, 1] that depend on v; respectively such that the following conditions hold.
()| (5] < er,t € [0,1].
({H)°Dy, (CDgy +A) vi () = gi (£, 01 (£) 02 (t) 03 (£)) + @, (2) ,t € [0,1].
Next, the sufficient conditions of Ulam-Hiers stability for the system (1.1) is provided.
Theorem 4.3 Assume that (Hy), (Hs) and (3.14) are satisfied. If u = (u1,ug,us) € X is the solution of
the system (1.1) and v = (v1,v2,v3) € X is the solution of the inequality problem (4.1) and (2.2)-(2.4).

Then, there exists a constant cg, g, g, > 0 such that for each € = € (€1, €2,€3) > 0,

|| U — UHX < Cg1,92,956
which means that the system (1.1) is Ulam-Hyers stable.

Proof. Based on the fact that v is the solution of (4.1) and (2.2)-(2.4), in view of Remark 4.2, we get v;

is the solution of the following problem.

DY, (D, + N) v () = gi (t,v1 () 02 (t) 03 (£)) + ®; (t), £ € (0,1),i=1,2,3

a(vy (0) +v2(0)) = — (v2 (1) +v3 (1)) CD0+U1 (0) + D0+'U2 (0) = (CD3+U2 (1) +CD8+U3 (1)) (4.3)
a(vz2 (0) +v3(0)) = — (v3 (1) + v1 (1)) ,“Dgv2 (0) +“ D3 (0) = — (“ Dy v (1) +Dgyvr (1))
a(v3(0) +v1(0)) = — (v1 (1) +v2 (1)) CD0+U3 (0) +9Dg v1 (0) = — (D1 (1) +° DG va (1))

From Lemma 3.1, the solution v = (v, v2,v3) € X of system (4.3) is presented as follows.

— ilrgt()a‘:]\gi; (t) A /0 (1- S)a+l3—1 {(52 (s) + (;33 (8) + D2 (s) + D3 (S)} ds
— . . 1 ~ ~
22515()04"‘—"_]\;[1)5 (t)A /0 (1— S)aJrﬁ*l [¢3 (8) + o1 (s) + D3 (s) + D4 (S)} ds
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+- +M16 A/1 SN Gy () + b () + 1 (5) + P2 (5)] ds
0

N ()/\F(af\)éfZG())‘ 0 (1—8)*" vy (s) +va ()] d

M (t) (! 114 5 -
“T0) / (1=5)"7" |92 () + da (s) + @2 (s) + @3 (s) | ds
_]¥5ﬁ(§) / (1= )77 (83 () 61 (5) + @3 (5) + @ (5)] ds

Mg (t) — )13y (8) + o (s s )] ds
r(ﬁ)/o(l V7 [91(9) 402 () + @1(s) + B2 (9) | ds, tE [0,1],

where

b1 (s) = g1 (5,01 (s), 02 (5) 03 (5))
b2 (s) = ga (s,v1 (s) , 02 (s) ,v3 (s))
3 (s) = g3 (5,01 (s), 02 (5) 03 (s))

Under current conditions, review the operator T' that defined in (3.11), it follows that T is a contraction
operator. Thus, the system (1.1) has the unique solution u = (u1, us,u3) € X that is the fixed point of
T. From (3.4), we have

[(BN1 + 1) A + 3N2A?]

| Tu—Tv||x =||u—Tv||x < |A1+As+ A5+

which means

I'(a+1)

Ie=vlx < 5 (a+1)[1— (A1 + A2+ A3)] = [(BN1 + 1) A+ 3N2A?] I 7o =vllx- (4.4)

Moreover, the following estimate can be obtained.

(Thv) () — v (B)] < r(a1+ﬁ) /ot(ts)wwq)l(sws
|M11r(721 i |BJ\)414A| 01 (1= 8)H By () + By (5)| ds
B R 01 (1= )97 10 (5) + @1 ()] ds
|M13(()+|1\)416A| (1—5)2 971Dy (s) + Ba (5)] ds
|M14 )| $)7 71 [@2 (s) + P35 (s)] ds
|M15 / 5)P 7 (@3 (s) + 1 (5)] ds

|M16 / §)P7 @y (s) + By (s)] ds



9

(|Mi5 (8) |+ [Mig () ) 1 + (|Maa () | + [ Mg (B) ) €2 + (M5 (8) | + [Mra (t) ) €3

