
Inverse-free Newton’s Method

Marcin Massalski and Magdalena Nockowska-Rosiak

Institute of Mathematics, Lodz University of Technology,
al. Politechniki 8, 93-590, Lódź, Poland

email: marcin7cd@gmail.com; magdalena.nockowska@p.lodz.pl

Abstract

We present a modification of Newton’s method for finding a zero of a multi-
variable function without an inverse of a matrix in a recurrence. The aim of this
paper is twofold: demonstrating at least quadratic convergence of a Newton-type
method avoiding matrix inversion under standard assumptions, and then com-
paring modified and classical Newton’s methods numerically.

Key words: Newton’s method, At least quadratic convergence, Approximate
inverse

MSC2020: 65H10, 65Q30

1 Introduction

Blanchard and Chamberland in [3] proposed a modification of Newton’s method for
root-finding of a function in the one-dimensional case. Instead of the classical recursion

xn+1 = xn − f(xn)
f ′(xn)

(1)

considering {
yn+1 = yn(2 − f ′(xn)yn)

xn+1 = xn − yn+1f(xn)
(2)

where f : C → C is twice differentiable and a starting point of the given recurrence
is close to the simple root of f - x∗, which means that f(x∗) = 0 and f ′(x∗) ̸= 0.
yn+1 from the first equation in system in Eq. (2) approximates 1/f ′(xn). The authors
proved the quasi-quadratically convergence of modified Newton’s method, and left the
case of Newton’s multivariate modification as an open problem. More precisely, in the
main theorem Blanchard and Chamberland showed that εn+1 ∽ (3n) f ′′(x∗)

2f ′(x∗)
ε2n, where

εn denotes an error in the n-th iteration.
The standard result in the multivariable case guarantees at least quadratic con-

vergence to the simple zero of f of Newton’s method. Let’s us recall the notion of a
sequence convergent with at least quadratic order.

1

Definition 1 ([32]). Let (xn)n∈N ⊂ RN be a sequence convergent to x∗. The sequence
(xn)n∈N is said to be convergent with at least quadratic order (at least quadratically), if
there exists a sequence (an)n∈N of positive numbers convergent to 0 and numbers µ > 0,
n′ ∈ N such that

∥xn − x∗∥∞ ⩽ an for n ⩾ n′, and lim
n→∞

an+1

a2n
= µ.

Newton’s method in multivariable case is given by the following recurrence

xn+1 = xn − (f ′(xn))−1f(xn) (3)

for f : RN → RN , with initial point x1 ∈ RN . Now we present the classical result
about convergence of Newton’s method.

Theorem 1 (thm. 4.4, 119, [32]). Assume that f : RN → RN , f ∈ C2(RN). If
there exists x∗ ∈ RN such that f(x∗) = 0N and det(f ′(x∗)) ̸= 0, then there exists
a neighbourhood S of the point x∗ such that, if x1 ∈ S, then (xn)n∈N the sequence
generated by Eq. (3) is convergent to x∗ at least quadratically.

As in practice the matrix (f ′(xn))−1 is not calculated, here we propose to apply an
approximation of (f ′(xn))−1 in the recurrence. Inverse of a matrix B can by computed
iteratively by

Xn+1 = 2Xn −XnBXn,

where X1 is an initial approximation of B−1. This recursion for matrix inversion was
first proposed by Schulz [30] (see also [3], [20], [34]). Following the open problem from
[3], we consider a recursion below called inverse-free Newton’s method{

Yn+1 = Yn (2I − f ′(xn)Yn)

xn+1 = xn − Yn+1f(xn)
(4)

with an initial state (x1, Y1), where x1 is a point from RN and Y1 is a matrix of
dimension N ×N .

In the main result of this paper, we prove that under standard assumptions the
recurrence for inverse-free Newton’s method given by Eq. (4) is convergent to a zero
of f with at least quadratic order. Modification of Newton’s method without inverse
of matrix, even in Banach space has been studied for example in [1], [2], [14]. In [1],
[2] the authors proposed the Newton-like algorithm which requires no inversion or only
one inversion of linear operator at each step. The inverse of the operator is replaced
by a finite sum of linear operators depending on the Fréchet derivative of the operator.
It was proved that the Newton-like algorithm is comparable to Newton’s in the sense
that the number of iteration steps to reach a given tolerance is essentially the same.
In [14] the authors proved quadratic convergence of the proposed directional Newton
method under typical assumptions for Newton’s method.

The second part of the paper is devoted to comparing both Newton’s methods in
terms of the running time, the number of iterations and basins of attraction. For a
fair comparison, we calculate the step of multivariate classical Newton’s method Eq.

2

(3) more efficiently, instead of determining (f ′(xn))−1 we directly calculate xn+1 as a
solution to the following system of equations

f ′(xn)(xn+1 − xn) = f(xn).

Inverse-free Newton’s method Eq. (4) is usually better than classical Newton’s method
Eq. (3) when multiplication of three matrices is faster than solving a system of linear
equations. We will perform the analysis relying on a standard test function. Numerical
experiments will show that in terms of the number of iterations or the computational
order of convergence, both methods work similarly. Finally, we will compare classical
Newton’s method and inverse-free Newton’s method in terms of basins of attraction.

In this paper we are only interested in simple zeros of f which means that x∗ is
a zero of f with nonsingular Jacobi matrix. In this case Newton’s method is called
nondegenerate. Nondegenerate Newton’s method in the one-dimensional case as in the
multidimensional case has been the subject of much research see for example, [11],
[16], [17], [21], [25], [26], [31], [32]. In [25] the authors proposed algorithms based
on Daftardar-Gejji and Jafari decomposition, proving their convergence and stability.
Improvement of Newton-method with rate of convergence grater than two has been
considered among others in [5], [10], [27]. In [27] the authors proved not only in high
rate of convergence, but also gave dynamical analysis to assess stability. Newton’s
method for degenerate case has been also widely studied in literature for example in
[7], [8], [9], [13], [15], [22], [23], [24], [28], [29], [33].

The paper is structured as follows: In Section 2, we show sufficient conditions
on convergence with at least quadratic order of inverse-free Newton’s method. At
the beginning of the section we collect the required basic results. In Section 3 we
compare numerically modified Newton’s method to classical Newton’s method, using
functions from the literature with different numbers of variables, up to functions with
500 variables. We will focus on the running time, the number of iterations and the
computational order of convergence. Furthermore, we will compare basins of attraction
obtained from both methods.

2 At least quadratic convergence of inverse-free

Newton’s method

Let us start with recalling very known sufficient condition for the existence of an
attractive fixed point of f : RN → RN .

