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Abstract

In this paper, we consider the following Chern–Simons–Schrödinger system with Hartree–type
nonlinearity in R2

−∆u+ (1 + µV (x))u+A0u+A2
1u+A2

2u =
(
|x|−α ∗ |u|p

)
|u|p−2u,

∂1A0 = A2u
2, ∂2A0 = −A1u

2,

∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0,

where p > 3, α ∈ (0, 2), µ > 0 is a parameter, V (x) is a nonnegative continuous potential well
satisfying some conditions and ∗ is a notation for the convolution of two functions in R2. By
using the Nehari manifold technique and the concentration compactness principle, we obtain the
existence of ground state solutions for the above problem when the parameter µ is sufficiently
large. Furthermore, the concentration behaviors of these solutions are also explored.
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1 Introduction and main result

Since the early 1980s, Chern–Simons theory has become increasingly significant in various areas
of quantum physics, for instance, high–temperature superconductor, fractional quantum Hall effect
and Aharovnov–Bohm scattering. The Chern–Simons theory is a new type of gauge theory that is
very different from Maxwell theory in Minkowski spacetime R2+1. The relativistic Chern–Simons
model was proposed by Hong et al. [15] and Jackiw and Weinberg [19] to study vortex solutions of
the Maxwell–Higgs model carrying magnetic charges and electric. The initial value problem of the
model has been studied in [5, 16]. One of the basic models attached to Chern–Simons dynamics is
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the following planar gauged nonlinear Schrödinger equation, which appears when the nonrelativistic
N–body anyon problem is second–quantized

iD0φ+ (D1D1 +D2D2)φ+ λ|φ|p−2φ = 0, (1.1)

where i denotes the imaginary unit, ∂0 =
∂

∂t
, ∂1 =

∂

∂x1

, ∂2 =
∂

∂x2

for (t, x) ∈ R1+2, x = (x1, x2),

φ : R1+2 → C is the complex scalar filed, Aη : R1+2 → R is the gauge field, Dη = ∂η + iAη is the
covariant derivative for η = 0, 1, 2 and λ > 0 is a constant representing the strength of interaction
potential. The classical equation for the gauge field Aη is the Maxwell equation, and the tensor
F ην = ∂ηAν − ∂νAη denotes a field strength combining nonrelativistic electromagnetic with Chern–
Simons components governed by the following gauge field equation

∂ηF
ην +

1

2
κεναβFαβ = jν , (1.2)

where κ is a parameter that measures the strength of the Chern–Simons modification, εναβ is the
Levi–Civita tensor, this is to say, εναβ equals 1 or −1 according to whether (ναβ) is an even or odd
permutation of (012) and equals 0 otherwise, and where jν is the conserved matter current

jν = (j0, ji) with j0 = |φ|2, ji = 2Im(φ̄Diφ).

At low energies, the Maxwell term becomes negligible and can be removed, resulting in

1

2
κεναβFαβ = jν .

One can see [18, 36] for the discussion above. For simplicity, we fix κ = 2. Then by Eq.(1.1) and
Eq.(1.2), we obtain the following nonlinear Schrödinger system

iD0φ+ (D1D1 +D2D2)φ = −|φ|p−2φ,

∂0A1 − ∂1A0 = − Im(φ̄D2φ),

∂0A2 − ∂2A0 = Im(φ̄D1φ),

∂1A2 − ∂2A1 = −1

2
|φ|2.

(1.3)

System (1.3) describes the nonrelativistic thermodynamic behavior of a large number of particles in
an electromagnetic field. For more physical background about system (1.3), see [12, 25, 29] and the
references therein.

Assume that the Coulomb gauge condition ∂0A0 + ∂1A1 + ∂2A2 = 0 holds. If we consider the
standing wave solution of the form ψ(t, x) = e−iλtu(x) for system (1.3), where the frequency λ ∈ R,
then the function u satisfies the following stationary system

−∆u+ λu+ A0u+ A2
1u+ A2

2u = f(u),

∂1A0 = A2u
2, ∂2A0 = −A1u

2,

∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0.

(1.4)

Here, the components A0, A1 and A2 in system (1.4) can be obtained by solving the following elliptic
system 

