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Abstract This paper investigates the theoretical and numerical stability of
the one-dimensional Bresse system with fractional damping terms in a bounded
domain. We first establish the well-posedness of the system. Using the fre-
quency domain approach and a theorem by Borichev and Tomilov, we derive
the polynomial decay rate of the system. To validate these theoretical results,
we propose a numerical scheme and compare its performance with the Frac-
tional Physics-Informed Neural Network (fPINN). The comparative analysis
highlights the effectiveness of traditional numerical methods and fPINNs in
capturing the decay rate, offering new insights into the advancement of com-
putational techniques for complex physical systems.
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1. Introduction

This paper is dedicated to the study of the one-dimensional linear Bresse system,
given by: 

ρ1φtt − κ(φx + ψ + lw)x − κ0l(wx − lφ) + ∂α1,η
t φ = 0,

ρ2ψtt − bψxx + κ(φx + ψ + lw) + ∂α2,µ
t ψ = 0,

ρ1wtt − κ0(wx − lφ)x + κl(φx + ψ + lw) + ∂α3,ν
t w = 0,

(1.1)
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where (x, t) ∈ (0, L) × (0,+∞) denote the space and time variables, respectively.
The constants ρ1, ρ2, κ0, κ, l, and b are positive, η is a non-negative constant, and
αi ∈ (0, 1) for i = 1, 2, 3.
The initial conditions are given by:

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, L),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, L),

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, L).

(1.2)

The boundary conditions are:

φx(t, x) = ψx(t, x) = wx(t, x) = 0, for x = 0, L,

φ(t, x) = ψ(t, x) = w(t, x) = 0, for x = 0, L.
(1.3)

The notation ∂α,ηt stands for the generalized Caputo fractional derivative of order
α, 0 < α < 1, with respect to the time t. It is defined as follows:

∂α,ηt f(t) =
1

Γ(1− α)

∫ t

0

(t− s)−α e−η(t−s) df
ds

(s) ds, η ≥ 0.

Here, x and t denote the space and time variables, respectively.
The Bresse system, or the curved beam [1], is modeled by the system:

ρ1φtt − κ(φx + ψ + lw)x − κ0l(wx − lφ) = 0,

ρ2ψtt − bψxx + κ(φx + ψ + lw) = 0,

ρ1wtt − κ0(wx − lφ)x + κl(φx + ψ + lw) = 0.

The terms κ0l(wx − lφ), κ(φx + ψ + lw), and bψx denote the axial force, the shear
force, and the bending moment, respectively. The functions φ, ψ, and w represent,
respectively, the transverse displacement of a curved beam, the rotation angle of
the filament, and the longitudinal displacement. We denote by κ0 = EH, κ = GH,
b = EI, where ρ1, ρ2, l, G, E, and H are positive constants characterizing the
physical properties of the beam and the filament. Additionally, l = 1

R , where R is
the radius of curvature (see [2, 3] for more details).
In [4], B. Mbodje explored the asymptotic behavior of solutions for the system:

∂2t u(x, t)− uxx(x, t) = 0, (x, t) ∈ (0, 1)× (0,+∞),

u(0, t) = 0,

∂xu(1, t) = −k∂α,ηt u(1, t), α ∈ (0, 1), η ≥ 0, k > 0,

u(x, 0) = u0(x),

∂tu(x, 0) = v0(x).

He proved strong asymptotic stability of solutions when η = 0, and a polynomial
decay rate of t−1 as time tends to infinity when η ̸= 0. The energy method was
used to establish the polynomial decay rate. Akil et al., in [5] under the equal
speed propagation condition, they established the optimal polynomial energy decay
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rate and they proved the indirect boundary exact controllability of the Timoshenko
system with mixed Dirichlet–Neumann boundary conditions and boundary con-
trol. In [6,7] studied the stabilization for a coupled wave equations with fractional-
damping. They proved the polynomial stability of the system. Recently, in [8] they
proved the energy decay of hyperbolic systems of wave-wave, wave-Euler Bernoulli
beam and beam-beam types. they established different types of polynomial energy
decay rate which depends on the order of the fractional derivative and the type of
the damped equation in the system.
In [9], the Bresse model for circular beams, with the addition of two frictional dissi-
pations in the system, was analyzed. Exponential stability was found if and only if
κ = κ0, with polynomial decay in the general case. The problem of the optimality
of the polynomial decay rate was also studied. In [10], the exponential decay of a
dissipative Bresse system was demonstrated using techniques developed in [11], and
numerical simulations were provided to support their results.

When thermal effects are considered, the asymptotic behavior of the Bresse
system may become more complicated due to the coupling between elasticity and
heat conduction. Currently, there are some theoretical and numerical results on the
asymptotic behavior of thermoelastic Bresse systems [12,13].

Recently, in [14], Beniani et al. examined a system comprising coupled wave
equations featuring a diffusive internal control of a general nature:



∂ttu−∆xu+ ζ
∫ +∞
−∞ ϱ(ω)ϕ(x, ω, t) dω + βv = 0,

∂ttv −∆xv + ζ
∫ +∞
−∞ ϱ(ω)φ(x, ω, t) dω + βu = 0,

u = v = 0, on ∂Ω,

ϕt(x, ω, t) + (ω2 + η)ϕ(x, ω, t)− ∂tuϱ(ω) = 0,

φt(x, ω, t) + (ω2 + η)φ(x, ω, t)− ∂tvϱ(ω) = 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),

v(x, 0) = v0(x), ∂tv(x, 0) = v1(x),

ϕ(x, ω, 0) = ϕ0(x, ω), and φ(x, ω, 0) = φ0(x, ω).

They demonstrated the absence of exponential stability and investigated the asymp-
totic stability of the model, establishing a general decay rate that is dependent on
the density function ϱ.
Numerically, the finite element method has been widely used in many studies re-
lated to control systems (see [15–18]). However, to the best of my knowledge, no
study has yet validated the decay rate using the Fractional Physics-Informed Neural
Network (fPINN).

This paper is organized as follows: In Section 2, we prove the well-posedness
of System (1.1) using arguments that combine semigroup theory. In Section 3, we
establish the polynomial stability of the Bresse system (1.1) through a frequency
domain approach and a theorem by Borichev and Tomilov. Section 4 is dedicated
to the discretization of the energy using the finite element method, and Section 5
explores the fPINN approach.
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2. Augmented model and well-posedness of the sys-
tem

This section is concerned with the reformulation of the model (1.1) into an aug-
mented system. We need the following theorem:

Theorem 2.1. [19] Let µ be the function:

µ (ξ) = |ξ|(2α−1)/2
, ξ ∈ R, 0 < α < 1.

Consider the system governed by the equation

∂tφ (x, ξ, t) +
(
|ξ|2 + η

)
φ (x, ξ, t)− U(x, t)µ (ξ) = 0, ξ ∈ R, η ≥ 0, t > 0,

with the initial condition

φ (x, ξ, 0) = 0,

and the output defined as

O (x, t) = π−1 sin (απ)

∫
R
µ (ξ)φ (x, ξ, t) dξ.

The relationship between the ’input’ U and the ’output’ O is then given by

O(x, t) = I1−α,ηU(x, t) = Dα,ηU(x, t),

where

[Iα,ηf ] (t) =
1

Γ (α)

∫ t

0

(t− τ)α−1
e−η(t−τ)f (τ) dτ.

We also need the following lemma in the sequel:

Lemma 2.1. [20] If λ ∈ D = {λ ∈ C | ℜλ+ η > 0} ∪ {ℑλ ̸= 0}, then

τ(α)

∫
Rn

µ2 (ξ)

λ+ η + ξ2
dξ = (λ+ η)

α−1
,

where τ(α) = π−1 sin(απ).

Lemma 2.2. If λ ∈ Dη = C\]−∞,−η], then∫ +∞

−∞

|ξ|µ(ξ)
(iλ+ ξ2 + η)2

dξ =
1− 2α

4

π

sin (2α+3)
4 π

(iλ+ η)
(2α−5)

4 , (2.1)

∫ +∞

−∞

1

|iλ+ ξ2 + η|2
dξ ≤ π

2
|iλ+η|− 3

2 and

∫ +∞

−∞

|ξ|2

|iλ+ ξ2 + η|4
dξ ≤ π

16
|iλ+η|− 5

2 .

Using the previous theorem, the system (1.1) can be rewritten as the following
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augmented model:

ρ1φtt − κ(φx + ψ + lw)x − κ0l(wx − lφ) + ζ1

∫
R
µ (ξ)ϕ1 (x, ξ, t) dξ = 0,

ρ2ψtt − bψxx + κ(φx + ψ + lw) + ζ2

∫
R
µ (ξ)ϕ2 (x, ξ, t) dξ = 0,

ρ1wtt − κ0(wx − lφ)x + κl(φx + ψ + lw) + ζ3

∫
R
µ (ξ)ϕ3 (x, ξ, t) dξ = 0,

∂tϕ1 (x, ξ, t) +
(
ξ2 + η

)
ϕ1 (x, ξ, t)− µ (ξ) ∂tφ(x, t) = 0,

∂tϕ2 (x, ξ, t) +
(
ξ2 + η

)
ϕ2 (x, ξ, t)− µ (ξ) ∂tψ(x, t) = 0,

∂tϕ3 (x, ξ, t) +
(
ξ2 + η

)
ϕ3 (x, ξ, t)− µ (ξ) ∂tw(x, t) = 0,

(2.2)

where (x, ξ, t) ∈ (0, L)× R× (0,+∞) and with the following initial conditions:

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, L),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, L),

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, L).