Definition 2 ([19]). Let f : RN ⊃ D → RN be such that f [D] ⊂ D. A point
x∗ ∈ D is said to be an attractive point of a recurrence xn+1 = f(xn), if there exists
a neighbourhood S ⊂ D of the point x∗ such that (xn)n∈N satisfying xn+1 = f(xn) is
convergent to x∗ for any initial point x1 ∈ S.

By MN×N(R) we denote a linear space of real matrices of dimension N ×N . For a
matrix B = [bij] ∈ MN×N(R) we define a spectral radius of the matrix B, denoted by
ρ(B), by formula

ρ(B) := max{|λi| : λi an eigenvalue of B, i = 1, . . . , N},

3

(see [19]).

Theorem 2 ([12], [19]). Let f : RN ⊃ D → RN be such that f [D] ⊂ D. Let x∗ ∈ IntD
be a fixed point of f . If f is differentiable at x∗ and the spectral radius of the Jacobi
matrix f ′(x∗) satisfies ρ(f ′(x∗)) < 1, then x∗ is an attractive point of a recurrence
xn+1 = f(xn).

During this paper we use ∥·∥∞ at RN , which means

∥x∥∞ = max
1≤i≤N

|xi|, x = (x1, . . . , xN) ∈ RN

and the operator norm ∥·∥∞ for a linear operator B : RN → RN or norm of a matrix
B = [bij] ∈ MN×N(R) given by formula

∥B∥∞ = max
1≤i≤N

N∑
j=1

|bij|.

Standard tool for proving the convergence in numerical methods is the Taylor for-
mula. Here we will use the following version of this theorem.

Theorem 3 (thm. A7, 422, [32]). (Taylor) Let M,N ∈ N and k ∈ N ∪ {0}. Let U be
a convex and open subset of RN , a ∈ U , f = (f1, . . . , fM) : U → RM . Assume that
partial derivatives of the order k + 1 of the function f are bounded on U by a number
A, A > 0. Then for any η ∈ RN such that a + η ∈ U we have

f(a + η) = f(a) + f ′(a) · (η) +
1

2!
f (2)(a) · (η)2 + · · · +

1

k!
f (k)(a) · (η)k + Rk(a + η),

where f (r)(a) denotes r-linear operator of the derivative of the function f of the order
r, f (r)(a) · (η)r := f (r)(a) (η, . . . ,η)︸ ︷︷ ︸

r

for r ∈ {1, . . . , k}, and the Taylor remainder

Rk(a + η) satisfies

∥Rk(a + η)∥∞ ⩽
1

(k + 1)!
ANk+1∥η∥k+1

∞ . (5)

Now we prove the main result of this paper.

Theorem 4. Let f : RN → RN be a C2 function and x∗ ∈ RN be such that f(x∗) = 0N

and det(f ′(x∗)) ̸= 0. Assume that (Yn)n∈N ⊂ MN×N(R), (xn)n∈N ⊂ RN satisfy a
recurrence {

Yn+1 = Yn(2I − f ′(xn)Yn)
xn+1 = xn − Yn+1f(xn)

, for n ∈ N, (6)

with an initial state (x1, Y1) ∈ RN × MN×N(R). Then there exist a neighbourhood
of Sx∗ ⊂ RN of the point x∗ and a neighbourhood SY ∗ ⊂ MN×N(R) of the matrix
Y ∗ := (f ′(x∗))−1, such that

i) (xn)n∈N and (Yn)n∈N are convergent to x∗ and (f ′(x∗))−1 respectively,

4

ii) (xn)n∈N is convergent to x∗ at least quadratically,

for any x1 ∈ Sx∗ and Y1 ∈ SY ∗.

Proof. Let us denote f = (f1, . . . , fN) and f ′
ij := (fi)

′
xj

= ∂fi
∂xj

, i, j = 1, . . . , N . We

define g := (g11, . . . , g1N , . . . , gNN , g1, . . . , gN) : RN2+N → RN2+N by formula

gij(y,x) = 2yij −
N∑
k=1

N∑
l=1

yikf
′
kl(x)ylj, gi(y,x) = xi −

N∑
k=1

gik(y,x)fk(x),

where y = (y11, . . . , y1N , . . . , yNN) ∈ RN2
, x = (x1, . . . , xN) ∈ RN .

In order to simplify the notation, a matrix Y = [yij]1≤i,j≤N will be identity with y =
(y11, . . . , y1N , . . . , yNN) ∈ RN2

. The recurrence (6) can be written as (yn+1,xn+1) =
g(yn,xn) for n ∈ N. Additionally, we will define functions Gy : MN×N(R) × RN →
MN×N(R) and Gx = (g1, . . . , gN) : MN×N(R) × RN → RN by formulas

Gy(Y,x) := Y (2I−f ′(x)Y), Gx(Y,x) := x−Gy(Y,x)f(x), Y ∈ MN×N(R), x ∈ Rn.

Note that for y∗ which coordinates are equal to appropriate elements of Y ∗ = (f ′(x∗))−1

we have

Gy(Y ∗,x∗) = Y ∗(2I − f ′(x∗)Y ∗) = Y ∗(2I − I) = Y ∗,

Gx(Y ∗,x∗) = x∗ − Y ∗f(x∗) = x∗ − 0N = x∗,

which means that (y∗,x∗) is a fixed point of g. Moreover,

∂gij
∂ymn

(y,x) = 2δimδjn − δim[f ′(x)Y](n,j) − δjn[Y f ′(x)](i,m)

∂gij
∂ymn

(y∗,x∗) = 2δimδjn − δim[f ′(x∗)Y ∗](n,j) − δjn[Y ∗f ′(x∗)](i,m) = 0,

for 1 ≤ i, j, l,m ≤ N , where δim denotes the Kronecker delta, [B](n,j) denotes nj
element of matrix B. This means that (gy)′y(y∗,x∗) = 0N2×N2 , where 0k×k denotes
null matrix of dimension k × k. Next

(Gx)′x(Y,x) = I − (Gy)′x(Y,x)f(x) −Gy(Y,x)f ′(x),

(Gx)′x(Y ∗,x∗) = I − (Gy)′x(Y ∗,x∗)0N − (f ′(x∗))−1f ′(x∗) = 0N×N ,

(Gy)′x(Y ∗,x∗) can be identified with matrix of dimension N2×N . (Gy)′x(Y ∗,x∗)0N is
a vector from RN2

and it can be identified with null matrix of dimension N ×N . So,
(gx)′x(y∗,x∗) = 0N×N . Moreover,

∂gi
∂ylj

(y,x) = −
N∑
k=1

∂gik
∂ylj

(y,x)fk(x),
∂gi
∂ylj

(y∗,x∗) = −
N∑
k=1

∂gik
∂ylj

(y∗,x∗)0 = 0

for 1 ≤ i, j, l ≤ N . Hence (gx)′y(y∗,x∗) = 0N×N2 and finally,

g′(y∗,x∗) =

[
0N2×N2 (gy)′x(y∗,x∗)
0N×N2 0N×N

]
.

