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Abstract. In this paper, we prove a finite approximate version of the Livšic
theorem for Anosov diffeomorphisms. Let f be a transitive Anosov diffeomor-
phism and φ ∈ Cα(M). We show that there exist 0 < β ≤ α,C > 0 and
τ > 0 such that for any ε > 0, if

∣∣∑n
i=0 φ

(
f i(p)

)∣∣ ≤ ε for all periodic point
p = fn(p) with n ≤ ε−

1
2 , then there exist u ∈ Cβ(M) and h ∈ Cβ(M) such

that φ = u ◦ f − u+ h. Moreover, ∥u∥Cβ ≤ C and ∥h∥Cβ ≤ Cετ .

1. Introduction

Given a dynamical system f : M → M and a function φ : M → R, φ is called a
coboundary, if there exists a function u : M → R such that

(1.1) φ = u ◦ f − u.

Equation (1.1) is usually called the cohomological equation and u is called a solution
to this equation. The study of the cohomological equation has applications in many
problems including conjugacy of dynamical systems; ergodic optimization; rigidity
of group actions.

If f is a hyperbolic system, the fundamental work on the existence of solutions
to cohomological equations were first studied by Livšic [15, 14]. He proved that if
f is a hyperbolic system and φ is Hölder continuous, then φ is a coboundary if and
only if

n−1∑
i=0

φ(f ip) = 0, ∀p = fn(p), n ≥ 1.

In recent decades, cohomological equations was widely studied in different direc-
tions. For instance, the smooth regularity of solutions [4]; the function φ could be
replaced by a sequence of non-additive functions [8], or a general map φ : M → G,
where G is a metric group [10, 1]; cohomology of two cocycles [2, 3, 16]; the “ = ”
in (1.1) could be replaced by “ ≥ ” [17]; the system f could be nonuniformly hy-
perbolic [11, 20], partially hyperbolic [19], random Anosov [9], integrable systems
[5], or Axiom A flows [13]and so on.

In this article, we study a finite approximate version Livšic theorem over Anosov
diffeomorphisms.
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Theorem 1.1. Let f be a transitive Anosov diffeomorphism of a compact manifold
M and let 0 < α ≤ 1. There exist 0 < β ≤ α,C > 0 and τ > 0 such that for any
ε > 0 and any φ ∈ Cα(M) with ∥φ∥Cα ≤ 1 and∣∣∣∣∣

n∑
i=0

φ
(
f i(p)

)∣∣∣∣∣ ≤ ε, ∀p = fn(p) with n ≤ ε−
1
2 .

Then there exist u ∈ Cβ(M) and h ∈ Cβ(M) such that
φ(x) = u ◦ f(x)− u(x) + h(x), ∀x ∈ M.

Moreover, ∥u∥Cβ ≤ C and ∥h∥Cβ ≤ Cετ .

We note that a similar finite Livšic theorem was first studied by S. Katok [12]
in the case of contact Anosov flows on 3-dimensional manifolds. In [7], S. Gouëzel
and T. Lefeuvre generalized the result to general Anosov flows.

The proof of Theorem 1.1 relies on the following proposition. We say a subset
S is ε-separated, if S ∩B(x, ε) = {x} for every x ∈ S.

Proposition 1.2. Let f be a transitive Anosov diffeomorphism of a compact man-
ifold M . Fix any ε1 > 0. There exist βs, βd > 0 such that for any ε > 0 small
enough, there exists a periodic point p = fn(p) with n ≤ ε−

1
2 , such that the or-

bit O(p) is εβs-separated and {p, . . . , fn−2(p)} is εβd-dense in M. Moreover, there
exists N1 = N(ε1) ∈ N such that {p, . . . , fN1−1(p)} is ε1-dense in M.

We note that the orbit segment {p, . . . , fn−2(p)} considered in Proposition 1.2 is
utilized in equation (3.5) and (3.6), to make sure the function h = φ−(u◦f−u) ≡ 0
on {p, . . . , fn−2(p)}. We also mention the main difference between our setting
and that in [7]. In the Anosov flow setting, S. Gouëzel and T. Lefeuvre obtained
a periodic orbit that is separated only transversally to the flow direction, while
the periodic orbit in Proposition 1.2 is required separated in M, which creates
difficulties in the construction of the periodic orbit.