For a solution U = (φ,φt, ψ, ψt, w, wt, ϕ1, ϕ2, ϕ3) of (2.2), we define the energy by

E(t) =
1

2

∫ L

0

(
ρ1|φt|2 + ρ2|ψt|2 + ρ1|wt|2 + b|ψx|2 + κ0|wx − lφ|2 + κ|φx + ψ + lw|2

)
dx

+
1

2

3∑
i=1

ζi

∫ L

0

(∫
R
|ϕi|2 dξ

)
dx,

(2.3)
where ζi = γiπ

−1 sin(αiπ).
The following lemma characterizes the decay of the energy functional for the system
described by (2.2).

Lemma 2.3. Let U = (φ,φt, ψ, ψt, w, wt, ϕ1, ϕ2, ϕ3) be a regular solution of the
problem (2.2). Then, the functional energy defined in equation (2.3) satisfies

d

dt
E(t) = −

3∑
i=1

ζi

∫ L

0

∫
R

(
|ξ|2 + η

)
|ϕi(x, ξ, t)|2 dξ dx.

Proof. Multiplying the equations (2.2)1, (2.2)2, and (2.2)3 by φt, ψt, and wt
respectively, using integration by parts over (0, L), and adding the results, we obtain

1

2

d

dt

(∫ L

0

(
ρ1|φt|2 + ρ2|ψt|2 + ρ1|wt|2 + b|ψx|2 + κ0|wx − lφ|2 + κ|φx + ψ + lw|2

)
dx

)
+

∫ L

0

(ζ1φt

∫
R
µ(ξ)ϕ1(x, ξ, t)dξ + ζ2ψt

∫
R
µ(ξ)ϕ2(x, ξ, t)dξ + ζ3wt

∫
R
µ(ξ)ϕ3(x, ξ, t)dξ)dx

= 0.

(2.4)
Multiplying the equations (2.2)4, (2.2)5, and (2.2)6 by ξ1ϕ1, ξ2ϕ2, and ξ3ϕ3 respec-
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tively, integrating over (0, L)× R, and summing, we obtain

∫ L

0

(
ζ1φt

∫
R
µ(ξ)ϕ1(x, ξ, t)dξ + ζ2ψt

∫
R
µ(ξ)ϕ2(x, ξ, t)dξ + ζ3wt

∫
R
µ(ξ)ϕ3(x, ξ, t)dξ

)
dx

=
1

2

d

dt

(
3∑
i=1

ξi

∫ L

0

∫
R
|ϕi|2 dξ dx

)
+

3∑
i=1

ξi

∫ L

0

∫
R

(
ξ2 + η

)
|ϕi(x, ξ, t)|2 dξ dx.

(2.5)
Combining the equations (2.4) and (2.5), we obtain

d

dt
E(t) = −

3∑
i=1

ζi

∫ L

0

∫
R

(
ξ2 + η

)
|ϕi(x, ξ, t)|2 dξ dx.

This completes the proof of the lemma.

We now discuss the well-posedness of (2.2). To this end, we introduce the
following Hilbert space, which serves as the energy space:

H =
(
H1(0, L)× L2(0, L)

)3 × (L2(R)
)3
.

For U = (φ,φt, ψ, ψt, w, wt, ϕ1, ϕ2, ϕ3)
T and Ũ = (φ̃, φ̃t, ψ̃, ψ̃t, w̃, w̃t, ϕ̃1, ϕ̃2, ϕ̃3)

T ,
we define the following inner product in H:

〈
U, Ũ

〉
H

=

∫ L

0

(
ρ1φtφ̃t + ρ2ψtψ̃t + ρ1wtw̃t + bφxφ̃x

)
dx

+

∫ L

0

κ0(φx − lφ)(φ̃x − lφ̃) dx

+

∫ L

0

κ(φx + ψ + lw)(φ̃x + ψ̃ + lw̃) dx+

3∑
i=1

ξi

∫
R
ϕiϕ̃i dξ.

We then reformulate the system (2.2) in the context of semigroup theory.
Introducing the vector function U = (u1, u2, u3, u4, u5, u6, ϕ1, ϕ2, ϕ3)

T , the system
(2.2) can be reformulated as:

U ′ = AU, t > 0,

U(0) = U0,

where U0 :=
(
φ0, φ1, ψ0, ψ1, w0, w1, ϕ

0
1, ϕ

0
2, ϕ

0
3

)T
.
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The operator A is linear and is defined by

A



u1

u2

u3

u4

u5

u6

ϕ1

ϕ2

ϕ3



=



u2

κ
ρ1
(u1x + u3 + lu5)x +

κ0l
ρ1

(u5x − lu1)− ζ1
ρ1

∫
R µ(ξ)ϕ1(x, ξ, t) dξ

u4

b
ρ2
u3xx − κ

ρ2
(u1x + u3 + lu5)− ζ2

ρ2

∫
R µ(ξ)ϕ2(x, ξ, t) dξ

u6

κ0

ρ1
(u5x − lu1)x − κl

ρ1
(u1x + u3 + lu5)− ζ3

ρ1

∫
R µ(ξ)ϕ3(x, ξ, t) dξ

−(ξ2 + η)ϕ1 + u2(x)µ(ξ)

−(ξ2 + η)ϕ2 + u4(x)µ(ξ)

−(ξ2 + η)ϕ3 + u6(x)µ(ξ)



.

The domain of the operator A is given by

D (A) =



(u1, u2, u3, u4, u5, u6, ϕ1, ϕ2, ϕ3)
T ∈ H | u1, u3, u5 ∈ H2 ∩H1,

ξϕ1, ξϕ2, ξϕ3 ∈ L2(R),

−
(
|ξ|2 + η

)
ϕi + u2i(x)µ(ξ) ∈ L2(R), i = 1, 2, 3,

φx(t, x) = ψx(t, x) = wx(t, x) = φ(t, x) = ψ(t, x) = w(t, x) = 0

for x = 0, L.


.

Theorem 2.2. 1. If U0 ∈ D (A), then system (2.2) has a unique strong solution

U ∈ C0 (R+, D (A)) ∩ C1 (R+,H) .

2. If U0 ∈ H, then system (2.2) has a unique weak solution

U ∈ C0 (R+,H) .

Proof. First, we prove that the operator A is dissipative.
For any U = (u1, u2, u3, u4, u5, u6, ϕ1, ϕ2, ϕ3) ∈ D(A), we have

Re ⟨AU,U⟩H = −
3∑
i=1

ζi

∫
R

(
ξ2 + η

)
|ϕi(x, ξ, t)|2 dξ ≤ 0.

Hence, A is dissipative.

We will now show that the operator I −A is surjective.
Given F = (f1, f2, f3, f4, f5, f6, f7, f8, f9) ∈ H, we need to prove that there exists
U = (u1, u2, u3, u4, u5, u6, ϕ1, ϕ2, ϕ3) ∈ D(A) satisfying

(I −A)U = F.
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That is,



u1 − u2 = f1,

u2 −
κ

ρ1
(u1x + u3 + lu5)x −

κ0l

ρ1
(u5x − lu1) +

ζ1
ρ1

∫
R
µ(ξ)ϕ1(x, ξ, t) dξ = f2,

u3 − u4 = f3,

u4 −
b

ρ2
u3xx +

κ

ρ2
(u1x + u3 + lu5) +

ζ2
ρ2

∫
R
µ(ξ)ϕ2(x, ξ, t) dξ = f4,

u5 − u6 = f5,

u6 −
κ0
ρ1

(u5x − lu1)x +
κl

ρ1
(u1x + u3 + lu5) +

ζ3
ρ1

∫
R
µ(ξ)ϕ3(x, ξ, t) dξ = f6,

ϕ1(1 + ξ2 + η)− µ(ξ)u2(x, t) = f7,

ϕ2(1 + ξ2 + η)− µ(ξ)u4(x, t) = f8,

ϕ3(1 + ξ2 + η)− µ(ξ)u6(x, t) = f9.

(2.6)
Then, from (2.6)7, (2.6)8, and (2.6)9, we obtain:


ϕ1 =

f7 + µ(ξ)u2(x, t)

1 + ξ2 + η
,

ϕ2 =
f8 + µ(ξ)u4(x, t)

1 + ξ2 + η
,

ϕ3 =
f9 + µ(ξ)u6(x, t)

1 + ξ2 + η
.

(2.7)

Inserting the equations (2.6)1 into (2.6)2, (2.6)3 into (2.6)4, and (2.6)5 into (2.6)6,
we obtain:


ρ1u1 − κ(u1x + u3 + lu5)x − κ0l(u5x − lu1) + ζ1

∫
R
µ(ξ)ϕ1(x, ξ, t) dξ = ρ1(f1 + f2),

ρ2u3 − bu3xx + κ(u1x + u3 + lu5) + ζ2

∫
R
µ(ξ)ϕ2(x, ξ, t) dξ = ρ2(f3 + f4),

ρ1u5 − κ0(u5x − lu1)x + κl(u1x + u3 + lu5) + ζ3

∫
R
µ(ξ)ϕ3(x, ξ, t) dξ = ρ1(f5 + f6).