5

Jacobi matrix of g at (y∗,x∗) is an uppertriangular matrix with zeros on the diagonal,
hence all eigenvalues of it are equal to 0 and the spectral radius of g′(y∗,x∗) is equal
to 0. By Theorem 2 (y∗,x∗) is the attractive fixed point of g and there exist Sy∗ ⊂
RN2

a neighbourhood of y∗ and Sx∗ ⊂ RN a neighbourhood of x∗ such that for any
initial point (y1,x1) ∈ Sy∗ × Sx∗ the sequence ((yn,xn))n∈N satisfying (yn+1,xn+1) =
g(yn,xn) converges to (y∗,x∗). Or equivalently, there exist Sx∗ ⊂ RN a neighbourhood
of x∗ and SY ∗ ⊂ MN×N(R) a neighbourhood of Y ∗ such that for any initial state
(x1, Y1) ∈ Sx∗ ×SY ∗ the sequence ((xn, Yn))n∈N satisfying recurrence Eq. (6) converges
to (x∗, Y ∗).

Let x1 ∈ Sx∗ , Y1 ∈ SY ∗ . Now we show that (xn)n∈N converges to x∗ at least
quadratically. Define

εn := ∥x∗ − xn∥∞, ξn := ∥Yn+1 − (f ′(xn))−1∥∞, an := max{εn, ξn}, n ∈ N. (7)

From previous part and continuity of f ′ we get that an → 0. By continuity of f ′ and
det(f ′(x∗)) ̸= 0, there exists r ∈ (0, 1) such that det(f ′(x)) ̸= 0 for all x ∈ B(x∗, r).
By xn → x∗ there exists n0 ∈ N such that xn ∈ B(x∗, r) for any n ≥ n0. Define

Af := max
1≤k,i,j≤N

max
x∈B(x∗,r)

∣∣∣∣ ∂2fk
∂xi∂xj

(x)

∣∣∣∣ , Cf := max
x∈B(x∗,r)

∥(f ′(x))−1∥∞, Df := max
x∈B(x∗,r)

∥f ′(x)∥∞.

(8)
Let n ≥ n0. By the Taylor formula (Theorem 3) we get

f(xn) = f(x∗) + f ′(x∗)(xn − x∗) + R1(xn) = f ′(x∗)(xn − x∗) + R1(xn)

with
R1(xn) ≤ 1

2
N2Af∥x∗ − xn∥2∞. (9)

Moreover, we have

∥f(xn)∥∞ ≤ ∥f ′(x∗)∥∞∥xn − x∗∥∞ + 1
2
N2Af∥x∗ − xn∥2∞ ≤ ∥f ′(x∗)∥∞an+

1
2
N2Af∥x∗ − xn∥∞r ≤

(
∥f ′(x∗)∥∞ + 1

2
N2Af

)
an = Dan, (10)

where D := ∥f ′(x∗)∥∞ + 1
2
N2Af . Next from the second equation of system Eq. (6)

x∗−xn+1 = x∗−xn+Yn+1f(xn) = (x∗−xn+(f ′(xn))−1f(xn))+(Yn+1−(f ′(xn))−1)f(xn).
(11)

By Taylor’s formula (Theorem 3) we get

0N = f(x∗) = f(xn) + f ′(xn)(x∗ − xn) + R1(x
∗)

hence
x∗ − xn + (f ′(xn))−1f(xn) = −(f ′(xn))−1R1(x

∗)

and from Eq. (5)

∥x∗ − xn + (f ′(xn))−1f(xn)∥∞ ≤ 1
2
CfN

2Af∥x∗ − xn∥2∞.

6

Putting the above to Eq. (11) and from Eq. (10) we get

∥x∗ − xn+1∥∞ ≤ 1
2
CfN

2Af∥x∗ − xn∥2∞ + an∥f(xn)∥∞ ≤ (1
2
CfN

2Af + D)a2n =: Ea2n,
(12)

where E := 1
2
CfN

2Af + D. Note that by the first equation in system Eq. (6)

(I−f ′(xn+1)Yn+1)
2 = I−f ′(xn+1)2Yn+1+f ′(xn+1)Yn+1f

′(xn+1)Yn+1 = I−f ′(xn+1)Yn+2.

Multiplying by (f ′(xn+1))
−1 we have

(f ′(xn+1))
−1 − Yn+2 = (f ′(xn+1))

−1(I − f ′(xn+1)Yn+1)
2 =(

(f ′(xn+1))
−1 − Yn+1

)
f ′(xn+1)

(
(f ′(xn+1))

−1 − Yn+1

)
.

This implies that

∥(f ′(xn+1))
−1 − Yn+2∥∞ ≤ Df∥(f ′(xn+1))

−1 − Yn+1∥2∞. (13)

Because f is a C2 class, then f ′ is locally Lipschitz and there exist n1 ∈ N, n1 ≥ n0

and F > 0 such
∥f ′(xn) − f ′(x∗)∥∞ ≤ F∥x∗ − xn∥∞

for n ≥ n1. From the above and Eq. (12) we get

∥(f ′(xn+1))
−1 − Yn+1∥∞ ≤ ∥(f ′(xn))−1 − Yn+1∥∞ + ∥(f ′(xn+1))

−1 − (f ′(xn))−1∥∞ ≤
an + ∥(f ′(xn+1))

−1 (f ′(xn) − f ′(xn+1)) (f ′(xn))−1∥∞ ≤ an + C2
f∥f ′(xn) − f ′(xn+1)∥∞

≤ an + C2
f∥f ′(x∗) − f ′(xn+1)∥∞ + C2

f∥f ′(xn) − f ′(x∗)∥∞ ≤ an + C2
fF (Ea2n + an) =

(1 + C2
fF (Ean + 1))an,

for n ≥ n1. an → 0 hence there exists n2 ≥ n1 such that 0 < an < 1 for n ≥ n2. From
the above and Eq. (13) we get

∥(f ′(xn+1))
−1 − Yn+2∥∞ ≤ Df (1 + C2

fF (E + 1))2a2n

for n ≥ n2. From this and Eq. (12) we get

an+1 = max{∥x∗−xn+1∥∞, ∥(f ′(xn+1))
−1−Yn+2∥∞} ≤ max{E,Df (1+C2

fF (E+1))2}a2n
(14)

for n ≥ n2. We define C := max{E,Df (1 + C2
fF (E + 1))2}. From the fact that an is

convergent to 0 we get the existence of numbers n3 ∈ N, n3 ≥ n2 and a > 0 such that
0 ≤ an < a < 1

C
for n ≥ n3. By Eq. (14) and the induction we have that

an ≤ 1
C

(aC)2
(n−n3)

for n ≥ n3. Put bn := 1
C

(aC)2
(n−n3)

for n ≥ n3. Then an ≤ bn, bn > 0 for n ≥ n3,

lim
n→∞

bn = 0 as Ca < 1 and lim
n→∞

bn+1

b2n
= C > 0 which implies that (xn)n∈N is convergent

to x∗ with at least quadratic order.