Given a periodic orbit O, denote by T (O) the period of O and
d(O) = min{d(x, y) : x, y ∈ O, x ̸= y}.

As a corollary of Proposition 1.2, we obtain the following result.

Corollary 1.3. Let f be a transitive Anosov diffeomorphism of a compact manifold
M . Then there exist C > 0, 0 < β < 1 and a sequence of periodic orbits {Ok} such
that

d(Ok)
β dim(M)T (Ok) ≥ C, and lim

k→+∞
T (Ok) = +∞.

Proof. By Proposition 1.2, there exist βs, βd > 0 such that for any ε = 2−k small
enough, there exists a periodic point pk such that the orbit Ok := O(pk) is 2−kβs -
separated and 2−kβd -dense in M . Note that there exists C̃ > 0 such that for any
x ∈ Ok, vol

(
B
(
x, 2−kβd

))
≤ C̃ ·2−kβd·dim(M). As Ok is 2−kβd -dense in M, it follows

that
vol(M) ≤ T (Ok) · C̃ · 2−kβd·dim(M).

Therefore, T (Ok) → +∞ as k → +∞, and

d(Ok)
βd
βs

dim(M)T (Ok) ≥ (2−kβs)
βd
βs

dim(M)T (Ok) ≥ vol(M) · C̃−1.

This proves the corollary. □
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We note that this result is related to a result of S. Gan and D. Yu in [6]. They
proved that if f is an endomorphism on a torus M which is ergodic with respect to
the Lebesgue measure, then there exists a sequence of of periodic orbits {Ok} such
that

d(Ok)
dim(M)T (Ok) ≥ C, and lim

k→+∞
T (Ok) = +∞.

We mention that in Corollary 1.3, f is a general Anosov diffeomorphism of a general
compact manifold M , and without the ergodic assumption. However, the result is
also weaker. We do not know whether β in Corollary 1.3 could be chosen equal to
1 or not if f is ergodic with respect to the Lebesgue measure.

2. Preliminaries

For any 0 < α ≤ 1, we denote by Cα(M) the set of α-Hölder continuous functions
on M. The α-Hölder norm of φ is defined by

∥φ∥Cα := sup
x∈M

|φ(x)|+ sup
x,y∈M,x ̸=y

|φ(x)− φ(y)|
d(x, y)α

= ∥φ∥C0 + ∥φ∥α.

Let f be a transitive Anosov diffeomorphism of a compact manifold M . Given
x ∈ M and n ∈ N, denote (x, n) = {x, f(x), . . . , fn−1(x)}. A sequence of orbit
segments {(xi, ni)}i∈Z is called an ε-pseudo orbit, if

d(fni(xi), xi+1) < ε, ∀i ∈ Z.

A pseudo orbit{(xi, ni)}i∈Z is called periodic, if there exists some m > 0 such that
(xi, ni) = (xi+m, ni+m) for all i ∈ Z.

The following shadowing lemma is the main tool we shall use to construct peri-
odic points. The exponential shadowing property in (2.1) is due to the local product
structure. Part of the proof can be found in [18, Proposition 2.7].

Lemma 2.1 (Bowen). Let f be a transitive Anosov diffeomorphism of a compact
manifold M. There exist C0 > 0, λ > 0 and ε0 > 0 such that for any 0 < ε < ε0
and any ε-pseudo orbit {(xi, ni)}i∈Z, there exists an orbit O(x) which shadows
{(xi, ni)}i∈Z up to C0ε. More precisely, for any 0 ≤ j ≤ ni,

(2.1) d
(
f ti+j(x), f j(xi)

)
< C0ε · e−λ·min{j,ni−j},

where

ti =


∑i−1

k=0 nk, if i > 0,
0, if i = 0,

−
∑−1

k=i nk, if i < 0.

Finally, if the pseudo orbit {(xi, ni)}i∈Z is periodic, then O(x) is also periodic.

Remark. As a special case, if the ε-pseudo orbit is

{. . . , f−1(x0), x0}, (x1, n1), . . . , (xk−1, nk−1), {xk, f(xk), . . . },

then (2.1) could be replaced by

(2.2) d
(
f−j(x), f−j(x0)

)
< C0ε · e−λj , and d

(
f tk+j(x), f j(xk)

)
< C0ε · e−λj .
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3. Proof of the approximate Livšic theorem

We begin by proving Proposition 1.2.