(2.8)
Solving the system (2.8) is equivalent to finding u1, u3, u5 ∈ H2(0, L) ∩ H1(0, L)
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such that:

∫ L

0

[
ρ1u1 − κ(u1x + u3 + lu5)x − κ0l(u5x − lu1) + ζ1

∫
R
µ(ξ)ϕ1(x, ξ, t) dξ

]
χdx

=

∫ L

0

ρ1 [f1 + f2]χdx,∫ L

0

[
ρ2u3 − bu3xx + κ(u1x + u3 + lu5) + ζ2

∫
R
µ(ξ)ϕ2(x, ξ, t) dξ

]
ζ dx

=

∫ L

0

[ρ2(f3 + f4)] ζ dx,∫ L

0

[
ρ1u5 − κ0(u5x − lu1)x + κl(u1x + u3 + lu5) + ζ3

∫
R
µ(ξ)ϕ3(x, ξ, t) dξ

]
W dx

=

∫ L

0

[ρ1(f5 + f6)]W dx,

(2.9)
for all χ, ζ,W ∈ H1(0, L).

Inserting the equations (2.7)1 into (2.9)1, (2.7)2 into (2.9)2, and (2.7)3 into (2.9)3,
we obtain:

∫ L

0

[
ρ1u1 − κ(u1x + u3 + lu5)x − κ0l(u5x − lu1) + ζ1u1(x, t)

∫
R

µ2(ξ)

1 + ξ2 + η
dξ

]
χdx

=

∫ L

0

[
ρ1f1 + ρ1f2 + ζ1

∫
R

µ(ξ)(µ(ξ)f1 − f7)
1 + ξ2 + η

dξ

]
χdx,∫ L

0

[
ρ2u3 − bu3xx + κ(u1x + u3 + lu5) + ζ2u3(x, t)

∫
R

µ2(ξ)

1 + ξ2 + η
dξ

]
ζ dx

=

∫ L

0

[
ρ2(f3 + f4) + ζ2

∫
R

µ(ξ)(µ(ξ)f3 − f8)
1 + ξ2 + η

dξ

]
ζ dx,∫ L

0

[
ρ1u5 − κ0(u5x − lu1)x + κl(u1x + u3 + lu5) + ζ3u5(x, t)

∫
R

µ2(ξ)

1 + ξ2 + η
dξ

]
W dx

=

∫ L

0

[
ρ1(f5 + f6) + ζ3

∫
R

µ(ξ)(µ(ξ)f5 − f9)
1 + ξ2 + η

dξ

]
W dx.

(2.10)
Consequently, the problem (2.10) is equivalent to the problem:

a ((u1, u3, u5) , (χ, ζ,W )) = L (χ, ζ,W ) , (2.11)

where

a ((u1, u3, u5) , (χ, ζ,W )) =

∫ L

0

[ρ1u1 − κ(u1x + u3 + lu5)x − κ0l(u5x − lu1)

+ ζ1u1(x, t)

∫
R

µ2(ξ)

1 + ξ2 + η
dξ

]
χdx

+

∫ L

0

[ρ2u3 − bu3xx + κ(u1x + u3 + lu5)

+ ζ2u3(x, t)

∫
R

µ2(ξ)

1 + ξ2 + η
dξ

]
ζ dx

+

∫ L

0

[ρ1u5 − κ0(u5x − lu1)x + κl(u1x + u3 + lu5)

+ ζ3u5(x, t)

∫
R

µ2(ξ)

1 + ξ2 + η
dξ

]
W dx,
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and

L (χ, ζ,W ) =

∫ L

0

[
ρ1f1 + ρ1f2 + ζ1

∫
R

µ(ξ)(µ(ξ)f1 − f7)
1 + ξ2 + η

dξ

]
χdx

+

∫ L

0

[
ρ2(f3 + f4) + ζ2

∫
R

µ(ξ)(µ(ξ)f3 − f8)
1 + ξ2 + η

dξ

]
ζ dx

+

∫ L

0

[
ρ1(f5 + f6) + ζ3

∫
R

µ(ξ)(µ(ξ)f5 − f9)
1 + ξ2 + η

dξ

]
W dx.

It is easy to verify that a is continuous and coercive, and L is continuous. Ap-
plying the Lax-Milgram theorem, we infer that for all (χ, ζ,W ) ∈ H1(0, L) ×
H1(0, L)×H1(0, L), problem (2.11) has a unique solution (u1, u3, u5) ∈ H1

L(0, L)×
H1
L(0, L) × H1

L(0, L). Applying classical elliptic regularity, it follows from (2.11)
that (u1, u3, u5) ∈ H2(0, L) ×H2(0, L) ×H2(0, L). Therefore, the operator I − A
is surjective. Finally, the result of Theorem 2.2 follows from the Lumer-Phillips
theorem.

3. Polynomial stability

In this section, we will prove a polynomial decay rate for the system. It is important
to note that, in the decoupled case, the system fails to exhibit exponential decay.
First, we need to prove the following lemmas:

Lemma 3.1. A has no eigenvalues on iR.

Proof. We prove that the unique U = (u1, u2, u3, u4, u5, u6, ϕ1, ϕ2, ϕ3) ∈ D(A)
satisfying

AU = iλU, (3.1)

is U = 0.
Equation (3.1) is equivalent to

u2 = iλu1,

κ
ρ1
(u1x − u3 + lu5)x +

κ0l
ρ1

(u5x − lu1)− ζ1
ρ1

∫
R
µ (ξ)ϕ1 (ξ, t) dξ = iλu2,

u4 = iλu3,

b
ρ2
u3xx − κ

ρ2
(u1x + u3 + lu5)− ζ2

ρ2

∫
R
µ (ξ)ϕ2 (ξ, t) dξ = iλu4,

u6 = iλu5,

κ0

ρ1
(u5x − lu1)x − κl

ρ1
(u1x + u3 + lu5)− ζ3

ρ1

∫
R
µ (ξ)ϕ3 (ξ, t) dξ = iλu6,

ϕ1(iλ+ ξ2 + η)− µ(ξ)u2(x, t) = 0,

ϕ2(iλ+ ξ2 + η)− µ(ξ)u4(x, t) = 0,

ϕ3(iλ+ ξ2 + η)− µ(ξ)u6(x, t) = 0.

(3.2)

Then, from (3.2)1, (3.2)3, (3.2)5, (3.2)7, (3.2)8, and (3.2)9, we obtain for k ∈
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{1, 2, 3}: 
ϕk =

iλµ(ξ)u2k−1(x, t)

iλ+ ξ2 + η
,

u2k = iλu2k−1(x, t).

(3.3)

On the other hand, multiplying (3.2)2 by u1, (3.2)4 by u3, and (3.2)6 by u5 leads
to: 

∫ L

0

−κ(u1x + u3 + lu5)u1x + κ0l(u5x − lu1)u1 − ζ1

∫
R

µ2 (ξ) iλu21 (x, t)

iλ+ ξ2 + η
dξ

= −λ2ρ1
∫ L

0

u21dx,∫ L

0

−bu23x − κ(u1x + u3 + lu5)u3 − ζ2

∫
R

µ2 (ξ) iλu23 (x, t)

iλ+ ξ2 + η
dξ

= −λ2ρ2
∫ L

0

u23dx,∫ L

0

−κ0(u5x − lu1)u5x − κl(u1x + u3 + lu5)u5 − ζ3

∫
R

µ2 (ξ) iλu25 (x, t)

iλ+ ξ2 + η
dξ

= −λ2ρ1
∫ L

0

u25dx.

(3.4)
Adding (3.4)1 − (3.4)3, one gets:

−
∫ L

0

(
bu23x + κ(u1x + u3 + lu5)

2 + κ0(u5x − lu1)2 + iλ

3∑
k=1

ζku
2
2k−1

∫
R

µ2 (ξ)

iλ+ ξ2 + η
dξ
)
dx

= −λ2
∫ L

0

(
ρ1u

2
1 + ρ2u

2
3 + ρ1u

2
5

)
dx.

(3.5)
Here we distinguish 2 cases:
1st case: λ ̸= 0.
Taking the imaginary part in (3.5), we obtain

λ

3∑
k=1

ζk

∫
R

µ2 (ξ)

iλ+ ξ2 + η
dξ

∫ L

0

u22k−1dx = 0, for k ∈ {1, 2, 3},

and we deduce that u1 = u3 = u5 ≡ 0. Using now (3.3), it follows that U ≡ 0.
2nd case: λ = 0.
Coming back to (3.3), we have:

u2 = u4 = u6 ≡ 0 andϕ1 = ϕ2 = ϕ3 ≡ 0.

On the other hand, we deduce from (3.5):
u3x = 0,

u1x + u3 + lu5 = 0,

u5x − lu1 = 0.