7

Remark 1. The proof of the above theorem shows that inverse-free Newton’s method
as Newton’s method is sensitive to the starting point. Moreover, we can see the strong
dependence of the modified method on ∥f(x∗)∥∞ and ∥Hf(x∗)∥∞ (where Hf(x∗)
denotes Hessian matrix of f at x∗), in this sense that ∥f(x∗)∥∞ can not be ”too
small” and Hf(x∗) can’t be ”too large”.

3 Comparison of classical and inverse-free Newton’s

methods

Implementations of both algorithms were written in the Python programming language
using numpy library. All calculations were done on an Intel(R) Core(TM) i7-7700HQ
processor @ 2.80GHz.

In numerical experiments of inverse-free Newton’s method we considered initial
states of the form (x1, (f

′(x1))
−1), where x1 ∈ RN . In this case, we will only give

the point x1 and refer to it as the initial point of the method. In the implementation
of classical Newton’s method, we solve a system of linear equations instead of using
inversion of a matrix. Those operations are calculated using numpy methods linalg.inv
and linalg.solve, which perform them by calling LPACK software library. The LPACK
uses the LU decomposition with partial pivoting and row interchanges.

3.1 Comparison in terms of the running time, the number of
iterations and the computational order of convergence

To test the time of the modified method against classical Newton’s method, we will
use a Broyden tridiagonal function taken as problem number 30 from [18], and originally
appearing in [4], (see also [23]). Namely, the function f = (f1, . . . , fN) : RN → RN

defined by

fi(x) = (3 − 2xi)xi − xi−1 − 2xi+1 + 1, with x0 = xN+1 = 0 (15)

for i ∈ {1, . . . , N},x = (x1, . . . , xN) ∈ RN . The initial point for both methods is
x1 = (−1, . . . ,−1) ∈ RN .

The function f is C2 class function as its coordinates are polynomials. Note that

∂fi
∂xj

(x) = δij(3 − 4xi) − δ(i−1)j − 2δ(i+1)j,

for i, j ∈ {1, . . . , N} and x ∈ RN , where δij denotes the Kronecker delta. For com-
plicated functions, the assumption of non-zeroing of the Jacobian at the point x∗, is
difficult to check when we do not know x∗, so in practice this issue is ignored. Here,
we will check this assumption numerically, more precisely after obtaining the approx-
imation of x∗ we check that det(f ′(x∗)) ̸= 0. If this condition holds together with

8

f ∈ C2, then for a sufficiently small distance of the initial point x1 from x∗ we will
have at least quadratic convergence of both methods.

We test both methods on the function f for N = 3, 10, 20, 30, 100, 200, 300,
500. For each value of N we run both methods using the same starting point x1 =
(−1, . . . ,−1) ∈ RN and as stopping condition we use the distance between the value
of the function and zero which is at most γ = 10−8 and we call it accuracy level. In
addition, in order to evaluate the modified method, we calculate the zero from classical
Newton’s method with the greater level of accuracy and we call such a point the exact
zero.

In Table 1 we provide the obtained results, which include: the number of iterations,
the final distance from the exact zero, the final distance of the function value from
zero, the time (average) and how many times modified Newton’s method is faster
than classical one, i.e. the ratio of the running time of classical Newton’s method to
that of inverse-free Newton’s method. In addition, we provide the rank of the Jacobi
matrix at the exact zero. Each problem was run 50 times and results were averaged to
produce times shown in Table 1. To measure the execution time we use the function
perf counter ns() from the Python’s built-in time library.

Table 1: The results of the execution time with the accuracy level γ = 10−8 of both
methods for the function f given by Eq. (15) for different N . The columns use the
labels: k- number of iterations to achieve accuracy, x∗ - zero of the function f , xk -
k-th approximation of the given method, rN - the rank of the Jacobi matrix f ′(x∗).
Moreover, N. denotes the classical Newton’s method, N. mod. denotes the modified
Newton’s method.

N rN method iterations(k) ∥f(xk)∥∞ ∥xk − x∗∥∞ time[sec] improvement

3 3
N. 4 1.85e-09 5.77e-10 0.00038

0.6
N. mod. 5 1.90e-10 6.58e-11 0.00064

10 10
N. 4 7.55e-10 2.41e-10 0.00040

0.6
N. mod. 5 6.46e-11 1.91e-11 0.00073

20 20
N. 4 7.55e-10 2.41e-10 0.00155

1.6
N. mod. 5 6.46e-11 1.91e-11 0.00096

30 30
N. 4 7.55e-10 2.41e-10 0.00173

2.0
N. mod. 5 6.46e-11 1.91e-11 0.00087

100 100
N. 4 7.55e-10 2.41e-10 0.01427

2.7
N. mod. 5 6.46e-11 1.91e-11 0.00538

200 200
N. 4 7.55e-10 2.41e-10 0.02084

2.3
N. mod. 5 6.46e-11 1.91e-11 0.00906

300 300
N. 4 7.55e-10 2.41e-10 0.03741

1.0
N. mod. 5 6.46e-11 1.91e-11 0.03862

500 500
N. 4 7.55e-10 2.41e-10 0.07029

0.3
N. mod. 5 6.46e-11 1.91e-11 0.21799

In terms of real time performance the modified method is faster for N = 20, 30,
100, 200, and slower for N = 3, 10, 300, 500. In the best case of N = 100 inverse-free

9

Newton’s method works 2.7 times faster, while in the others, i.e. for N = 20, 30, 200,
it is at least 1.5 times faster. This means that the method is not optimal when the
number of variables N is small (N < 20), or large (N > 200). This is due to the fact
that we need to inverse a matrix once at the beginning and multiply matrices twice at
each iteration for the modified method. When these times are large compared to the
time of solving systems of linear equations, which classical Newton’s method performs
once at each iteration, the modified method is unprofitable. Figure 1 shows times of
these operations and it can be deduced that for small N ≤ 10 the large cost of inversion
of a matrix for a small number of iterations makes the modified method worthless. In
contrast, for large N the unprofitability of Newton’s method results from the large
computational cost of multiplication of matrices.