∆A1 =
1

2
∂2(|u|2),

∆A2 = −1

2
∂1(|u|2),

∆A0 = ∂1(A2|u|2)− ∂2(A1|u|2),
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the expressions of A0, A1 and A2 are given as follows
A1 := A1(u) =

x2

4π|x|2
∗ |u|2, A2 := A2(u) = − x1

4π|x|2
∗ |u|2,

A0 := A0(u) =
x1

2π|x|2
∗ (A2|u|2)− x2

2π|x|2
∗ (A1|u|2),

where the symbol ∗ represents the convolution.
In recent years, the existence and nonexistence of nontrivial solutions for system (1.4) have been

widely investigated by many researchers. Huh [17] got the existence of infinitely many radially sym-
metric standing–wave solutions for system (1.4) with f(u) = |u|p−2u(p > 6) by applying Mountain
pass Theorem. When λ is replaced by V (x), by dint of Morse theory, Jiang and Liu [21] studied
nontrivial solutions for system (1.4) with the case where the potential V is indefinite so that the
Schrödinger operator −∆ + V has a finite–dimensional negative space. Furthermore, when λ is re-
placed by V (x) and f(u) = |u|p−2u(p > 6), Kang and Tang [22] obtained the existence of ground
state solutions for system (1.4) by using a splitting Lemma, where V (x) = V1(x) for x1 > 0 and
V (x) = V2(x) for x1 < 0, and V1, V2 are periodic in each coordinate direction. For more results about
the Chern–Simons–Schrödinger system, we refer the interested reader to [7–10, 20, 28, 34, 35, 40] and
the references therein.

For the elliptic problems with Hartree–type nonlinearity, Choquard equation is a peculiar case
relevant to physical applications

−∆u+ u =

(
1

|x|
∗ |u|2

)
u, u ∈ H1(R3), (1.5)

which arises in various branches of mathematical physics, such as physics of multiple–particle systems,
the quantum theory of large systems for nonrelativistic bosonic atoms and molecules. Indeed, Eq.(1.5)
was proposed by Choquard in 1976 as a certain approximation to Hartree–Fock theory for one com-
ponent plasma [23]. It was also proposed by Penrose [33] in 1996 as a model for the self–gravitational
collapse of a quantum mechanical wave–function. Lieb [23] and Lions [26] obtained the existence of
solutions for Eq.(1.5) via variational methods. Clapp and Salazar [11] proved the existence of posi-
tive and sign–changing solutions for Eq.(1.5) with −∆u+ u being replaced by −∆u+W (x)u, where
u ∈ H1

0 (Ω) and Ω is an exterior domain in RN(N ≥ 3). Moreover, Ma and Zhao [30] studied the
following generalized Choquard equation

−∆u+ u =
(
|x|−α ∗ |u|p

)
up−2u, u ∈ H1(RN), (1.6)

where p ≥ 2. Under some conditions on N , α and p, they obtained every positive solution is radially
symmetric and monotone decreasing about some point. More related results may be found in [6,31,41]
and the references therein.

To the best of our knowledge, there are few results for the Chern–Simons–Schrödinger system with
Hartree–type nonlinearity. Motivated by the works above, in this paper, we consider the existence and
concentration of ground state solutions for the following Chern–Simons–Schrödinger system involving
Hartree–type nonlinearity

−∆u+ Vµ(x)u+ A0u+ A2
1u+ A2

2u =
(
|x|−α ∗ |u|p

)
|u|p−2u,

∂1A0 = A2u
2, ∂2A0 = −A1u

2,

∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0,

(Sµ)

where p > 3, α ∈ (0, 2), Vµ(x) = 1 + µV (x), µ > 0 is a parameter, V (x) is a continuous potential
function and ∗ is a notation for the convolution of two functions in R2. Such problem is often referred to
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as being nonlocal because of the appearance of the Chern–Simons term and Hartree–type nonlinearity
term, which implies that problem (Sµ) is no longer a pointwise identity. This phenomenon provokes
some mathematical difficulties, which make the study of such problem particularly interesting. The
main difficulties we face lie in the presence of the nonlocal terms and the lack of compactness due to the
unboundedness of the domain R2. In order to overcome these considerable difficulties, by exploiting
the Nehari manifold technique and the concentration–compactness principle, we obtain the existence
of ground state solutions for problem (Sµ) and the concentration behavior of these solutions. Before
stating our main result, we need to suppose that the potential function V (x) satisfies the following
conditions

(v1) V ∈ C(R2,R) and V (x) ≥ 0 for each x ∈ R2;

(v2) Ω = intV −1(0) is nonempty with smooth boundary and Ω̄ = V −1(0);

(v3) there exists M > 0 such that L({x ∈ R2|V (x) ≤ M}) < ∞, where L denotes the Lebesgue
measure in R2.

These above conditions (v1)− (v3) were first introduced by Bartsch and Wang [2] in the research
of a nonlinear Schrödinger equation. These conditions imply that Vµ(x) represents a potential well
whose depth is controlled by µ and Vµ(x) is called a steep potential well for µ sufficiently large. It is
worth mentioning that we do not impose any other conditions on the behavior of V (x) for |x| → ∞.

Now, we state our main result.