(3.6)

Using the fact that U ∈ D(A) and (3.6), we find that u3 = 0. Consequently, u1
satisfies the equation

u1xx + l2u1 = 0.
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Given that U ∈ D(A), this implies u1 = 0, which in turn leads to the conclusion
that U ≡ 0.

Lemma 3.2. The operator
(
iλI −A

)
is surjective.

Proof. Let F = (f1, f2, f3, f4, f5, f6) ∈ H we looking for
U = (u1, u2, u3, u4, ϕ1, ϕ2) ∈ D(A) such that

iλU −AU = F.

That is,

iλu1 − u2 = f1,

iλu2 −
κ

ρ1
(u1x + u3 + lu5)x −

κ0l

ρ1
(u5x − lu1) +

ζ1
ρ1

∫
R
µ(ξ)ϕ1(x, ξ, t) dξ = f2,

iλu3 − u4 = f3,

iλu4 −
b

ρ2
u3xx +

κ

ρ2
(u1x + u3 + lu5) +

ζ2
ρ2

∫
R
µ(ξ)ϕ2(x, ξ, t) dξ = f4,

iλu5 − u6 = f5,

iλu6 −
κ0
ρ1

(u5x − lu1)x +
κl

ρ1
(u1x + u3 + lu5) +

ζ3
ρ1

∫
R
µ(ξ)ϕ3(x, ξ, t) dξ = f6,

ϕ1(iλ+ ξ2 + η)− µ(ξ)u2(x, t) = f7,

ϕ2(iλ+ ξ2 + η)− µ(ξ)u4(x, t) = f8,

ϕ3(iλ+ ξ2 + η)− µ(ξ)u6(x, t) = f9.

(3.7)
By eliminating u2, u4 and u6 from the above system, we get the following system

−ρ1λ2u1 − κ(u1x + u3 + lu5)x − κ0l(u5x − lu1) + iλζ1u1(x, t)I2(λ, η)

= ρ1(iλf1 + f2) + ζ1(I2(λ, η)f1 − I1(λ, η)f7),

−ρ2λ2u3 − bu3xx + κ(u1x + u3 + lu5) + iλζ2u3(x, t)I2(λ, η)

= ρ2(iλf3 + f4) + ζ2(I2(λ, η)f3 − I1(λ, η)f8),

−ρ1λ2u5 − κ0(u5x − lu1)x + κl(u1x + u3 + lu5) + iλζ3u5(x, t)I2(λ, η)

= ρ1(iλf5 + f6) + ζ3(I2(λ, η)f5 − I1(λ, η)f9).

(3.8)

where I1(λ, η) =

∫
R

µ(ξ)

iλ+ ξ2 + η
dξ and I2(λ, η) =

∫
R

µ2(ξ)

iλ+ ξ2 + η
dξ.

We now distinguish two cases.

Step 1. λ = 0 and η > 0 : System (3.8) is equivalent to finding u1, u3, u5 ∈
H2 (0, L) ∩H1

0 (0, L) such that
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∫ L

0

(−κ(u1x + u3 + lu5)x − κ0l(u5x − lu1))χdx

=

∫ L

0

(ρ1f2 + ζ1(I2(0, η)f1 − I1(0, η)f7))χdx,

∫ L

0

(−bu3xx + κ(u1x + u3 + lu5)) ζ dx

=

∫ L

0

(ρ2f4 + ζ2(I2(0, η)f3 − I1(0, η)f8)) ζ dx,

∫ L

0

(−κ0(u5x − lu1)x + κl(u1x + u3 + lu5))W dx

=

∫ L

0

(ρ1f6 + ζ3(I2(0, η)f5 − I1(0, η)f9))W dx.

(3.9)

for all χ, ζ,W ∈ H1
0 (0, L).

Using integration by parts in (3.9) we deduce that (3.8) is equivalent to:

b ((u1, u3, u3) , (χ, ζ,W )) =M (χ, ζ,W ) , (3.10)

where

b ((u1, u3, u5) , (χ, ζ,W )) =

∫ L

0

[κ(u1x + u3 + lu5)(χx + ζ + lW ) + bu3xζx

+ κ0(u5x − lu1)(Wx − lχ)] dx,

and

M (χ, ζ,W ) =

∫ L

0

[ρ1f2 + ζ1(I2(0, η)f1 − I1(0, η)f7)]χdx

+

∫ L

0

[ρ2f4 + ζ2(I2(0, η)f3 − I1(0, η)f8)] ζ dx

+

∫ L

0

[ρ1f6 + ζ3(I2(0, η)f5 − I1(0, η)f9)]W dx.

It is straightforward to verify that the bilinear form b is continuous and coercive,
and the operatorM is continuous. By applying the Lax-Milgram theorem, we con-

clude that for all (χ, ζ,W ) ∈
(
H1

0 (0, L)
)3
, the problem (3.10) has a unique solution

(u1, u3, u5) ∈
(
H1

0 (0, L)
)3
. Utilizing classical elliptic regularity, it follows from (3.9)

that (u1, u3, u5) ∈
(
H2(0, L)

)3
. Consequently, the operator −A is surjective.

Step 2. λ ̸= 0 and η ≥ 0 :
Now, consider the system:

−κ(u1x + u3 + lu5)x − κ0l(u5x − lu1) = g1,

−bu3xx + κ(u1x + u3 + lu5) = g2,

−κ0(u5x − lu1)x + κl(u1x + u3 + lu5) = g3,

(3.11)
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with the conditions

u1(t, x) = u3(t, x) = u5(t, x) = 0, for x = 0, L,

u1x(t, x) = u3x(t, x) = u5x(t, x) = 0, for x = 0, L.

where (g1, g2, g3) ∈
(
L2(0, L)

)3
.

Let us note L : (u1, u2, u3) −→ (−κ(u1x+u3+lu5)x−κ0l(u5x−lu1),−bu3xx+κ(u1x+
u3+ lu5),−κ0(u5x− lu1)x+κl(u1x+u3+ lu5)) with domain D(L) = {(u1, u2, u3) ∈(
H1

0 (0, L) ∩H2(0, L)
)3
, u1x(x) = u3x(x) = u5x(x) = 0, for x = 0, L}.

Multiplying (3.11)1 by χ, (3.11)2 by ζ and (3.11)3 by W one gets:∫ L

0

[κ(u1x + u3 + lu5)(χx + ζ + lW ) + bu3xζx + κ0(u5x − lu1)(Wx − lχ)] dx

=

∫ L

0

(
g1χ+ g2ζ + g3W

)
dx,

(3.12)

for all (χ, ζ,W ) ∈
(
H1

0 (0, L)
)3
.

By applying the Lax–Milgram theorem once more, we deduce that there exists a
unique strong solution (u1, u3, u5) ∈ D(L) for the variational problem (3.12).

Consequently, it follows that L−1 is compact in
(
L2(0, L)

)3
and therefore (3.8) is

equivalent to: (
L−1 ◦B − I

)
U = Φ,

where U = (u1, u3, u5),

BU :=
(
(ρ1λ

2 − iλζ1I2(λ, η))u1, (ρ2λ2 − iλζ2I2(λ, η))u3, (ρ1λ2 − iλζ3I2(λ, η))u5
)

and Φ = −
(
ρ1(iλf1+f2)+ζ1(I2(λ, η)f1−I1(λ, η)f7), ρ2(iλf3+f4)+ζ2(I2(λ, η)f3−

I1(λ, η)f8), ρ1(iλf5 + f6)+ ζ3(I2(λ, η)f5− I1(λ, η)f9)
)
. Noting that the operator B

is bounded, so L◦B is compact, and applying Fredholm’s alternative, it is sufficient
to show that

ker
(
L−1 ◦B − I

)
= {0}.

For this purpose, let (y1, y3, y5) ∈ Ker
(
L−1 ◦B − I

)
then we have:


(ρ1λ

2 − iλζ1I2(λ, η))y1 + κ(y1x + y3 + ly5)x + κ0l(y5x − ly1) = 0,

(ρ2λ
2 − iλζ2I2(λ, η))y3 + by3xx − κ(y1x + y3 + ly5) = 0,

(ρ1λ
2 − iλζ3I2(λ, η))y5 + κ0(y5x − ly1)x − κl(y1x + y3 + ly5) = 0,

(3.13)

with the conditions

y1(t, x) = y3(t, x) = y5(t, x) = 0, for x = 0, L,

y1x(t, x) = y3x(t, x) = y5x(t, x) = 0, for x = 0, L.
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Multiplying (3.13)1 by y1, (3.13)2 by y3 and (3.13)3 by y5, integrating over (0, L),
one gets: ∫ L

0

(
(ρ1λ

2 − iλζ1I2(λ, η))|y1|2 + (ρ2λ
2 − iλζ2I2(λ, η))|y3|2

+ (ρ1λ
2 − iλζ3I2(λ, η))|y5|2

)
dx

+

∫ L

0

[
κ|y1x + y3 + ly5|2 + b|y3x|2 + κ0|y5x − ly1|2

]
dx = 0.

Taking the real part, we deduce that (y1, y3, y5) = (0, 0, 0). This completes the proof
of Lemma 3.2.

We now recall the following result, which characterizes the polynomial decay of
the energy.