Figure 1: Comparison of the time of inversion and multiplication of matrices N ×N to
the time of solving systems of N linear equations with N variables for different values
of N .

In terms of the number of iterations, the modified method is, according to Table 1
only slightly worse to classical Newton’s method, taking one iteration longer. Further-
more, the calculated rank of the matrix Jacobi at the zero is equal to the dimension
of the matrix, so it is nonsingular. This means that assumptions of both methods are
satisfied.

Now we calculate the approximate computational order of convergence (ACOC) and
the computational order of convergence (COC) for both methods. The approximate
computational order of convergence (ACOC) is defined by formula

p̂n =
ln(∥xn+1 − xn∥/∥xn − xn−1∥)

ln(∥xn − xn−1∥/∥xn−1 − xn−2∥
.

ACOC was introduced in [6]. The computational order of convergence (COC) is given

10

by formula

pn =
ln(∥xn+1 − x∗∥/∥xn − x∗∥)

ln(∥xn − x∗∥/∥xn−1 − x∗∥)
,

see [35].
Both metrics where computed for the last available n and for x∗ we use the zero

calculated to much greater precision using the Netwon’s method. We calculate ACOC
and COC for three test functions f , fT , fB (given below), for N =3, 10, 20 30, 100,
200, 300, 500 and given initial point.

Firstly, we test f Broyden tridiagonal function given by Eq. (15). In Table 2
we provide the obtained results, which include: the number of variables N , method,
ACOC, COC.

Table 2: The results of ACOC, COC of both methods for the function f given by Eq.
(15) for different N . N. denotes the classical Newton’s method, N. mod. denotes the
modified Newton’s method.

N method ACOC COC

3
N. 1.999 1.511

N. mod. 1.869 1.940

10
N. 1.929 1.973

N. mod. 1.829 1.935

20
N. 1.878 1.951

N. mod. 1.789 1.930

30
N. 1.853 1.933

N. mod. 1.758 1.926

100
N. 1.827 1.857

N. mod. 1.657 1.897

200
N. 1.848 1.807

N. mod. 1.614 1.864

300
N. 1.868 1.780

N. mod. 1.601 1.838

500
N. 1.896 1.754

N. mod. 1.599 1.800

Now, we test fT trigonometric function from [18]. fT = (f1, . . . , fN) given by

fi(x) = N −
N∑
k=1

cos(xk) + i(1 − cos(xi)) − sin(xi), for i = 1, . . . , N,x ∈ RN (16)

with x0 =
(

1
5N

, . . . , 1
5N

)
. In Table 3 we provide the obtained results for fT , which

include: the number of variables N , method, the number of iterations, the final distance
from the exact zero, the final distance of the function value from zero, ACOC, COC
and the time (average).

11

Table 3: The results of ACOC, COC and the execution time of both methods for
the function fT given by Eq. (16) for different N . N. denotes the classical Newton’s
method, N. mod. denotes the modified Newton’s method.

N method iterations(k) ∥fT (xk)∥∞ ∥xk − x∗∥∞ ACOC COC time[s]

3
N. 5 1.29e-11 1.29e-11 1.979 1.992 0.00042

N. mod. 7 1.43e-10 1.43e-10 1.980 1.961 0.00074

10
N. 5 1.81e-12 1.81e-12 1.977 1.987 0.00045

N. mod. 7 1.00e-13 1.00e-13 1.956 1.970 0.00096

20
N. 5 7.70e-13 7.70e-13 1.977 1.989 0.00111

N. mod. 7 1.39e-14 1.39e-14 1.954 1.964 0.00098

30
N. 5 4.85e-13 4.85e-13 1.977 1.992 0.00175

N. mod. 7 5.92e-15 5.92e-15 1.954 1.965 0.00118

100
N. 5 1.35e-13 1.35e-13 1.977 1.992 0.12347

N. mod. 6 9.78e-10 9.78e-10 2.021 1.940 0.02598

200
N. 5 9.08e-14 9.08e-14 1.978 1.925 0.02471

N. mod. 6 4.58e-10 4.58e-10 2.019 1.940 0.01998

300
N. 5 5.64e-14 5.64e-14 1.978 1.920 0.02695

N. mod. 6 2.99e-10 2.99e-10 2.019 1.941 0.03838

500
N. 5 5.36e-14 5.36e-14 1.978 1.881 0.05188

N. mod. 6 1.76e-10 1.76e-10 2.018 1.941 0.09280

As the last, we test function, we test fB = (f1, . . . , fN) Brown almost linear function
from [18] given by

fi(x) = xi +
N∑
j=1

xj −N − 1, fori = 1, . . . , N − 1

fN(x) = x1 · . . . · xN − 1 (17)

for x = (x1, . . . , xN) ∈ RN with x0 =
(
1 − 1

N2 , . . . , 1 − 1
N2

)
.

In Table 4 we provide the obtained results for fB, which include: the number of
variables N , method, the number of iterations, the final distance of the function value
from zero, the final distance from the exact zero, ACOC, COC and the time (average).

In terms of ACOC and COC both methods work similarly. For fB and fT inverse-
free Newton’s method is slightly better than classical one.

3.2 Comparison in terms of basins of attraction

We investigate basins of attraction using the test function, which was used in the
[8] or [23] to test the case when the function has a zero at which Jacobian is close to
zero. The test function f ε = (fε,1, fε,2) : R2 → R2 is parametrized by ε ⩾ 0 and is

12

Table 4: The results of ACOC, COC and the execution time of both methods for
the function fB given by Eq. (17) for different N . N. denotes the classical Newton’s
method, N. mod. denotes the modified Newton’s method.