Theorem 1.1 Suppose that conditions (v1)− (v3) hold. Then there exists a constant µ? > 0 such that
for each µ ≥ µ?, problem (Sµ) admits at least one ground state solution uµ in H1(R2). Moreover, let
uµn be a sequence of solutions for problem (Sµn) and µn → +∞ as n→∞, then uµn → û in H1(R2)
as n→∞, where û ∈ H1

0 (Ω) is a ground state solution of
−∆u+ u+ A0u+ A2

1u+ A2
2u =

(
|x|−α ∗ |u|p

)
|u|p−2u,

∂1A0 = A2u
2, ∂2A0 = −A1u

2,

∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0,

(S∞)

where Ω is defined by the condition (v2).

Notation Throughout this paper, we will use some notations. For any 1 ≤ r ≤ +∞, we denote the
Lr–norm by | · |r and denote “→” and “⇀” to represent the strong and weak convergence, respectively.
Let Br be a ball centered at the origin with radius r > 0 and on(1) be a quantity such that on(1)→ 0
as n → ∞. C and Ci(i = 0, 1, 2, ...) denote various positive constants, which may vary from line to
line. If we take a subsequence of a sequence {un}, we may denote it again by {un}.

The remainder of this paper is as follows. In Section 2, we present some preliminary results. In
Section 3, we mainly show that the functional Jµ satisfies the (PS)c condition, then we prove the
existence of ground state solutions. In Section 4, we prove the main result.

2 Preliminaries

In this section, we present some preliminary results, which will be used throughout the paper. The
Sobolev space H1(R2) is defined by

H1(R2) =
{
u ∈ L2(R2) : ∇u ∈ L2(R2)

}
4



with the inner product and the norm

〈u, v〉 =

∫
R2

(∇u∇v + uv) dx, ‖u‖ =

(∫
R2

(|∇u|2 + u2)dx

) 1
2

.

Let

H := {u ∈ H1(R2) :

∫
R2

V (x)|u|2dx < +∞}

be the Hilbert space equipped with the inner product and the norm

〈u, v〉µ =

∫
R2

(∇u∇v + Vµ(x)uv) dx, ‖u‖µ =

(∫
R2

(|∇u|2 + Vµ(x)u2)dx

) 1
2

.

H1
0 (Ω) is the closure of C∞0 (Ω) inH1(Ω), where C∞0 (Ω) is the subspace of C∞(Ω) consisting of functions

with compact support in Ω, and Ω is defined by the condition (v2). The norm in H1
0 (Ω) will always

be denoted by ‖u‖.
By the condition (v1), we can see that ‖u‖ ≤ ‖u‖µ for all u ∈ H, which implies that the embedding

H ↪→ H1(R2) is continuous. Let S be the best Sobolev constant for the embedding of H into Lr(R2),
then for any 2 ≤ r < +∞, there holds

|u|r ≤ S−1‖u‖µ ∀ u ∈ H. (2.1)

Set

D(u) =

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx =

∫
R2

∫
R2

|u(x)|p|u(y)|p

|x− y|α
dxdy.

It follows from the Hardy–Littlewood–Sobolev inequality [24, Theorem 4.3] that∣∣∣∣∫
R2

∫
R2

φ(x)ψ(y)

|x− y|κ
dxdy

∣∣∣∣ ≤ C(κ)|φ|r|ψ|s ∀ φ ∈ Lr(R2), ψ ∈ Ls(R2),

where 0 < κ < 2, 1 < r, s < ∞, and
1

r
+

1

s
+
κ

2
= 2. For each u ∈ H1(R2), we have the estimate of

D(u) as follows

|D(u)| ≤ C0

(∫
R2

|u|
4p

4−αdx

) 4−α
2

= C0|u|2ppr, (2.2)

where C0 = C(α) is a positive constant and r =
4

4− α
. In view of the Sobolev embedding, we let

4p

4− α
∈ (2,∞), that is, p ∈ (

4− α
2

,∞). By (2.2), we know that D is well–defined in H. Furthermore,

by similar argument to that of [39, Lemma 2.5], we can get that D ∈ C1(H,R).
The energy functional Jµ : H → R corresponding to problem (Sµ) is defined by

Jµ(u) =
1

2
‖u‖2

µ +
1

2

∫
R2

(A2
1 + A2

2)|u|2dx− 1

2p

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx. (2.3)

For simplicity, in this paper, we denote

A(u) :=
1

2

∫
R2

(A2
1 + A2

2)|u|2dx.

Then for any ϕ ∈ H1(R2), one has

〈A′(u), ϕ〉 =

∫
R2

(A2
1 + A2

2)uϕdx+

∫
R2

A0uϕdx.
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Note that ∫
R2

A0u
2dx = −2

∫
R2

A0 (∂1A2 − ∂2A1) dx

= 2

∫
R2

(A2∂1A0 − A1∂2A0) dx

= 2

∫
R2

(A2
1 + A2

2)u2dx,

then we have 〈A′(u), u〉 = 3

∫
R2

(A2
1 + A2

2)|u|2dx = 6A(u). It follows from [4, Proposition 2.1] that

A ∈ C1(H,R). Then under the conditions (v1) − (v3), it is easy to see that the functional Jµ is
well–defined and Jµ ∈ C1(H,R). Moreover, the solutions of problem (Sµ) are the critical points of
the functional Jµ.