Lemma 3.3 ( [21]). Assume that A is the generator of a strongly continuous semi-
group of contractions {S(t)}t≥0 on a Hilbert space H. If

iR ⊂ ρ(A), (3.14)

then for a fixed δ > 0, the following conditions are equivalent:

lim
s∈R

sup
|s|→∞

1

|s|δ
∥(isI −A)−1∥L(H) <∞, (3.15)

∥S(t)U0∥2H ≤
c

t
2
δ

∥U0∥2D(A), U0 ∈ D(A), for some c > 0.

Our main result in the section is the following:

Theorem 3.1. The semigroup {S(t)}t≥0 is polynomially stable and

E(t) = ∥S(t)U0∥2H ≤
1

t
2

1−α

∥U0∥2D(A).

Furthermore, the energy decay rate of t2/1−α is optimal for general initial data in
D(A).

Proof. Based on Lemma 3.3, the proof of Theorem 3.1 requires verifying the va-
lidity of (3.14) and (3.15), where δ = 1 − α. Since (3.14) follows from Lemma 3.1
and Lemma 3.2, our focus shifts solely to proving (3.15).
Here, we employ a contradiction argument. Suppose that (3.15) is invalid; conse-
quently, there exists a sequence λn ∈ R, n ∈ N such that λn → +∞ as n → +∞,
and a sequence Un = (un1 , u

n
2 , u

n
3 , u

n
4 , u

n
5 , u

n
6 , ϕ

n
1 , ϕ

n
2 , ϕ

n
3 ) ∈ D(A) such that

∥Un∥ = 1, (3.16)

and

lim
n→∞

1

λδn
∥(iλnI −A)−1∥L(H) = 0. (3.17)

We have

Fn = λδn(iλnI −A)Un = (fn1 , f
n
2 , f

n
3 , f

n
4 , f

n
5 , f

n
6 , f

n
7 , f

n
8 , f

n
9 ).
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For simplicity, we drop the index n in the sequel. From (3.17), we get

iλu1 − u2 =
f1
λδ
−→ 0,

iλu2 − κ
ρ1
(u1x + u3 + lu5)x − κ0l

ρ1
(u5x − lu1) + ζ1

ρ1

∫
R
µ (ξ)ϕ1 (x, ξ, t) dξ

=
f2
λδ
−→ 0,

iλu3 − u4 =
f3
λδ
−→ 0,

iλu4 − b
ρ2
u3xx +

κ
ρ2
(u1x + u3 + lu5) +

ζ2
ρ2

∫
R
µ (ξ)ϕ2 (x, ξ, t) dξ

=
f4
λδ
−→ 0,

iλu5 − u6 =
f5
λδ
−→ 0,

iλu6 − κ0

ρ1
(u5x − lu1)x + κl

ρ1
(u1x + u3 + lu5) +

ζ3
ρ1

∫
R
µ (ξ)ϕ3 (x, ξ, t) dξ

=
f6
λδ
−→ 0,

ϕ1(iλ+ ξ2 + η)− µ(ξ)u2(x, t) =
f7
λδ
−→ 0,

ϕ2(iλ+ ξ2 + η)− µ(ξ)u4(x, t) =
f8
λδ
−→ 0,

ϕ3(iλ+ ξ2 + η)− µ(ξ)u6(x, t) =
f9
λδ
−→ 0.

(3.18)

In the following, we will prove that, ∥U∥H = o(1), hence reaching the desired
contradiction. For clarity, we divide the proof into several lemmas.
On the other hand, for all δ > 0, taking the real part of the inner product of (3.17)
with U in H, then using the fact that U is uniformly bounded in H, we have∫ L

0

∫
R

(
ξ2 + η

)
|ϕi(x, ξ, t)|2 dξdx =

o(1)

λδ
, for i = 1, 2, 3. (3.19)

Inserting the equations (3.18)1 into (3.18)2, (3.18)3 into (3.18)4, and (3.18)5 into
(3.18)6, we obtain:
ρ1λ

2u1 + κ(u1x + u3 + lu5)x + κ0l(u5x − lu1)− ζ1
∫
R
µ(ξ)ϕ1(x, ξ, t) dξ = −ρ1(

f2
λδ

+
if1
λδ−1

),

ρ2λ
2u3 + bu3xx + κ(u1x + u3 + lu5)− ζ2

∫
R
µ(ξ)ϕ2(x, ξ, t) dξ = −ρ2(

f4
λδ

+
if3
λδ−1

),

ρ1λ
2u5 + κ0(u5x − lu1)x − κl(u1x + u3 + lu5)− ζ3

∫
R
µ(ξ)ϕ3(x, ξ, t) dξ = −ρ1(

f6
λδ

+
if5
λδ−1

).

(3.20)
To complete the proof of the theorem, we require the following lemmas:

Lemma 3.4. Let δ > 0, we have∫ L

0

|u2(x)|2dx =
o(1)

λδ+α−1
,

∫ L

0

|u4(x)|2dx =
o(1)

λδ+α−1
, and

∫ L

0

|u6(x)|2dx =
o(1)

λδ+α−1
.

Proof. From (3.18)7, we have

(iλ+ ξ2 + η)ϕ1 −
f7
λδ

= u2(x)µ(ξ), on (0, L).
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Then

|u2(x)|µ(ξ) ≤ (|λ|+ ξ2 + η)|ϕ1|+
|f7|
λδ

, on (0, L).

By multiplying it by (|λ|+ ξ2 + η)−2|ξ|, we obtain

(iλ+ξ2+η)−2|ξ|u2(x)µ(ξ) = (iλ+ξ2+η)−1|ξ|ϕ1−(iλ+ξ2+η)−2|ξ| f7
λδ
,∀x ∈ (0, L).

(3.21)
Taking the absolute values of both sides of (3.21), integrating over(−∞,+∞) with
respect to the variable ξ, and applying Cauchy-Schwarz’s inequality, we obtain

P|u2(x)| ≤ M
(∫ +∞

−∞
(ξ2 + η)|ϕ1(x, ξ)|2 dξ

) 1
2

+N

(∫ +∞

−∞

∣∣∣∣ f7λδ
∣∣∣∣2 dξ

) 1
2

, (3.22)

where P,M and N are defined as:

P :=

∣∣∣∣∫ +∞

−∞
(|λ|+ ξ2 + η)−2|ξ|µ(ξ) dξ

∣∣∣∣ ,M :=

(∫ +∞

−∞
(|λ|+ ξ2 + η)−2 dξ

) 1
2

,

N :=

(∫ +∞

−∞
(|λ|+ ξ2 + η)−4|ξ|2 dξ

) 1
2

.

By applying Young’s inequality and integrating (3.22) over (0, L), we obtain∫ L

0

|u2(x)|2dx ≤
2M2

P2

∫ L

0

∫ +∞

−∞
(ξ2+η)|ϕ1(x, ξ)|2 dξdx+

2N 2

P2

∫ L

0

∫ +∞

−∞

∣∣∣∣ f7λδ
∣∣∣∣2 dξdx.

Using lemma 2.2, we get

P =
|1− 2α|

4

π

| sin (2α+3)
4 π|

(|λ|+ η)
(2α−5)

4 , M≤
√
π

2
(|λ|+ η)−

3
4 ,

and

N ≤
√
π

4
(|λ|+ η)

− 5
4 .

It is simple to check that

P2 = O(|λ|
2α−5

2 ), M2 = O(|λ|− 3
2 ). and N 2 = O(|λ|− 5

2 ).

Then ∫ L

0

|u2(x)|2dx =
o(1)

λα−1+δ
+

o(1)

λα+2δ
=

o(1)

λα−1+δ
. (3.23)

Using the same argument, we can prove∫ L

0

|u4(x)|2dx =
o(1)

λα−1+δ
and

∫ L

0

|u6(x)|2dx =
o(1)

λα−1+δ
. (3.24)

Lemma 3.5. Let δ > 0. Then the solution (u1, u2, u3, u4, u5, u6, ϕ1, ϕ2, ϕ3) ∈ D(A)
of (3.18) satisfies the following asymptotic behavior estimation:∫ L

0

|λu1(x)|2dx =

∫ L

0

|λu3(x)|2dx =

∫ L

0

|λu5(x)|2dx =
o(1)

λα−1+δ
. (3.25)
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Proof. From (3.18)1, we obtain∫ L

0

|λu1|2dx ≤ 2

∫ L

0

|u2|2dx+
2

λ2δ

∫ L

0

|f1|2dx

Hence, using Lemma 3.4 and the fact that ∥f1∥ = o(1), we get∫ L

0

|λu1(x)|2dx =
o(1)

λα−1+δ

Using the same argument, we can prove∫ L

0

|λu3(x)|2dx =

∫ L

0

|λu5(x)|2dx =
o(1)

λα−1+δ

Lemma 3.6. Let δ > 0. Then the solution (u1, u2, u3, u4, u5, u6, ϕ1, ϕ2, ϕ3) ∈ D(A)
of (3.18) satisfies the following asymptotic behavior estimation:∫ L

0

|u1x(x)|2dx =
o(1)

λα−1+δ
,

∫ L

0

|u3x(x)|2dx =
o(1)

λα−1+δ
and

∫ L

0

|u5x(x)|2dx =
o(1)

λα−1+δ
.