N method iterations(k) ∥fB(xk)∥∞ ∥xk − x∗∥∞ ACOC COC time[s]

3
N. 6 1.40e-10 4.21e-10 2.003 1.998 0.00100

N. mod. 9 1.24e-13 3.71e-13 1.968 1.975 0.00171

10
N. 6 3.10e-10 3.10e-09 1.999 1.995 0.00108

N. mod. 8 4.84e-11 4.84e-10 2.011 1.960 0.00172

20
N. 6 1.02e-10 2.04e-09 1.995 1.995 0.00165

N. mod. 8 1.11e-13 2.12e-12 1.977 1.982 0.00151

30
N. 6 4.82e-11 1.45e-09 1.993 1.995 0.00300

N. mod. 7 8.74e-10 2.62e-08 2.119 1.943 0.00189

100
N. 6 4.59e-12 4.56e-10 1.990 1.996 0.01098

N. mod. 7 1.68e-11 1.68e-09 2.071 1.949 0.00835

200
N. 6 1.17e-12 2.24e-10 1.990 2.002 0.02194

N. mod. 7 2.92e-12 5.72e-10 2.062 1.956 0.03105

300
N. 6 5.07e-13 1.50e-10 1.989 2.000 0.03254

N. mod. 7 1.11e-12 3.67e-10 2.059 1.932 0.04796

500
N. 6 2.84e-13 1.28e-11 1.989 2.444 0.44561

N. mod. 6 4.06e-10 2.03e-07 2.553 1.918 0.16561

defined as follows:

fε,1(x1, x2) = (x1 − 1) + (x2 − 3)2

fε,2(x1, x2) = ε(x2 − 3) + 3
2
(x1 − 1)(x2 − 3) + (x2 − 3)2 + (x2 − 3)3

(18)

for x = (x1, x2) ∈ R2. Zeros of the function f ε are:

x∗
0 = (1, 3), x∗

− = (1 − η2−, 3 + η−), x∗
+ = (1 − η2+, 3 + η+), (19)

where η+ = 1 +
√

1 + 2ε, η− = 1−
√

1 + 2ε. Indeed, to solve f ε(x1, x2) = (0, 0) we use
substitution η = x2 − 3, hence fε,1(x1, x2) = 0, which implies that x1 − 1 = −η2. Next
from f ε,2(x1, x2) = 0 we get 0 = εη − 3

2
η3 + η2 + η3, and hence

η = 0 ∨ η = 1 +
√

1 + 2ε ∨ η = 1 −
√

1 + 2ε.

f ε is C2 class as its coordinates are polynomials for ε ≥ 0. The Jacobi matrix of the
function f ε at x = (x1, x2) ∈ R2 is equal to

f ′
ε(x1, x2) =

[
1 2(x2 − 3)
3
2
(x2 − 3) ε + 3

2
(x1 − 1) + 2(x2 − 3) + 3(x2 − 3)2

]
.

Then

|η−| = 2ε
1+

√
1+2ε

≤ 2ε
2

= ε, |η+| =
√

1 + 2ε + 1 ≥ 2, det(f ′
ε(1, 3)) = ε > 0.

13

For ε ∈ (0, 1] we have ∥x∗
0 − x∗

−∥∞ = max{η2−, |η−|} ⩽ max{ε2, ε} ⩽ ε, and ∥x∗
0 −

x∗
+∥∞ = max{η2+, |η+|} ⩾ max{4, 2} = 4. It means that zeros x∗

0 and x∗
− are closer to

each other as ε → 0+, and are equal when ε = 0. On the other hand distance between
x∗
0, x

∗
+ is at least 4.

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
classical Newton's method

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
inverse-free Newton's method

Figure 2: Basins of attraction for the function f ε from Eq. (18) with ε = 1
2
. In grey,

red, blue and green we mark respectively: divergence, convergence to x∗
0, convergence

to x∗
− and convergence to x∗

+. x∗
0, x

∗
− are marked by white circle.

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
classical Newton's method

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
inverse-free Newton's method

5

10

15

20

25

30

35

40

Figure 3: Basins of attraction for the function f ε from blue Eq. (18) with ε = 1
2
.

In grey we mark divergence, colours from strong dark blue to dark blue indicate the
number of iterations needed to reach the accuracy level γ = 10−10 to x∗

0 or x∗
− or x∗

+.
x∗
0, x

∗
− are marked by white circle.

Let us draw graphs of basins of attraction of both methods for ε = 2−1, 10−1, 10−3

on the set [−1, 3] × [1, 5]. To produce graphs, we choose 1000 · 1000 equally spaced
starting points over the square [−1, 3] × [1, 5] and run both methods for each with
accuracy level of γ = 10−20, see [23]. In grey, we mark initial points for which the
method diverges, i.e. the case when the method needs more than 100 iterations or the

14

condition ∥xn∥∞ > 1010 occurs. We detect a convergence to a point x∗
0, x

∗
− and x∗

+

when the method returns a point at most 10−9 away from it with respect to the norm
∥ · ∥∞. In addition, we use white circles to mark zeros x∗

0 and x∗
− (the point x∗

+ was
not marked because x∗

+ ̸∈ [−1, 3]× [1, 5]). Graphs created in this way are presented in
Figures 2, 4 and 6.

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
classical Newton's method

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
inverse-free Newton's method

Figure 4: Basins of attraction for the function f ε from Eq. (18) with ε = 10−1. In grey,
red, blue and green we mark respectively: divergence, convergence to x∗

0, convergence
to x∗

− and convergence to x∗
+. x∗

0, x
∗
− are marked by white circle.

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
classical Newton's method

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
inverse-free Newton's method

5

10

15

20

25

30

35

40

Figure 5: Basins of attraction for the function f ε from blue Eq. (18) with ε = 0, 1.
In grey we mark divergence, colours from strong dark blue to dark blue indicate the
number of iterations needed to reach the accuracy level γ = 10−10 to x∗

0 or x∗
− or

convergence to x∗
+. x∗

0, x
∗
− are marked by white circle.

Moreover, we draw graphs of the speed of convergence of both methods for ε =
2−1, 10−1, 10−3 on the set [−1, 3] × [1, 5]. To produce graphs, we choose 1000 · 1000
equally spaced starting points over the square [−1, 3]× [1, 5] run both methods for each
with accuracy level of γ = 10−10. In grey, we mark initial points for which the method

15

diverges. Colours form strong dark blue to yellow indicate the number of iterations
needed to reach the accuracy level γ to x∗

0, x
∗
+, x∗

−, where x∗
0,x

∗
−,x

∗
+ are zeros of the

function f ε defined in Eq. (19). Graphs created in this way are presented in Figures
3, 5 and 7.

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
classical Newton's method

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
inverse-free Newton's method

Figure 6: Basins of attraction for the function f ε from Eq. (18) with ε = 10−3. In grey,
red, blue and green we mark respectively: divergence, convergence to x∗

0, convergence
to x∗

− and convergence to x∗
+. x∗

0, x
∗
− are marked by white circle.