Proof of Proposition 1.2. For the sake of convenience, one can refer to Figure 1 for
a visual representation of the proof. Let us fix two periodic points p1 = f l1(p1)
and p2 = f l2(p2) such that Wu

loc(p1) ∩W s
loc(p2) ̸= ∅ and W s

loc(p1) ∩Wu
loc(p2) ̸= ∅.

Denote {z1} = Wu
loc(p1)∩W s

loc(p2) and {z2} = W s
loc(p1)∩Wu

loc(p2). Since the orbit
of z1 is asymptotic to O(p1) in negative time and to O(p2) in positive time, one
can choose 0 < ρ0 < ε0 small enough (where ε0 is given by Lemma 2.1) such that
(3.1) B(z1, 3ρ0) ∩ O(z1) = {z1}, and B(p1, 3ρ0) ∩ O+(z1) = {p1}.

As z1 ∈ Wu
loc(p1), for any 0 < ε < ε0, one can choose C1 > 0 large enough (C1

is independent of ε) such that
d(f−iz1, f

−ip1) < ε, ∀i ≥ C1| log ε|.

It follows that there exists n1 = [C1| log ε|] + k with 1 ≤ k ≤ l1 such that
d(f−n1(z1), p1) = d(f−n1(z1), f

−n1(p1)) < ε.

We denote n1 = [C1| log ε|] + O(1) for simplicity. Similarly, if C1 > 0 is large
enough, there exists n2 = [C1| log ε|] +O(1) such that

d(fn2(z2), p1) < ε.

We claim that there exists T1 ∈ N+ such that for any x, y ∈ M, there ex-
ists an orbit segment {w, fw, . . . , fkw} with 1 ≤ k ≤ T1 such that d(x,w) < ρ0

C0

and d(y, fkw) < ρ0

C0
, where C0 is given by Lemma 2.1. Indeed, as f is transi-

tive, there exists a dense orbit O(x0). Choose T0 ∈ N+ large enough such that
{x0, fx0, . . . , f

T0x0} is ρ0

C0
-dense in M . Then take T1 > T0 large enough such

that {fT0+1x0, . . . , f
T1x0} is ρ0

C0
-dense in M . Now for any x, y ∈ M, there exist

nx ∈ [0, T0] and ny ∈ [T0+1, T1] such that d(x, fnxx0) <
ρ0

C0
and d(y, fnyx0) <

ρ0

C0
.

This proves the claim. We denote by γx,y the orbit segment {w, fw, . . . , fk−1w}.
For any x ∈ M , we construct a periodic pseudo orbit γx as follows. Consider the

orbit segments{
. . . , f4[C1| log ε|]−1(z1), f

4[C1| log ε|](z1)
}
, γf4[C1| log ε|]+1(z1),f−[C1| log ε|](x),{

f−[C1| log ε|](x), . . . , f [C1| log ε|](x)
}
, γf [C1| log ε|]+1(x),z2

,
{
z2, f(z2), . . .

}
.

Note that these 5 segments form a ρ0

C0
-pseudo orbit. Then Lemma 2.1 yields an

orbit O(y) ρ0-shadows the above pieces of orbits. Suppose that y shadows f−n1(z1)
and fN (y) shadows fn2(z2) for some N ≥ 1. If C1 is large enough, (2.2) gives

d
(
y, f−n1(z1)

)
< ε, and d

(
fN (y), fn2(z2)

)
< ε.

Which implies
(3.2) d (y, p1) < 2ε, and d

(
fN (y), p1

)
< 2ε.

As y and N are determined by x, we denote γx :=
{
y, . . . , fN−1(y)

}
. Then (2.1)

implies x is within distance ε of γx if C1 is large enough. Moreover,
(3.3) Card(γx) = 8[C1| log ε|] +O(1) < 9[C1| log ε|],

if ε > 0 is small enough.
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Figure 1. Construction of γx.