(3.26)

Proof. Multiplying (3.20)1 by u1, (3.20)2 by u3, and (3.20)3 by u5 leads to:

∫ L

0

(
−ρ1λ2|u1|2 + κ(u1x + u3 + lu5)u1x − κ0l(u5x − lu1)u1

+ ζ1

∫
R
µ(ξ)ϕ1(x, ξ, t)u1dξ

)
dx =

∫ L

0

ρ1(
f2
λδ

+
if1
λδ−1

)u1dx,∫ L

0

(
−ρ2λ2|u3|2 + b|u3x|2 + κ(u1x + u3 + lu5)u3

+ ζ2

∫
R
µ(ξ)ϕ2(x, ξ, t)u3dξ

)
dx =

∫ L

0

ρ2(
f4
λδ

+
if3
λδ−1

)u3dx,∫ L

0

(
−ρ1λ2|u5|2 + κ0(u5x − lu1)u5x + κl(u1x + u3 + lu5)u5

+ ζ3

∫
R
µ(ξ)ϕ3(x, ξ, t)u5dξ

)
dx =

∫ L

0

ρ1(
f6
λδ

+
if5
λδ−1

)u5dx.

(3.27)

Adding (3.27)1 − (3.27)3, one gets∫ L

0

(
−ρ1λ2|u1|2 − ρ2λ2|u3|2 − ρ1λ2|u5|2 + b|u3x|2 + κ|u1x + u3 + lu5|2 + κ0|u5x − lu1|2

)
dx

+

∫ L

0

(
ζ1

∫
R
µ(ξ)ϕ1(x, ξ, t)u1dξ + ζ2

∫
R
µ(ξ)ϕ2(x, ξ, t)u3dξ + ζ3

∫
R
µ(ξ)ϕ3(x, ξ, t)u5dξ

)
dx

=

∫ L

0

(
ρ1(

f2
λδ

+
if1
λδ−1

)u1 + ρ2(
f4
λδ

+
if3
λδ−1

)u3 + ρ1(
f6
λδ

+
if5
λδ−1

)u5

)
dx.

(3.28)
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From (3.28) and considering (3.16), (3.19), Lemma 3.4, and Lemma 3.5, we obtain∫ L

0

(
b|u3x|2 + κ|u1x + u3 + lu5|2 + κ0|u5x − lu1|2

)
dx =

o(1)

λδ+α−1
.

Consequently, it follows that∫ L

0

|u3x(x)|2dx =
o(1)

λα−1+δ
. (3.29)

Using the fact that

∥u1x∥L2(0,L) ≤ ∥u1x + u3 + lu5∥L2(0,L) + ∥u3 + lu5∥L2(0,L)

and
∥u5x∥L2(0,L) ≤ ∥u5x − lu1∥L2(0,L) + ∥lu1∥L2(0,L),

we complete the proof of Lemma 3.6.
Returning to the proof of Theorem 3.1, and taking into account Lemmas 3.4,

3.5, and 3.6, we establish that ∥U∥ = o(1), which contradicts (3.16). Moreover, we
confirm the optimality of the decay rate, which closely aligns with the asymptotic
expansion of the eigenvalues. Specifically, it reveals a behavior in the real part
resembling k(1−α). This concludes the proof.

4. Discrete energy of the system

We will start by using the Finite Element Method (FEM) to obtain a discrete
representation of the solution to equation (1.1)-(1.3). Before calculating the dis-
crete energy, we employ the finite difference method to approximate the fractional
derivative. The energy discrete Ê(t) will then be calculated using this method.

4.1. Discrete formulation by Finite Element Method

Let Ω = [0, L] be a finite domain. Let Ωe be a uniform partition of Ω, with a
uniform grid given by:

0 = x0 < x1 < . . . < xm−1 < xm = L,

so Ω =
⋃m−1
i=0 Ωi, where Ωi = [xi, xi+1]. The time discretization of the interval

I = [0, T ] is given by

0 = t0 < t1 < . . . < tn−1 < tn = T,

where m and n are positive integers, ∆x = xi − xi−1 = L
m , so xi = i∆x for

i = 1, . . . ,m, and ∆t = tj − tj−1 = T
n , so tj = j∆t for j = 1, . . . , n.

Denote by φ(xi, tj) = φji , ψ(xi, tj) = ψji , and w(xi, tj) = wji the value of the
functions φ, ψ, and w evaluated at the point xi and the instant tj . We also define
the space Sk as the set of piecewise linear functions associated with this partition:

Sk = {u; u|Ωi
∈ P1(Ωi), u ∈ C(Ω)},
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where P1(Ωi) is the space of linear polynomials defined on Ωi.
The basis functions hi of Sk for each Ωi in changing from the real base to the
reference base are given by:

B =

{
h1 =

1

x2 − x1
(x2 − x), h2 =

1

x2 − x1
(x− x1)

}
.

Denoting by φj , ψj , and wj the approximations of φj(tj , x), ψ
j(tj , x), and w

j(tj , x),
we have:

φj :=

m∑
i=0

φjihi(x), ψj :=

m∑
i=0

ψji hi(x), and wj :=

m∑
i=0

wjihi(x),

where

hi(x) =



1

∆x
(x− xi−1), ∀x ∈ [xi−1, xi],

1

∆x
(xi+1 − x), ∀x ∈ [xi, xi+1],

0, elsewhere,

∂

∂x
hi(x) =



1

∆x
, ∀x ∈ [xi−1, xi],

−1
∆x

, ∀x ∈ [xi, xi+1],

0, elsewhere,

h0(x) =


1

∆x
(x1 − x), ∀x ∈ [x0, x1],

0, elsewhere,

hm(x) =


1

∆x
(x− xm−1), ∀x ∈ [xm−1, xm],

0, elsewhere.

In Figure 1 below, we show the distribution of test functions across elements.

hi(x)

x

h0 h1 . . . hi . . . hm

x0 x1 . . . xi . . . xm

Figure 1. Piecewise Linear Interpolation Functions hi(x) over (x0, xm)

To summarize the principle of the finite element method, we multiply the equations
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(1.1)1, (1.1)2, and (1.1)3 by h respectively, and integrate over Ω. We obtain:

(
ρ1φtt, h

)
Ω
− κ

((
φxx, h

)
Ω
+
(
ψx, h

)
Ω
+
(
lwx, h

)
Ω

)
− κ0l

((
wx, h

)
Ω
−
(
lφ, h

)
Ω

)
+
(
∂α1,η
t φ, h

)
Ω
= 0,(

ρ2ψtt, h
)
Ω
−
(
bψxx, h

)
Ω
+ κ

((
φx, h

)
Ω
+
(
ψ, h

)
Ω
+
(
lw, h

)
Ω

)
+
(
∂α2,µ
t ψ, h

)
Ω
= 0,(

ρ1wtt, h
)
Ω
− κ0

((
wxx, h

)
Ω
−
(
lφx, h

)
Ω

)
+ κl

((
φx, h

)
Ω
+
(
ψ, h

)
Ω
+
(
lw, h

)
Ω

)
+
(
∂α3,ν
t w, h

)
Ω
= 0,

The weak formulation of the problem can also be expressed by choosing each test
function h as hi, i = 0,m, and for j = 1, n− 1, as follows:

(
ρ1φ

j
tt, hi

)
Ω
+ κ

((
φjx, hi

)
Ω
−
(
ψjx, hi

)
Ω
−
(
lwjx, hi

)
Ω

)
− κ0l

((
wjx, hi

)
Ω
−
(
lφj , hi

)
Ω

)
+
(
∂α1,η
t φj , hi

)
Ω
= 0,(

ρ2ψ
j
tt, hi

)
Ω
+
(
bψjx, hi

)
Ω
+ κ

((
φjx, hi

)
Ω
+
(
ψj , hi

)
Ω
+
(
lwj , hi

)
Ω

)
+
(
∂α2,µ
t ψj , hi

)
Ω
= 0,(

ρ1w
j
tt, hi

)
Ω
+ κ0

((
wjx, hi

)
Ω
+
(
lφjx, hi

)
Ω

)
+ κl

((
φjx, hi

)
Ω
+
(
ψj , hi

)
Ω

+
(
lwj , hi

)
Ω

)
+
(
∂α3,ν
t wj , hi

)
Ω
= 0.

(0, 0) (L, 0)

(0, T ) (L, T )

φji

j + 1

j

j − 1

i

FEM {φj , ψj , wj}

Figure 2. Mesh of the domain [0, L] × [0, T ] with red points at each (xi, tj).

In Figure 2, we show the pattern mesh of φ, ψ, and w using the discretization of
the intervals (0, L) and (0, T ).

Now, using the finite difference method, we define the following approximations
of the derivatives of φ, ψ, and w, respectively:

φjtt =
φj+1 − 2φj + φj−1

∆t2
, ψjtt =

ψj+1 − 2ψj + ψj−1

∆t2
, (4.1)
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and

wjtt =
wj+1 − 2wj + wj−1

∆t2
. (4.2)

The following lemmas will be useful.