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
classical Newton's method

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
inverse-free Newton's method

5

10

15

20

25

30

35

40

Figure 7: Basins of attraction for the function f ε from blue Eq. (18) with ε = 10−3. In
grey we mark divergence, colours from blue to green indicate the number of iterations
needed to reach the accuracy level γ = 10−10 to x∗

0 or x∗
− or x∗

+. x∗
0, x

∗
− are marked

by white circle.

It can be seen from figures that basins of attraction of methods differ significantly.
At most of starting points where classical Newton’s method is convergent, modified
Newton’s method did not converge. Furthermore, even when the initial point is close
to the zero, inverse-free Newton’s method may still not converge to any of them and
this effect is more pronounced, when ε is smaller. Furthermore, it can be seen that
if inverse-free Newton’s method is convergent to some point, then usually classical

16

Newton’s method converges to this point. In terms of speed of convergence if ε = 2−1

both methods need almost the same number of iterations to reach give accuracy. For
ε = 10−3 inverse-free Newton’s method need about 10 iterations more then classical
method. Inverse-free Newton’s method need 35 iterations in the worst case for ε = 10−3.

4 Potential improvements

In order to improve on inverse-free Newton’s method, we propose two possible
modifications. The first one consists of a different choice of the initial matrix Y1, and
the second one of a more efficient computation of the last iterations.

In the first modification instead of (f ′(x1))
−1 as the initial matrix we will choose

Y1 =
f ′(x1)

T

∥f ′(x1)∥1∥f ′(x(1))∥∞
, (20)

where ∥ · ∥1 is defined as ∥B∥1 := max1⩽j⩽n

∑n
i=1 |bij| for B = [bij] ∈ MN×N(R),

f ′(x1)
T denotes transposition of f ′(x1). This is motivated by paper [21], in which the

recurrence below on the sequence of matrices (Zn)n∈N ⊂ MN×N(R) was considered{
Zn+1 = 2Zn − ZnBZn, for n ∈ N
Z1 = αBT ,

where α > 0 and B ∈ MN×N(R) is a nonsingular matrix. Note, the above recurrence
equation agrees with the first equation in system Eq. (6) in the case when the function
f : RN → RN is given by f(x) := Bx for x ∈ RN . From [21] it is known that for
sufficient small α > 0 the sequence (Zn)n∈N is convergent to B−1 and the sufficient
constant α is

α0 =
1

∥B∥1∥B∥∞
.

This suggests a choice of the matrix Y1 according to Eq. (20). Then the number
of operations needed to compute Y1 would be of order O(N2), which is better than
calculating the inverse of the matrix f ′(x1). Numerical experiments show, that this
choice of matrix Y1 is also good, in terms of basins of attraction. For example, for the
problem in section 3.2 with this modification we obtain basins of attraction shown in
Figure 8.

In terms of the number of iterations needed, experiments suggest they may increase.
See on Figure 9 which presents basins of attraction inverse-free Newton’s method for
f ε for ε = 1

2
and ε = 10−3 with a choice of the matrix Y1 according to Eq. (20) with

accuracy level γ = 10−10 coloured according to numbers of performed iterations. For
not too small ε = 1

2
(which means that f 1

2
doesn’t have singular zero at (1, 3), because

det(f ′
1
2

(1, 3)) = 1
2
) to reach given accuracy we need not many iterations. Choosing

starting point for B((1, 3), 1
10

) we need only 5-10 iterations to achieve 10−10. Otherwise
when, ε = 10−3 which means that (1, 3) is almost singular point to f 10−3 , basin of
attraction of (1,3) is not only smaller, but numbers of iterations to reach γ is at least
25.

17

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
= 1

2

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
= 10 3

Figure 8: Basins of attraction inverse-free Newton’s method with the first modification
for the function f ε from Eq. (18) with ε = 1

2
and ε = 10−3. In grey, red, blue and

green we mark respectively: divergence, convergence to x∗
0, convergence to x∗

− and
convergence to x∗

+. x∗
0, x

∗
− are marked by white circle.

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
= 1

2

1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
= 10 3

5

10

15

20

25

30

35

40

Figure 9: Basins of attraction inverse-free Newton’s method with the first modification
for the function f ε from Eq. (18) with ε = 1

2
and ε = 10−3. In grey we mark divergence,

colours from dark blue to yellow indicate the number of iterations needed to reach the
accuracy level γ = 10−10 to x∗

0 or x∗
− or x∗

+. x∗
0, x

∗
− are marked by white circle.

The second modification is to calculate the last iterations in a different way, to
change multiplication of matrices into multiplication of a matrix by a vector. For the
sake of clarity, we will explain this procedure when all iterations are computed this
way. Let us assume that we have already computed x1,x2, . . . ,xk, where k ∈ N and
we want to calculate xk+1. In order to calculate xk+1 we need to know only the vector
Yk+1f(xk) and the vector xk. The matrix Yk+1, due to its recursive definition, can be
represented as an expression consisting of matrices f ′(xk), . . . ,f ′(x1), Y1. Each of these
matrices has been calculated in previous iterations. Then we multiply this expression
by vector f(xk) and we perform multiplications always starting from the vector and,

18

if necessary, using distributivity of multiplication over addition. We will thus calculate
the vector Yk+1f(xk) by performing 2k+1 − 1 multiplications of a matrix by a vector
and 2k − 1 differences of vectors. Finally, by calculating the difference xk − Yk+1f(xk)
we obtain xk+1.

Taking into account that multiplication of a matrix by a vector needs about N times
less operations than multiplication of matrices, then for small k the improvement can
be obtained. However, as k increases, the computational cost increases very quickly, so
it is important to use this method only for small k. In practice, it would be possible to
apply it only for the last few iterations, while all the previous iterations are calculated
in the standard way. This can be done, because in the presented method it is sufficient
to set Y1 and x1 to the result of the n-th iteration of inverse-free Newton’s method.

5 Conclusions

Firstly, we proved that inverse-free Newton’s method has the same order of con-
vergence as the classical method under the same assumptions. Moreover, numerical
experiments showed that the modified Newton method in comparison to classical New-
ton’s method, is faster if the number of variables in the problem is between 20 and
200, and for a 100 can be even 2.5 times faster. It is worth noting that the running
time of methods on the considered problems will depend on the processor used, what
algorithms for multiplication of matrices or solving systems of equations were used.
In terms of basins of attraction, the modified method performs worse, because it con-
verges less frequently than Newton’s method and, in order to guarantee convergence,
the starting point must lie closer to the zero than in the classical method.

Acknowledgements

The authors are grateful to the referees for constructive remarks improving the acces-
sibility and potential impact of the paper.