Let us fix a point x1 ∈ M such that O(x1) is dense in M and then choose
N1 ≥ 1 such that {x1, . . . , f

N1−1(x1)} is ε1
2 -dense in M, to guarantee the last

conclusion of the proposition holds. Let βd = 1
3 dim(M) . For any x ∈ M , note that

d(γx, x) < ε < 1
2ε

βd if ε is small enough, that is, B(γx,
1
2ε

βd) is a neighborhood of
x. If γx1 is not 1

2ε
βd -dense in M , choose x2 ∈ M \B(γx1 ,

1
2ε

βd). If γx1 ∪ γx1 is still
not 1

2ε
βd -dense, choose x3 ∈ M \B(γx1

∪γx2
, 1
2ε

βd) and so on. By the compactness
of M , there exist finite points x2, . . . , xK such that γx1

∪ · · · ∪ γxK
is 1

2ε
βd -dense in

M. By (3.2),
. . . , γxK

, γx1
, . . . , γxK

, γx1
, . . .

is a periodic 4ε-pseudo orbit. Then by Lemma 2.1, there exists a periodic orbit
{p, . . . , fn−1(p)} which 4C0ε-shadows them. We prove p = fn(p) is the required
periodic point.

We check the period first. For any 1 ≤ i < j ≤ K,

d(xj , xi) ≥ d(xj , γxi
)− d(γxi

, xi) ≥
1

2
εβd − ε >

1

3
εβd ,

if ε is small enough. Thus the balls {B(xi,
1
6ε

βd)}1≤i≤K are disjoint, with volume

vol
(
B
(
xi,

1

6
εβd

))
≥ C−1

2 · εβd·dim(M) = C−1
2 · ε 1

3 ,
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where C2 > 0 is a constant. This proves K ≤ vol(M)C2 · ε−
1
3 . By (3.3), the period

n is bounded by n ≤ K · 9[C1| log ε|] ≤ ε−
1
2 if ε is small enough.

Let us estimate the density. As γx1
∪ · · · ∪ γxK

is 1
2ε

βd -dense in M and O(p)

4C0ε-shadows them, it follows that O(p) is 1
2ε

βd + 4C0ε ≤ εβd dense in M if ε
is small enough. However, in the statement of the proposition, we require a little
stronger that {p, . . . , fn−2(p)} is εβd -dense. Note that for every 1 ≤ i ≤ K, the last
element in γxi

is within eλε of fn2−1(z2). Denote by yK the last element in γxK
.

Then yK is within 2eλε of the last element in γx1
, which implies ∪K

i=1γxi
\ {yK} is

1
2ε

βd + 2eλε dense in M . Therefore, {p, . . . , fn−2(p)} is 1
2ε

βd + 2eλε+ 4C0ε ≤ εβd

dense in M if ε is small enough. Since {x1, . . . , f
N1−1(x1)} is ε1

2 -dense in M, if ε is
small enough, one has {p, . . . , fN1−1(p)} is ε1

2 + 4C0ε ≤ ε1 dense in M,
At last, we check the separation. Let βs = 30C1 log ∥Df∥ + 1, where ∥Df∥ =

supx∈M ∥Dxf∥. Then for any x, y ∈ M with d(x, y) < εβs , and any 1 ≤ k ≤
30[C1| log ε|], one has
(3.4) d(fk(x), fk(y)) ≤ ∥Df∥kd(x, y) ≤ ∥Df∥30C1| log ε| · εβs = ε.

Suppose that there exist x, y ∈ O(p) with d(x, y) < εβs . As every γxk
has at most

9[C1| log ε|] elements, there exists 0 ≤ t1 ≤ 9[C1| log ε|] such that f t1(x) shadows
the first element in γxi for some 1 ≤ i ≤ K. Denote by γxi(k) the (k+1)-th element
in γxi . Then

d
(
f t1(x), γxi

(0)
)
≤ 4C0ε.

Denote x̃ = f t1+n1(x) and ỹ = f t1+n1(y). Then
d(x̃, z1) ≤ d(x̃, γxi

(n1)) + d(γxi
(n1), z1)

≤ 4C0ε+ ρ0.

Claim. f t1(y) could not be within 4C0ε of γxj (k) for any k ̸= 0 and any 1 ≤ j ≤ K.