Lemma 4.1. For α ∈ (0, 1) we have:

∂α,ηt φj =
ηα−1

∆tΓ(1− α)

j−1∑
k=0

(φk+1−φk)
(
γ
(
1−α, η(tj−tk)

)
−γ
(
1−α, η(tj−tk+1)

))
.

(4.3)

Proof. Recall that

∂α,ηt φ(tj , x) =
1

Γ(1− α)

∫ tj

0

(tj − r)−αe−η(tj−r)
∂φ

∂r
(r, x) dr,

where η ≥ 0. Using finite differences, we get

∂α,ηt φj =
1

Γ(1− α)

j−1∑
k=0

∫ tk+1

tk

(tj − r)−αe−η(tj−r)
φk+1 − φk

∆t
dr.

We then have

∂α,ηt φj =
1

∆tΓ(1− α)

j−1∑
k=0

(φk+1 − φk)
∫ tk+1

tk

(tj − r)−αe−η(tj−r) dr. (4.4)

Changing variables with u = η(tj − r), we obtain

∫ tk+1

tk

(tj − r)−αe−η(tj−r) dr = ηα−1

∫ η(tj−tk)

η(tj−tk+1)

u1−α−1e−u du

= ηα−1

(
γ
(
(1− α), η(tj − tk)

)
− γ
(
(1− α), η(tj − tk+1)

))
,

(4.5)
where γ is the lower incomplete gamma function defined by:

γ(s, x) =

∫ x

0

ts−1e−t dt.

Substituting (4.5) into (4.4), we obtain (4.3).

Then, using (4.1), (4.2), and Lemma 4.1, we obtain the fully discrete scheme
(1.1) as follows:



Theoretical and Numerical Stability of the Bresse System 23



p1M
φj+1 − 2φj + φj−1

∆t2
+ κ

(
Kφj − Sψj − lSwj

)
− κ0l

(
Swj − lMφj

)
+ M

j−1∑
k=0

(φk+1 − φk) · Cα1,η
k = 0,

p2M
ψj+1 − 2ψj + ψj−1

∆t2
+ bKψj + κ

(
Sφj +Mψj + lMwj

)
+ M

j−1∑
k=0

(ψk+1 − ψk) · Cα2,µ
k = 0,

p1M
wj+1 − 2wj + wj−1

∆t2
+ κ0

(
Kwj + lSφj

)
+ κl

(
Sφj +Mψj + lMwj

)
+ M

j−1∑
k=0

(wk+1 − wk) · Cα3,ν
k = 0,

(4.6)

for j = 1, n− 1, where
φj = (φj0, φ

j
1, . . . , φ

j
M )t, ψj = (ψj0, ψ

j
1, . . . , ψ

j
M )t, wj = (wj0, w

j
1, . . . , w

j
M )t with

the following initial conditions:
φ0 = φ0(x), ψ0 = ψ0(x), w0 = w0(x),

φ1 − φ0

∆t
= φ1(x),

ψ1 − ψ0

∆t
= ψ1(x),

w1 − w0

∆t
= w1(x),

and

Cα,βk =
αβ−1

∆tΓ(1− β)

(
γ
(
1− β, α(tj − tk)

)
− γ
(
1− β, α(tj − tk+1)

))
.

The matrices M , K, and S are given as follows:

Mij =
(
hj , hi

)
Ω
=



∆x

3
, if i = 0 or i = m and i = j,

2∆x

3
, if i = j and 1 ≤ i ≤ m− 1,

∆x

6
, if |i− j| = 1 and 0 ≤ i ≤ m,

0, otherwise.

Kij =
(
h′j , h

′
i

)
Ω
=



1

∆x
, if i = 0 or i = m and i = j,

2

∆x
, if i = j and 1 ≤ i ≤ m− 1,

−1
∆x

, if |i− j| = 1 and 0 ≤ i ≤ m,

0, otherwise,
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and

Sij =
(
h′j , hi

)
Ω
=



−1
2
, if (i, j) ∈ {(0, 0), (m,m− 1)},

(i− j)
2

, if |i− j| = 1 and 1 ≤ i ≤ m− 1,

1

2
, if (i, j) ∈ {(m,m), (0, 1)},

0, otherwise.

4.2. Calculation of the discrete energy Ê(t)

Recall that the energy E(t) of the system (1.1)-(1.3) is defined as:

E(t) =
1

2

∫ L

0

(
ρ1φ

2
t + ρ2ψ

2
t + ρ1w

2
t + bψ2

x + κ0(wx − lφ)2 + κ(φx + ψ + lw)2
)
dx.

Let (φj , ψj , wj) be the solution of the scheme (4.6). To evaluate the energy E(t) at
tj+1, we use the mass matrix M , the stiffness matrix K, and the skew-symmetric
matrix S.

Given that M is a symmetric positive definite mass matrix, K is a symmetric
positive definite stiffness matrix, and S is a skew-symmetric matrix, we have the
following approximations:∫ L

0

φ2
t dx ≈ φTt Mφt,

∫ L

0

φ2
x dx ≈ φTKφ,

∫ L

0

φ2 dx ≈ φTMφ,∫ L

0

(wx − lφ)2 dx ≈ wTKw − 2lφTSw + l2φTMφ,∫ L

0

(φx + ψ + lw)2 dx ≈ φTKφ+ 2ψTSφ+ 2lwTSφ+ ψTMψ + 2lwTMψ + l2wTMw,

where φt =
φj+1 − φj

∆t
, ψt =

ψj+1 − ψj

∆t
, wt =

wj+1 − wj

∆t
,

φ = φj+1, ψ = ψj+1, w = wj+1.

Consequently, the discrete energy of the system (1.1)-(1.3) at time tj+1 is written
as follows:

Ê(tj+1) =
1

2

(
ρ1φ

T
t Mφt + ρ2ψ

T
t Mψt + ρ1w

T
t Mwt + bψTKψ

+κ0
(
wTKw − 2lφTSw + l2φTMφ

)
+κ
(
φTKφ+ 2ψTSφ+ 2lwTSφ+ ψTMψ + 2lwTMψ + l2wTMw

) )
.

Here is an algorithm that summarizes all the steps for calculating the discrete energy
Ê(t):
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Algorithm 1 Calculation of the solution and the energy discrete Ê(t)

Require: ∆t, ∆x, {M,K,S}, {p1, p2, p3, κ, κ0, l, · · · }, {φ0, ψ0, w0}, {φ1, ψ1, w1},
{φ0, ψ0, w0}, {φm, ψm, wm}

Ensure: φj , ψj , wj , Ej

for j = 1 to N − 1 do

φj+1 ← −∆t2

p1
M−1

(
κ(Kφj − Sψj − lSwj) − κ0l(Sw

j − lMφj) + M

j−1∑
k=0

(φk+1 −

φk).Cα1,η
k

)
+ 2φj − φj−1

ψj+1 ← −∆t2

p2
M−1

(
bKψj + κ(Sφj +Mψj + lMwj) +M

j−1∑
k=0

(ψj − ψj−1).Cα2,µ
k

)
+

2ψj − ψj−1

wj+1←−∆t2

p1
M−1

(
κ0(Kw

j + lSφj) + κl(Sφj + Mψj + lMwj) + M

j−1∑
k=0

(wj −

wj−1).Cα3,ν
k

)
+ 2wj − wj−1

// Compute L2 norms at time step j + 1

norm phi t←
(φj+1 − φj

∆t

)T

M
(φj+1 − φj

∆t

)
norm psi t←

(ψj+1 − ψj

∆t

)T

M
(ψj+1 − ψj

∆t

)
norm w t←

(wj+1 − wj

∆t

)T

M
(wj+1 − wj

∆t

)
norm phi x←

(
φj+1

)T

K
(
φj+1

)
// Compute the discrete energy
Ej+1 ← Apply the Result (4.2)

end for

5. Fractional Physics-Informed Neural Networks (fPINN)
Approach

Physics-Informed Neural Networks (PINNs) represent a novel category of neural
networks that integrate machine learning with physical laws. This innovative algo-
rithmic technology emerged relatively recently, in 2019, from research laboratories.

To solve a system involving the Caputo fractional derivative, we employ both the
Physics-Informed Neural Network (PINN) model and the Finite Difference Method
(FDM) (see Figure 3). The PINN captures the complex behaviors of the studied
system, while the FDM discretizes the differential or integral equations, enabling a
numerical approach to problem resolution. By combining these two approaches, we
obtain a scheme termed Fractional Physics-Informed Neural Networks (fPINNs),
which is capable of efficiently solving a variety of mathematical and physical prob-
lems.

To the best of our knowledge, this is the first study to utilize this combined
approach of fractional physics-informed neural networks to solve systems with the
Caputo fractional derivative.
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x

t

N1

N2

N3

N4

N1

N2

N3

N4

u

v

w

FDM

α0 α1 α2

Dα0,η
t u

Dα1,µ
t v

Dα2,ν
t w

MSEu

MSEv

MSEw

MSE> ϵ
or

epoch>N

calculate energy E(t)

MSE =MSEu +MSEv +MSEwYes

No

PINNs

fPINNs

Hidden layer

Input layer

Output node

Figure 3. fPINNs to solve the problem (5) for calculate energy E(t)

The predicted function values, denoted as f1pred, f
2
pred, and f

3
pred, are defined as

follows: 
f1pred = ρ1utt − κ(ux + v + lw)x − κ0l(wx − lu) + ∂α1,η

t u,

f2pred = ρ2vtt − bvxx + κ(ux + v + lw) + ∂α2,µ
t v,

f3pred = ρ1wtt − κ0(wx − lu)x + κl(ux + v + lw) + ∂α3,ν
t w.