As is shown in [14, Lemma 2.4], A(u) possesses the following properties.

Lemma 2.1 Assume that a sequence {un} ⊂ H1(R2) converges weakly to a function u in H1(R2) and
{un} → u a.e. on R2 as n→∞, then we have Aj(un)→ Aj(u) a.e. on R2 and for every ϕ ∈ H1(R2),
there hold

(i)

∫
R2

A2
j(un)unϕdx =

∫
R2

A2
j(u)uϕdx+ o(1) for j = 1, 2;

(ii)

∫
R2

A0(un)unϕdx =

∫
R2

A0(u)uϕdx+ o(1);

(iii)

∫
R2

A2
j(un − u)|un − u|2dx+

∫
R2

A2
j(u)|u|2dx =

∫
R2

A2
j(un)|un|2dx+ o(1) for j = 1, 2.

Lemma 2.2 Assume that conditions (v1)−(v3) hold. Then the functional Jµ(u) satisfies the following
conditions.
(i) There exist ξ, ρ > 0 such that Jµ(u) ≥ ξ > 0 for every ‖u‖µ = ρ.
(ii) There exists e ∈ H with ‖e‖µ > ρ such that Jµ(e) ≤ 0.

Proof. (i) From (2.1) and (2.2), we have

Jµ(u) =
1

2
‖u‖2

µ + A(u)− 1

2p

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx

≥ 1

2
‖u‖2

µ −
C0

2p
|u|2ppr (2.4)

≥ 1

2
‖u‖2

µ −
C0

2p
S−2p‖u‖2p

µ .

Since p > 3, we can choose some ξ, ρ > 0 such that Jµ(u) ≥ ξ > 0 for every ‖u‖µ = ρ.
(ii) First, we notice that for each µ > 0, Jµ(0) = 0. Moreover, since p > 3, we obtain

lim
t→+∞

Jµ(tu) = lim
t→+∞

(
t2

2
‖u‖2

µ + t6A(u)− t2p

2p

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx

)
= −∞.

Then we can choose t0 > 0 sufficiently large such that ‖t0u‖µ > ρ and Jµ(t0u) ≤ 0. Let e = t0u, then
(ii) holds. This completes the proof. �

In order to get the weak solutions of problem (Sµ), we define the Nehari manifold

Mµ := {u ∈ H \ {0} : γ(u) = 0} ,
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where

γ(u) := 〈J ′µ(u), u〉 = ‖u‖2
µ + 6A(u)−

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx.

Then u ∈Mµ if and only if

‖u‖2
µ + 6A(u) =

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx.

Thus, we can obtain the following conclusion.

Lemma 2.3 For each u ∈Mµ, there exist σ, δ > 0 such that ‖u‖µ ≥ σ and 〈γ′(u), u〉 ≤ −δ.

Proof. For each u ∈Mµ, from (2.1) and (2.2), we get

0 = 〈J ′µ(u), u〉

= ‖u‖2
µ + 6A(u)−

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx

≥ ‖u‖2
µ − C0|u|2ppr ≥ ‖u‖2

µ − C0S
−2p‖u‖2p

µ .

Since p > 3, there exists σ > 0 such that ‖u‖µ ≥ σ. Moreover,

〈γ′(u), u〉 = 2‖u‖2
µ + 36A(u)− 2p

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx

= (2− 2p)‖u‖2
µ + (36− 12p)A(u)

≤ −(2p− 2)σ2 < 0.

This completes the proof. �
By Lemma 2.3,Mµ is a smooth manifold in H. It is easy to see that Jµ is well–defined and smooth

on Mµ. Furthermore, by analogous argument to that of [38, Theorem 4.3], we can show that if u is
a critical point of Jµ constrained to Mµ, then u is a nontrivial solution for problem (Sµ).

Lemma 2.4 For all u ∈Mµ, Jµ is bounded from below by a positive constant.

Proof. For each u ∈Mµ, in view of the definition of Mµ and Lemma 2.3, there holds

Jµ(u) =
1

2
‖u‖2

µ + A(u)− 1

2p

∫
R2

(
|x|−α ∗ |u|p

)
|u|pdx

=

(
1

2
− 1

2p

)
‖u‖2

µ +
p− 3

p
A(u)

>

(
1

2
− 1

2p

)
σ2 > 0.