References

[1] I. K. Argyros, S. George, S. Regmi, C. I. Argyros (2024), Hybrid Newton-like
inverse free algorithms for solving nonlinear equations , Algorithms 17(4), 154.

[2] I. K. Argyros, S. George, S. Shakhno, S. Regmi, M. Havdiak, M. I. Argyros (2024),
Asymptotically Newton-type methods without inverses for solving equations , Math-
ematics 12(7), 1069.

[3] J. D. Blanchard, M. Chamberland (2023), Newton’s Method Without Division,
Amer. Math. Monthly, 130(7), 606–617.

[4] C. G. Broyden (1965), A class of methods for solving nonlinear simultaneous equa-
tions , Math. Comput., 19(92), 577–593.

19

[5] C. Chun (2005), Iterative methods ,improving Newton’s method by the decomposi-
tion method , Comput. Math. Appl. 50(10-12), 1559–1568.

[6] A. Cordero, J. R. Torregrosa (2007), Variants of Newton’s method using fifth-order
quadrature formulas , Appl. Math. Comput. 190, 686–698.

[7] M. Dallas, S. Pollock (2023), Newton-Anderson at singular points , Int. J. Numer.
Anal. Model. 20(5), 667–692.

[8] D. W. Decker, C. T. Kelley (1985), Expanded convergence domains for Newton’s
method at nearly singular roots , SIAM J. Sci. Stat. Comp., 6(4), 951–966.

[9] A. Griewank (1985), On solving nonlinear equations with simple singularities or
nearly singular solutions , SIAM Rev., 27(4), 537–63.

[10] H. H. H. Homeier (2005), On Newton-type methods with cubic convergence, J.
Comput. Appl. Math. 176(2), 425–432.

[11] K. Jisheng, L. Yitian, W. Xiuhua (2007), Third-order modification of Newton’s
method , J. Comput. Appl. Math. 205(1), 1–5.

[12] W. Kelley, A. Peterson (2001), Difference Equations. An Introduction with Appli-
cations , 2nd ed. San Diego: Harcourt/Academic Press.

[13] C.T. Kelley, R. Suresh (1983), A new acceleration method for Newton’s method at
singular points , SIAM J. Numer. Anal., 20(5), 1001–1009.

[14] Y. Levin, A. Ben-Israel (2003), An inverse-free directional Newton method for
solving systems of nonlinear equations , Progress in Analysis, 1447–1457.

[15] R. Lin, H. Ren, Q. Wu, Y. Khan, J. Hu (2022), Convergence analysis of the
modified Chebyshev’s method for finding multiple roots . Vietnam J. Math. 50(1),
59–68.

[16] C. Ma, Y. Wu, Y. Xie (2024), The Newton-type splitting iterative method for a
class of coupled Sylvester-like absolute value equation, J. Appl. Anal. Comp. 14(6),
3306–3331.

[17] K. Madhu, D. K. R. Babajee, J. Jayaraman (2017), An improvement to double-
step Newton method and its multi-step version for solving system of nonlinear
equations and its applications , Numer. Algorithms 74(2), 593–607.

[18] J. J. Moré, B. S. Garbow, K. E. Hillstrom (1981), Testing unconstrained optimiza-
tion software, ACM Trans. Math. Software, 7(1), 17–41.

[19] J. M. Ortega, W. C. Rheinboldt (1970), Iterative Solution of Nonlinear Equations
in Several Variables , New York, Academic Press.

[20] V. Pan, J. Reif (1985), Efficient parallel solution of linear systems , In: Proceed-
ings of the 17th ACM Symposium on Theory of Computing, December 1985,
https://dl.acm.org/doi/10.1145/22145.22161.

20

[21] V. Pan, R. Schreiber (1991), An improved Newton iteration for the generalized
inverse of a matrix, with applications , SSIAM J. Sci. Statist. Comput., 12(5),
1109–1130.

[22] S. Pollock (2019), Fast convergence to higher-multiplicity zeros , available as:
arXiv:1911.10647.

[23] S. Pollock, H. Schwartz (2020), Benchmarking results for the Newton-Anderson
method , Results Appl. Math. 8, Paper No. 100095.

[24] A. Quarteroni, R. Sacco, F. Saleri (2006), Numerical Mathematics. Texts in Ap-
plied Mathematics , Berlin, Heidelberg: Springer-Verlag; 2006.

[25] S. Qureshi, I. K. Argyros, H. Jafari, A. Soomro, K. Gdawiec (2024), A highly ac-
curate family of stable and convergent numerical solvers based on Daftardar-Gejji
and Jafari decomposition technique for systems of nonlinear equations , MethodsX
13, 102865.

[26] S. Qureshi, I. K. Argyros, A. Soomro, K. Gdawiec, A. A. Shaikh, E. Hincal (2024),
A new optimal root-finding iterative algorithm: local and semilocal analysis with
polynomiography , Numer. Algorithms 95(4), 1715–1745.

[27] S. Qureshi, F. Chicharro, I.K. Argyros, A. Soomro, J. Alahmadi, E. Hincal
(2024),A new optimal numerical root-solver for solving systems of nonlinear equa-
tions using local, semi-local, and stability analysis , Axioms, 13, 341.

[28] G. W. Reddien (1978), On Newton’s method for singular problems , SIAM J. Nu-
mer. Anal., 15(5), 993–996.

[29] G. W. Reddien (1979), Newton’s method and high order singularities , Comput.
Math. Appl., 5(2), 79–86.

[30] G. Schulz (1933), Iterative Berechnung der Reziproken matrix , Z. Angew. Math.
Mech., 13(1), 57–59.

[31] M. Singh, A. K. Verma, R. Agarwal (2019) On an iterative method for a class of
2 point & 3 point nonlinear SBVPs , J. Appl. Anal. Comput., 9(4), 1242–1260.

[32] E. Suli, D. F. Mayers (2003), An Introduction to Numerical Analysis , New York,
Cambridge University Press.

[33] Y.-Q. Shen, T. J. Ypma (2005), Newton’s method for singular nonlinear equations
using approximate left and right nullspaces of the Jacobian, Appl. Numer. Math.,
54(2), 256–265.

[34] F. Toutounian, F. Soleymani (2013), An iterative method for computing the ap-
proximate inverse of a square matrix and the Moore-Penrose inverse of a non-
square matrix , Appl. Math. Comput., 224, 671–680.

[35] S. Weerakoon, T. G. I. Fernando (2000), A Variant of Newton’s method with
accelerated third-order convergence, Appl. Math, Lett., 13, 87–93.

21