Proof of the Claim. We prove by contradiction. If d
(
f t1(y), γxj

(k)
)
≤ 4C0ε for

some k ≥ 1, we split it into two cases.
Case 1: 1 ≤ k ≤ 4[C1| log ε|], that is, γxj

(k+n1) shadows fk(z1) up to ρ0. Then
d(ỹ, fk(z1)) ≤ d(ỹ, γxj (k + n1)) + d(γxi(k + n1), f

k(z1))

≤ 4C0ε+ ρ0.

By (3.4), d(x̃, ỹ) ≤ ε. It follows that
d(z1, f

k(z1)) ≤ d(z1, x̃) + d(x̃, ỹ) + d(ỹ, fk(z1))

≤ (8C0 + 1)ε+ 2ρ0

< 3ρ0,

if ε is small enough. This is a contradiction with (3.1).
Case 2: 4[C1| log ε|] < k < Card(γxj ), that is, γxj (k + n1) shadows a point in

γf4[C1| log ε|]+1(z1),f−[C1| log ε|](x),
{
f−[C1| log ε|](x), . . . , f [C1| log ε|](x)

}
, γf [C1| log ε|]+1(x),z2

,

or
{
z2, . . . , f

n2−1(z2)
}
. Then there exists 1 ≤ m ≤ 3[C1| log ε|] + O(1) such that

fm(ỹ) shadows fn2(z2) up to 4C0ε+ ε, and hence is within (4C0 +2)ε of p1. How-
ever, as 3[C1| log ε|] +O(1) < 4[C1| log ε|], fm(x̃) shadows fm(z1) up to 4C0ε+ ρ0.
It implies that

d(p1, f
m(z1)) ≤ d(p1, f

m(ỹ)) + d(fm(ỹ), fm(x̃)) + d(fm(x̃), fm(z1))

≤ (8C0 + 3)ε+ ρ0 < 3ρ0,
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if ε is small enough. This contradicts with (3.1). The proof of the claim completes.
□

The above claim shows that there exists 1 ≤ j ≤ K such that f t1(y) shadows
γxj

(0) up to 4C0ε. To end the proof, it’s left to prove i = j. Otherwise, suppose
that i < j. As xj is within distance ε of γxj

, there exists k = 6[C1| log ε|] + O(1)
such that d(xj , γxj

(k)) < ε. Note that

d(γxj (k), γxi(k)) ≤ d(γxj (k), f
t1+k(y)) + d(f t1+k(y), f t1+k(x)) + d(f t1+k(x), γxi(k))

≤ 4C0ε+ ε+ 4C0ε = (8C0 + 1)ε.

It follows that d(xj , γxi(k)) ≤ (8C0+2)ε. This is a contradiction with d(xj , γxi(k)) >
1
2ε

βd and 1
2ε

βd > (8C0 + 2)ε if ε is small enough. □

We now prove the main result Theorem 1.1.The proof mainly relies on Proposi-
tion1.2.

Proof of Theorem 1.1. Let ε2 > 0 be small enough such that Proposition 1.2 applies
for any 0 < ε < ε2. If ε ≥ ε2. Take u = 0 and h = φ. Then it’s clear that u and
φ satisfy the requirement of Theorem 1.1. Thus we may assume 0 < ε < ε2. Let
p = fn(p) be a periodic point given by Proposition 1.2, with ε1 = ε0. Denote
On−2(p) := {p, f(p), . . . , fn−2(p)} and define ũ : On−2(p) → R by ũ(p) = 0 and

(3.5) ũ(fk(p)) =

k−1∑
i=0

φ
(
f i(p)

)
, ∀1 ≤ k ≤ n− 2.

We first study the Hölder regularity of ũ. Suppose that x = fk(p), y = fk+m(p) ∈
On−2(p) with d(x, y) < ε0, where ε0 is given by Lemma 2.1. Then there exists a
periodic point q = fm(q) such that d

(
f i(x), f i(q)

)
< C0d(x, y) · e−λ·min{i,m−i} for

every 0 ≤ i ≤ m. By Proposition 1.2, d(x, y) > εβs and m < n ≤ ε−
1
2 . Hence by

assumption, ∣∣∣∣∣
m−1∑
i=0

φ(f i(q))

∣∣∣∣∣ ≤ mε ≤ ε
1
2 < d(x, y)

1
2βs .