This completes the proof. �

3 The (PS)c condition

In the following, our main goal is to prove that functional Jµ(u) satisfies the (PS)c condition.
Recall that, for a given functional Jµ ∈ C1(H,R), we say that a sequence {un} ⊂ H is a (PS)c
sequence if it satisfies Jµ(un)→ c and J

′

µ(un)→ 0 as n→∞. Moreover, if any (PS)c sequence has a
convergent subsequence, then we say that Jµ satisfies the (PS)c condition.
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Lemma 3.1 Assume that conditions (v1) − (v3) hold. Let {un} be a (PS)c sequence for Jµ(u), we
have
(i) {un} is bounded in H;
(ii) either c ≥ c0 for some c0 > 0 independent of µ or c = 0.

Proof. (i) Let {un} be a (PS)c sequence for Jµ(u), that is,

Jµ(un) = c+ on(1) and J
′

µ(un) = on(1).

Since p > 3, we have

c+ on(1)− 1

2p
on(‖un‖µ)

= Jµ(un)− 1

2p
〈J ′µ(un), un〉

=

(
1

2
− 1

2p

)
‖un‖2

µ +
p− 3

p
A(u)

≥
(

1

2
− 1

2p

)
‖un‖2

µ.

Then

‖un‖2
µ ≤ c

(
1

2
− 1

2p

)−1

, (3.1)

for n sufficiently large. Therefore, (i) holds.
(ii) Since J

′

µ(un) = on(1), we obtain

on(‖un‖µ) = 〈J ′µ(un), un〉

= ‖un‖2
µ + 6A(u)−

∫
R2

(
|x|−α ∗ |un|p

)
|un|pdx

≥ ‖un‖2
µ − C0S

−2p‖un‖2p
µ .

It follows from p > 3 that there exists σ1 ∈ (0, 1) such that

〈J ′µ(un), un〉 ≥
1

4
‖un‖2

µ for ‖un‖µ < σ1. (3.2)

Now, if c <
(p− 1)σ2

1

2p
and {un} is a (PS)c–sequence of Jµ, then from (3.1), we obtain

lim
n→∞

‖un‖2
µ ≤

2pc

p− 1
< σ2

1.

Thus, ‖un‖µ < σ1 for n sufficiently large, then from (3.2), we get

1

4
‖un‖2

µ ≤ 〈J
′

µ(un), un〉 = on(1)‖un‖µ,

which indicates that ‖un‖µ → 0 as n → ∞ and c = 0, then (ii) holds for c0 =
(p− 1)σ2

1

2p
. This

completes the proof. �
For nonlocal nonlinearity, we have the following Brezis–Lieb type Lemma [1, Lemma 3.5].
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Lemma 3.2 Let {un} ⊂ H be a bounded sequence such that un → u a.e. on R2 as n → ∞, then
there hold
(i) D(un)−D(un − u)→ D(u) as n→∞;
(ii) D

′
(un)−D

′
(un − u)→ D

′
(u) in H−1 as n→∞.

Lemma 3.3 Assume that conditions (v1)−(v3) hold. Let µ > 0 be fixed and {un} be a (PS)c–sequence
of Jµ. Then up to a subsequence un ⇀ u in H with u being a weak solution of problem (Sµ). Moreover,
Jµ(un − u)→ c− Jµ(u) and J

′

µ(un − u)→ 0 as n→∞.

Proof. By Lemma 3.1(i), we know that {un} is bounded in H. Then there is a subsequence of {un}
such that un ⇀ u in H as n→∞. In order to see that u is a critical point of Jµ, we recall that

un ⇀ u in H, (3.3)

un → u in Lrloc(R2) for r ∈ (2,∞), (3.4)

un → u a.e. on R2. (3.5)

In view of J
′

µ(un)→ 0, Lemma 2.1 and (3.3), for any v ∈ H, we obtain

〈J ′µ(u), v〉 = lim
n→∞
〈J ′µ(un), v〉 = 0,

which implies that u is a weak solution of problem (Sµ). Now, we consider a new sequence vn = un−u,
then by Brézis–Lieb Lemma [3] and Lemma 2.1, we have

‖vn‖2
µ = ‖un‖2

µ − ‖u‖2
µ + o(1), (3.6)

A(vn) = o(1). (3.7)

Next we prove that
Jµ(vn) = c− Jµ(u) as n→∞, (3.8)

and
J
′

µ(vn)→ 0 as n→∞. (3.9)

By (3.6) and (3.7), we obtain

Jµ(vn) =
1

2
‖vn‖2

µ + A(vn)− 1

2p

∫
R2

(
|x|−α ∗ |vn|p

)
|vn|pdx

=
1

2
‖un‖2

µ −
1

2
‖u‖2

µ −
1

2p

∫
R2

(
|x|−α ∗ |un − u|p

)
|un − u|pdx+ on(1) (3.10)

= Jµ(un)− Jµ(u) +
1

2p
(D(un)−D(u)−D(un − u)) + on(1).