= TG+
+(1+|]\412 ()] + [My3 ()| + [ Mys ()| X+ [ Me ()| N) €1
I'(a+pB+1)
+(|]\/f11 ()] + [Myz ()| + [ Mg (8)| A+ [ Mg (£)| A) €2
I'(a+B+1)
LMy (O] + [Maz (0] + [Mia (O] A+ [Mis ()] A) 5
I'a+pB+1)

< Cer +mex +yes
Similarly, we have

|[(Ta) () —va (B)] < Ee2 + ez +ver

|(T5v) (t) — s ()] < €€z +ner + ver
Thus, it follows
I To—vlx = ITow—ville + [Tov — vl + | Tsv — sl

3
< (E+n+7) ZEZ
=1

Setting e = max {ey, €2, €3}, by (4.4), we obtain

el < 3 (a+1)(E+n+)e
- F(a+1) [1— (A1 +A2 —|—A3)} — [(3N1 —|—1))\+3N2A2]

Consequently, the system (1.1) is Ulam-Hyers stable. O

5. Example

Example 5.1. Let « = 0.1, 8 = 0.2, A = 0.001 @ = 0.8. The following tripled system has been

considered.

cpl/ (CD1/10+ 1/1000)) J() = gi (b (), 20 (), 203 (1)) i = 1,2, 3,

£ (@0(0) +22(0) = = (@2 (1) + 5 (1)), “D5 1 (0) +° D52 (0) = = (D s (1) +° D55 (1))
4 (2 (0) + 25 (0)) = = (3 (1) + 21 (1)) DG (0) + D55 (0) = = (g s (1) + Dy 1 (1))
£ (s (0) + 1 (0)) = = (w1 (1) + 22 (1)) DG s (0) +° DG 1 (0) = = (DG (1) + DYz (1))
(5.1)
where
g1 (11 (6,2 (1) 2 (1) = £/  Sosiny (1) + o () + o3 (),
g2 (t,x1 (8), 22 (), 23 (1) = /% + %xl (t) + 9i0x2 (t) + %sinxg (t),
g3 (t, 1 (t), 22 (), 23 (1)) = 710+ %xl (t) + %sinxz )+ %l’g (t).
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Choosing

k} (t) = t55/4,, k% (t) = t5/8, k% (t) = t7/10.,
K0 = %ki (t) = %kg (t) = %
kP (t) = %,l@ (t) = %,kg (t) = 7%5
ki(t) = %ké (t) = %ki} (t) = %5

then assumption (H7) and (Hz) hold. Furthermore, we can figure it out as follows.
3
E+nt+y<8l, Ni<2 Ny<15 Y £;=01115.
i=1

Thus, we get

3Ny + 1) A+ 3N, \2

~ 0.9026 < 1.
T (a+1) <

3
(§+77+7)Z€i+(

i=1
So, the condition (2.2) is satisfied. Consequently, it follows that the system (5.1) has at least one
solution.

Example 5.2. Let a = 0.1, = 0.15,A = 0.002,a = 0.8. The following tripled system has been

considered.
¢ 3/ (cDg/;O n (1/500)) 2 (8) = g; (o1 (8) 22 (1), 25 () ,i = 1,2, 3,
£ (@1(0) +22(0)) = = (@2 (1) + 23 (1)), O D51 (0) +° D52 (0) = = (9D w2 (1) +° D5 (1))
£ (@2(0) +23(0)) = = (w5 (1) + 21 (1)) D52 (0) +° D5 (0) = — (D} s (1) +° D1 (1))
£ (@3 (0) + 21 (0)) = = (@1 (1) + 2 (1)) D55 (0) +° D31 (0) = = (“ D} 21 (1) +° D2 (1))
(5.2)
where
_ L @l 2 (1)
itz (8), 2o (1), 23 (1)) = 0|1+ |1:c1 ol + sin |zo ()] + 1+Tx3 1)
= 2 [ine 2 (1) s (1)
Bt (020, (0) = 2 [sinfer )]+ 200 L),
oL e @l @l ]
f3(t7x1 (t)7l’2(t),l‘3(t)) - 20 _1+|$1 (t)| 4+|.’172(t>| + | 3(t)|
Choosing
1 2 1
leﬁa L2:£7 L3:%7

then the assumption (H;) and (Hs) hold. Furthermore, we can figure it out as follows.
£+77+'}/<8, A]\[1<27 N2<1.5, A1 +A2+A3%08845

So, we obtain

[(BN1 4+ 1) A+ 3N2 A%

A+ Mg+ A
1+ A2+ Az + T(at D)

~ 0.8992 < 1.

Thus, the condition (3.3) is also satisfied. Then the system (5.2) has the unique solution.
20
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