As ∥φ∥Cα ≤ 1, it follows that

|ũ(x)− ũ(y)| ≤

∣∣∣∣∣
m−1∑
i=0

φ(f i(x))−
m−1∑
i=0

φ(f i(q))

∣∣∣∣∣+
∣∣∣∣∣
m−1∑
i=0

φ(f i(q))

∣∣∣∣∣
≤

m−1∑
i=0

(
C0 · e−λ·min{i,m−i}d(x, y)

)α

+ d(x, y)
1

2βs

≤ C1d(x, y)
β1 ,

where C1 is a constant independent of ε and β1 = min{α, 1
2βs

}.
We now estimate the C0 norm of ũ on On−2(p). By Proposition 1.2, there exists

N1 = N1(ε0) such that {p, f(p), . . . , fN1−1(p)} is ε0-dense in M . Since ∥φ∥Cα ≤ 1,
for any 0 ≤ k < N1,

|ũ(fk(p))| ≤

∣∣∣∣∣
k−1∑
i=0

φ(f i(q))

∣∣∣∣∣ ≤ N1.
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For any x ∈ On−2(p), choose 0 ≤ k < N1 such that d(x, fk(p)) < ε0. Then we
conclude that

|ũ(x)| ≤ |ũ(x)− ũ(fkp)|+ |ũ(fkp)| ≤ C1ε
β1

0 +N1.

Therefore, there exists C2 > 0 independent of ε such that
∥ũ∥Cβ1 (On−2(p)) ≤ C2.

We extend the function ũ to M as follows:
u(x) = sup

z∈On−2(p)

(
ũ(z)− C2d(x, z)

β1
)
, ∀x ∈ M.

Then by definition, u = ũ on On−2(p). Let’s estimate the Cβ1 norm of u. For
any x1, x2 ∈ M , suppose that u(xi) = ũ(zi) − C2d(xi, zi)

β1 , where i = 1, 2 and
zi ∈ On−2(p). Then
ũ(z1)− C2d(x2, z1)

β1 ≤ sup
z∈On−2(p)

(
ũ(z)− C2d(x2, z)

β1
)
= ũ(z2)− C2d(x2, z2)

β1 .

It follows that
u(x1)− u(x2) = ũ(z1)− C2d(x1, z1)

β1 −
(
ũ(z2)− C2d(x2, z2)

β1
)

≤ ũ(z1)− C2d(x1, z1)
β1 −

(
ũ(z1)− C2d(x2, z1)

β1
)

≤ C2d(x1, x2)
β1 .

Swapping x1 and x2, we obtain |u(x1) − u(x2)| ≤ C2d(x1, x2)
β1 . Since ∥u∥C0 ≤

∥ũ∥C0 + C2diam(M)β1 ≤ C2 + C2diam(M)β1 =: C3, we conclude that
∥u∥Cβ1 ≤ C3.

We now set
(3.6) h = φ− (u ◦ f − u).

Then h is Cβ1 Hölder continuous with ∥h∥Cβ1 ≤ C4, where C4 is a constant inde-
pendent of ε. By definition, h|On−2(p) ≡ 0. As On−2(p) is εβd -dense, for any x ∈ M ,
there exists px ∈ On−2(p) such that d(x, px) ≤ εβd . Thus

|h(x)| = |h(x)− h(px)| ≤ C4d(x, px)
β1 ≤ C4ε

β1βd ,

and hence ∥h∥C0 ≤ C4ε
β1βd . To finish the proof, we estimate the C

1
2β1 norm of h.

For any x ̸= y ∈ M, if d(x, y) ≤ εβd , by ∥h∥Cβ1 ≤ C4,

|h(x)− h(y)|
d(x, y)

1
2β1

≤ C4d(x, y)
1
2β1 ≤ C4ε

1
2β1βd .

If d(x, y) > εβd , by ∥h∥C0 ≤ C4ε
β1βd ,

|h(x)− h(y)|
d(x, y)

1
2β1

≤ 2C4ε
β1βd

ε
1
2β1βd

= 2C4ε
1
2β1βd .

Therefore, ∥h∥
C

1
2
β1

= ∥h∥C0 + ∥h∥ 1
2β1

≤ 3C4ε
1
2β1βd . Let C = 3C4, β = 1

2β1 and
τ = 1

2β1βd. Then the proof of Theorem 1.1 completes. □
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