From Lemma 3.2(i), D(un)−D(u)−D(un − u)→ 0 as n→∞. Then from (3.10), we obtain (3.8).
In order to prove (3.9), let ϕ ∈ H, it is easy to see that

〈J ′µ(vn), ϕ〉 = 〈J ′µ(un), ϕ〉 − 〈J ′µ(u), ϕ〉+ on(1)−
∫
R2

(
|x|−α ∗ |vn|p

)
|vn|p−2vnϕdx

+

∫
R2

(
|x|−α ∗ |un|p

)
|un|p−2unϕdx−

∫
R2

(
|x|−α ∗ |u|p

)
|u|p−2uϕdx.

By Lemma 3.2(ii), we easily obtain that

lim
n→∞

sup
‖ϕ‖µ≤1

∫
R2

[(
|x|−α ∗ |vn|p

)
|vn|p−2vn −

(
|x|−α ∗ |un|p

)
|un|p−2un +

(
|x|−α ∗ |u|p

)
|u|p−2u

]
ϕdx = 0.

9



Hence, there holds
lim
n→∞
〈J ′µ(vn), ϕ〉 = 0 ∀ ϕ ∈ H,

which indicates that (3.9) holds. This completes the proof. �

Lemma 3.4 Let C1 be fixed. Given ε > 0 there exist µε = µ(ε, C1) > 0 and Rε = R(ε, C1) > 0 such
that if {un} is a (PS)c–sequence of Jµ(u) with c ≤ C1 and µ ≥ µε, there holds

lim sup
n→∞

∫
R2\BRε

(
|x|−α ∗ |un|p

)
|un|pdx ≤ ε. (3.11)

Proof. For R > 0, we set

Ω+
R := {x ∈ R2 : |x| ≥ R, V (x) ≥M}, Ω−R := {x ∈ R2 : |x| ≥ R, V (x) < M}, (3.12)

by (3.1), there holds∫
Ω+
R

|un|2dx ≤ 1

1 + µM

∫
R2

(1 + µV (x))|un|2dx

≤ 1

1 + µM

∫
R2

(|∇un|2 + (1 + µV (x))|un|2)dx

≤ 1

1 + µM

(
2pc

p− 1
+ on(‖un‖µ)

)
(3.13)

≤ 1

1 + µM

(
2pC1

p− 1
+ on(1)

)
→ 0 as µ→ +∞.

In view of the Hölder inequality, Lemma 3.1(ii) and (2.1), for 1 < q < 2, we get∫
Ω−R

|un|2dx ≤
(∫

R2

|un|2qdx
) 1

q

(∫
Ω−R

1dx

) q−1
q

≤ S−2‖un‖2
µ · |L(Ω−R)|

q−1
q (3.14)

≤ S−2 2pC1

p− 1
· |L(Ω−R)|

q−1
q

→ 0 as R→∞.

By the Hardy–Littlewood–Sobolev inequality, we obtain∫
R2\BRε

(
|x|−α ∗ |un|p

)
|un|pdx ≤ C0

(∫
R2\BRε

|un|
4p

4−αdx

) 4−α
2

. (3.15)

Setting ` =
2(p− 2) + α

2p
, from (3.13), (3.14) and the Gagliardo–Nirenberg inequality [13,32,37]

|u|s ≤ C(s)|∇u|β2 |u|
1−β
2 , β = 2(

1

2
− 1

s
),

there holds∫
R2\BRε

|un|
4p

4−αdx ≤ C(p, α)

(∫
R2\BRε

|∇un|2dx

) 2p`
4−α

·

(∫
R2\BRε

|un|2dx

) 2p(1−`)
4−α

10



≤ C(p, α)

(∫
R2

|∇un|2dx

) 2p`
4−α

·

(∫
Ω+
R

|un|2dx+

∫
Ω−R

|un|2dx

) 2p(1−`)
4−α

(3.16)

≤ C(p, α)‖un‖
4p`
4−α
µ ·

(∫
Ω+
R

|un|2dx+

∫
Ω−R

|un|2dx

) 2p(1−`)
4−α

→ 0 as µ,R→∞.

In view of (3.15) and (3.16), we complete the proof. �
Thus, we have the following compactness result.

Lemma 3.5 Suppose that conditions (v1)− (v3) hold. Then for each C2 > 0, there exists µ0 > 0 such
that Jµ satisfies the (PS)c–condition for all c ≤ C2 and µ ≥ µ0.

Proof. Let c0 > 0 be given by Lemma 3.1(ii) and choose ε > 0 such that ε <
pc0

p− 1
. Thus, for given

C2 > 0, we choose µε > 0 and Rε > 0 defined in Lemma 3.4. We claim that µ0 = µε is required in
Lemma 3.5. Let {un} ⊂ H be a (PS)c–sequence of Jµ(u) with µ ≥ µ0 and c ≤ C2. From Lemma
3.3, we assume that un ⇀ u in H and vn = un − u is a (PS)c̄–sequence of Jµ with c̄ = c − Jµ(u).
Next we claim c̄ = 0. In fact, if c̄ 6= 0, then from Lemma 3.1(ii), we have c̄ ≥ c0 > 0. Since {vn} is a
(PS)c̄–sequence of Jµ, one has

Jµ(vn) = c̄+ on(1) and J
′

µ(vn) = on(1).

Then there holds

c̄+ on(1)− 1

2
on(‖vn‖µ)

= Jµ(vn)− 1

2
〈J ′µ(vn), vn〉

= −2A(vn) +

(
1

2
− 1

2p

)∫
R2

(
|x|−α ∗ |vn|p

)
|vn|pdx (3.17)

≤
(

1

2
− 1

2p

)∫
R2

(
|x|−α ∗ |vn|p

)
|vn|pdx.

Thus, we have

lim
n→∞

∫
R2

(
|x|−α ∗ |vn|p

)
|vn|pdx ≥ c̄

(
1

2
− 1

2p

)−1

≥ 2pc0

p− 1
.

On the other hand, from Lemma 3.4, one has

lim sup
n→∞

∫
R2\BRε

(
|x|−α ∗ |vn|p

)
|vn|pdx ≤ ε <

pc0

p− 1
,

which implies that vn → v in H with v 6= 0, which is a contradiction. Hence, c̄ = 0 and it follows
from (3.1) that

lim
n→∞

‖vn‖2
µ ≤

2pc̄

p− 1
= 0,

therefore, vn → 0 in H, i.e., un → u in H. This completes the proof. �
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4 Proof of Theorem 1.1

In this section, we give the proof of our main result. First, we define the minimax cµ as

cµ := inf
u∈Mµ

Jµ(u). (4.1)

By Lemma 2.4, we have cµ > 0. In the following, we first show that there exists uµ ∈ Mµ with
Jµ(uµ) = cµ, i.e., uµ is a ground state solution of problem (Sµ). Next we consider the energy functional
associated with limit problem (S∞) defined by

J∞(u) =
1

2

∫
Ω

(|∇u|2 + |u|2)dx+ A(u)− 1

2p

∫
Ω

(
|x|−α ∗ |u|p

)
|u|pdx.

Let
M∞ = {u ∈ H1

0 (Ω) \ {0} : 〈J ′∞(u), u〉 = 0}

be the Nehari manifold and set
c∞ = inf

u∈M∞
J∞(u).

We will show that there exists û ∈M∞ with J∞(û) = c∞, i.e., û is a ground state solution of problem
(S∞).
Proof of Theorem 1.1: From Lemma 2.2, Jµ satisfies the mountain–pass geometry, then there exists
a (PS)cµ sequence {un} ⊂ H such that Jµ(un) → cµ and J

′

µ(un) → 0. Furthermore, from Lemma
3.1(i), {un} is bounded in H. Thus, up to a subsequence, we suppose that un ⇀ u0 in H and un → u0

a.e. on R2. From Lemma 3.5, there exists µ? > 0, such that for µ ≥ µ?, un → u0 in H. From Lemma
3.3, there holds J

′

µ(u0) = 0. Moreover, cµ > 0 implies that u0 6= 0. Then u0 ∈Mµ. In view of Fatou’s
Lemma, we obtain

Jµ(u0) = Jµ(u0)− 1

2p
〈J ′µ(u0), u0〉

=

(
1

2
− 1

2p

)
‖u0‖2

µ +
p− 3

p
A(u0)

≤ lim inf
n→∞

[(
1

2
− 1

2p

)
‖un‖2

µ +
p− 3

p
A(un)

]
= lim inf

n→∞

(
Jµ(un)− 1

2p
〈J ′µ(un), un〉

)
= cµ.

Therefore, Jµ(u0) ≤ cµ. On the other hand, it follows from the definition of cµ that cµ ≤ Jµ(u0).
Thus, Jµ(u0) = cµ. Take uµ = u0, then uµ is a ground state solution of problem (Sµ).

Next we consider the concentration behavior of the solutions. Let un := uµn be the solution of
(Sµn) with un ∈Mµn such that Jµn(un) = cµn and µn → +∞ as n→∞. By Lemma 3.1(i), we know
that {un} must be bounded in H1(R2). Thus, we suppose that un ⇀ û in H1(R2) and un → û in
Lrloc(R2) for r ∈ (2,∞). We claim û|Ωc = 0, where Ωc = R2 \ Ω. In fact, if û|Ωc 6= 0, then there exists
a compact subset Σ ⊂ Ωc with dist(Σ, ∂Ω) > 0 such that û|Σ 6= 0. Then∫

Σ

|un|2dx→
∫

Σ

|û|2dx > 0.

12



Furthermore, there exists ε0 > 0 such that V (x) ≥ ε0 for any x ∈ Σ. We also notice that un ∈ Mµn ,
then we obtain

Jµn(un) =
1

2

∫
R2

(|∇un|2 + (1 + µnV (x))|un|2)dx+ A(un)− 1

2p
D(un)

=

(
1

2
− 1

2p

)∫
R2

(|∇un|2 + (1 + µnV (x))|un|2)dx+
p− 3

p
A(un)

≥
(

1

2
− 1

2p

)∫
R2

(1 + µnV (x))|un|2dx

≥
(

1

2
− 1

2p

)∫
Σ

(1 + µnε0)|un|2dx

→ +∞ as n→∞.

This contradiction shows that û|Ωc = 0 and û ∈ H1
0 (Ω) by the condition (v2). Then for any ϕ ∈ C∞0 (Ω),

since 〈J ′µn(un), ϕ〉 = 0, it is easy to check that∫
R2

(∇û∇ϕ+ ûϕ)dx+ 〈A′(û), ϕ〉 =

∫
R2

(
|x|−α ∗ |û|p

)
|û|p−2ûϕdx,

that is, û is a weak solution of problem (S∞) by the density of C∞0 (Ω) in H1
0 (Ω).

Now, we claim that un → û in Lr(R2) for 2 < r <∞. Otherwise, by the concentration compactness
principle of Lions [27], there exist η > 0, ρ > 0, xn ∈ R2 with |xn| → +∞ such that∫

Bρ(xn)

|un − û|2dx ≥ η > 0. (4.2)

On the other hand, we notice that L(Bρ(xn)∩{x|V (x) ≤M})→ 0 as n→ +∞ and un ∈Mµn , Then
by the Hölder inequality, for 1 < q < 2, we obtain∫

Bρ(xn)∩{x|V (x)≤M}
|un − û|2dx ≤ (L(Bρ(xn) ∩ {x|V (x) ≤M}))

q−1
q

(∫
R2

|un − û|2qdx
) 1

q

→ 0,

as n→ +∞. Therefore, we have

Jµn(un) ≥
(

1

2
− 1

2p

)∫
Bρ(xn)∩{x|V (x)≥M}

(|∇un|2 + (1 + µnV (x))|un|2)dx

≥
(

1

2
− 1

2p

)
µn

(
M

∫
Bρ(xn)

|un − û|2dx−
∫
Bρ(xn)∩{x|V (x)≤M}

|un − û|2dx

)

=

(
1

2
− 1

2p

)
µn

(
M

∫
Bρ(xn)

|un − û|2dx− on(1)

)
→ +∞, as n→∞.

This contradiction indicates that un → û in Lr(R2) for 2 < r <∞.
Next we shall show that û ∈ H1

0 (Ω) is a ground state solution of problem (S∞), i.e., J∞(û) = c∞.
Since H1

0 (Ω) can be viewed as a subspace of H, we have cµ ≤ c∞ for all µ ≥ 0. On the other hand,

cµn = Jµn (un)− 1

6
〈J ′µn (un) , un〉

=
1

3

∫
R2

(|∇un|2 + |un|2)dx+

(
1

6
− 1

2p

)∫
R2

(
|x|−α ∗ |un|p

)
|un|p dx.
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Taking n→∞, by Fatou’s Lemma and J
′

∞(û) = 0, we get

c∞ ≥ lim
n→∞

(
1

3

∫
R2

(|∇un|2 + |un|2)dx+

(
1

6
− 1

2p

)∫
R2

(
|x|−α ∗ |un|p

)
|un|p dx

)
≥ 1

3

∫
R2

(|∇û|2 + |û|2)dx+

(
1

6
− 1

2p

)∫
Ω

(
|x|−α ∗ |û|p

)
|û|pdx

= J∞(û) ≥ c∞.

Then J∞(û) = c∞. Hence, û 6= 0 is a ground state solution of problem (S∞).
Finally, we show that un → û in H1(R2). In view of weak convergence of {un}, the fact that

un ∈ H1(R2) is the solution of problem (Sµn) and û ∈ M∞, combining Lemma 2.1 with Lemma 3.2,
we obtain

‖un − û‖2
µn =

∫
R2

(|∇(un − û)|2 + Vµn(x)|un − û|2)dx

=

∫
R2

(|∇un|2 + Vµn(x)|un|2)dx−
∫
R2

(|∇û|2 + Vµn(x)|û|2)dx+ on(1)

=

∫
R2

(
|x|−α ∗ |un|p

)
|un|pdx−

∫
R2

(
|x|−α ∗ |û|p

)
|û|pdx− 6A(un) + 6A(û) + on(1)

= on(1) as n→∞,

which indicates that un → û in H1(R2) as n→∞. This completes the proof. �
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