The boundary conditions are: g1(x) = ut(0, x), g2(x) = vt(0, x), g3(x) = wt(0, x),

h1(t) = ux(t, 0), h2(t) = vx(t, 0), h3(t) = wx(t, 0).

In this context, u(x, t), v(x, t), and w(x, t) will be approximated by a neural network.
The objective of the network is to minimize the following loss function:

MSE =MSEu +MSEv +MSEw,

where 
MSEu =MSE0

u +MSE0L
u +MSEf1 ,

MSEv =MSE0
v +MSE0L

v +MSEf2 ,

MSEw =MSE0
w +MSE0L

w +MSEf3 .
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We calculate the right-hand sides of MSE0
u, MSE0

v, and MSE0
w as follows:

MSE0
u =

1

N0

N0∑
i=0

((
u(x0i , 0)− u0i

)2
+
(
g1(x

0
i )− u1i

)2)
,

MSE0
v =

1

N0

N0∑
i=0

((
v(x0i , 0)− v0i

)2
+
(
g2(x

0
i )− v1i

)2)
,

MSE0
w =

1

N0

N0∑
i=0

((
w(x0i , 0)− w0

i

)2
+
(
g3(x

0
i )− w1

i

)2)
,

MSE0L
u =

1

Nb

Nb∑
j=0

((
u(0, tj0)

)2
+
(
u(L, tjL)

)2
+
(
h1(t

j
0)
)2

+
(
h1(t

j
L)
)2)

,

MSE0L
v =

1

Nb

Nb∑
j=0

((
v(0, tj0)

)2
+
(
v(L, tjL)

)2
+
(
h2(t

j
0)
)2

+
(
h2(t

j
L)
)2)

,

MSE0L
w =

1

Nb

Nb∑
j=0

((
w(0, tj0)

)2
+
(
w(L, tjL)

)2
+
(
h3(t

j
0)
)2

+
(
h3(t

j
L)
)2)

,

and

MSEf1 =
1

Nf

Nf∑
i=0

(
f1pred(xi, ti)− 0

)2
,

MSEf2 =
1

Nf

Nf∑
i=0

(
f2pred(xi, ti)− 0

)2
,

MSEf3 =
1

Nf

Nf∑
i=0

(
f3pred(xi, ti)− 0

)2
.

Here, {x0i , u0i } denotes the initial data at t = 0, {tj0, t
j
L} the boundary data, and

{xi, ti} corresponds to collocation points on f1pred(x, t), f
2
pred(x, t), and f

3
pred(x, t),

where N0, Nb, and Nf are the number of available observations. Figure 4 shows
the point cloud used for training the PINN and calculating the fractional derivative
for each point (xi, tj).

x

t

(xi, tj)

xi

tj

x1x2. . .
t1
t2

...

0

Figure 4. Point cloud used for training the PINN and calculating the fractional derivative for each
point (xi, tj)
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For 0 < α < 1 and the interval [t0, tj ] discretized into j + 1 points, 0 = t0 <
t1 < · · · < tj , the Caputo fractional derivative of order α using the method of finite
differences and Lemma 4.1 is approximated as:

Dα,η
t u(xi, tj)

=
ηα−1

∆tΓ(1− α)

j−1∑
k=0

(u(xi, tk+1)− u(xi, tk))
(
γ
(
1− α, η(tj − tk)

)
− γ
(
1− α, η(tj − tk+1)

))

≈ ηα−1

Γ(1− α)

j−1∑
k=0

∂

∂t
u(xi, tk+1)

(
γ
(
1− α, η(tj − tk)

)
− γ
(
1− α, η(tj − tk+1)

))
.

The Physics-Informed Neural Network (PINN) calculates the integer-order partial
derivative ∂nu

∂nx using automatic differentiation to obtain the gradients of the model’s
predictions with respect to the inputs.
Recalling that the energy E(t) is defined by:

E(t) =
1

2

∫ L

0

(
ρ1φ

2
t + ρ2ψ

2
t + ρ1w

2
t + bψ2

x + κ0(wx − lφ)2 + κ(φx + ψ + lw)2
)
dx

Now, we define the following approximation of the derivatives of φ and ψ, respec-
tively. The L2 norm of a discretized function is approximated by:

∥f∥22 ≈ ∆x

N∑
i=0

f(xi, tj)
2 (5.1)

Thus, the discrete energy of the system (1.1)-(1.3) at time tj+1 is approximated as
follows:

E(tj+1) ≈
∆x

2

∑M
i=0

(
p1
(
uj+1
i −uj

i

∆t

)2
+ p2

(
vj+1
i −vji
∆t

)2
+ p3

(
wj+1

i −wj
i

∆t

)2
+ b

(
vj+1
i+1−v

j+1
i

∆x

)2

+κ0

(
wj+1

i+1−w
j+1
i

∆x − lvj+1
i

)2

+ κ

(
uj+1
i+1−u

j+1
i

∆x + uj+1
i + lwj+1

i

)2
)
.

(5.2)
The following algorithm summarizes all the steps for the calculation of the discrete
energy E(t) using the L2 norm defined by (5.1).

Algorithm 2 Calculation of Solution and Energy E(t) by fPINN

Require: {x0, u0i , v0i , w0
i , u

1
i , v

1
i , w

1
i , N0},{t0, tL, Nb}, {xi, ti, Nf},

Ensure: uji -Matrix, vji -Matrix, wji -Matrix, E
#Create the PINN and perform an initial training phase.
MSE ← ϵ+ 1
# Do the learning phase. Train PINNs
while MSE ≥ ϵ do

uvw � Train(PINN)
# Calculate MSE.
MSE =MSEu +MSEv +MSEw,

end while
// Compute energy
Ej+1 ← Apply the Result (5.2)
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6. Numerical Test

To verify the asymptotic behavior of the solutions to the system (1.1), we use the
following parameters: ∆t = 10−2, ∆x = 10−1, L = 1, and the initial conditions
given by:

φ(x, 0) = x2(x− 1)2, φt(x, 0) = 0, x ∈ (0, L),

ψ(x, 0) =
1

2
x3 − x2, ψt(x, 0) = 0, x ∈ (0, L),

w(x, 0) = x2(x− 1)3, wt(x, 0) = 0, x ∈ (0, L).

Figures 5-6 illustrate the comparison between the numerical FEM approximations
of energy and their corresponding fPINN approximations at different time steps.

Figure 5. Energy by FEM for T = 10 Figure 6. Energy by fPINN for T = 10

Figures 7 and 8 specifically illustrate the polynomial decay of the energy for
both the numerical FEM and fPINN approaches. The curves demonstrate that the
decay cannot be exponential and, in other words, confirm the lack of exponential
energy decay.

Figure 7. Log Energy/t by FEM for T = 10 Figure 8. Log Energy/t by fPINN for T = 10
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We calculate the Root Mean Square Error (RMSE) to quantify the accuracy of
the fPINN solutions compared to FEM. The RMSE is defined as:

RMSE =

√√√√ 1

N

m∑
i=0

n∑
j=0

(uji − û
j
i )

2,

where ûji represents the values obtained by the finite element method, uji represents
the values obtained by the physics-informed neural network, and N is the number
of observations.

FEM

φ Ψ w

fPINN 0.012210 0.013177 0.006276

Table 1. RMSE between the fPINN solution
and its numerical approximation by FEM for
φ, ψ and w

FEM

T = 1 T = 5 T = 10

fPINN 0.011884 0.027809 0.051233

Table 2. RMSE between the energy calculated
by fPINN and its numerical energy approxima-
tion by FEM

Table 1 presents the RMSE between the fPINN solution and its numerical ap-
proximation by FEM for φ, ψ, and w. Table 2 shows the RMSE for the energy com-
puted by fPINN compared to its FEM approximation at different time instances.

These values indicate that the FPINN method closely approximates the FEM
solutions with relatively low RMSE across all variables. The RMSE values being
close to zero suggests that FPINN can effectively capture the behavior of the system
as predicted by the traditional FEM approach.

The relatively small RMSE values in both tables highlight that fPINN is a
robust method for approximating solutions and energy decay in complex systems
like the one studied. However, the slightly higher RMSE at larger time intervals
suggests that while fPINN is effective, it may not yet fully match the precision of
FEM for long-term predictions without further refinement. The overall comparison
indicates that fPINN provides a viable and promising alternative to traditional
numerical methods like FEM, especially for problems involving fractional derivatives
and complex coupled systems. The differences in RMSE are minimal, demonstrating
that fPINN can achieve similar accuracy with potentially less computational cost
and greater flexibility in handling complex problems.

This comparison underscores the potential of fPINN as a powerful tool for nu-
merical analysis, while also highlighting areas where further optimization might
enhance its performance relative to established methods like FEM.

7. Conclusion

In this work, we investigated the polynomial stabilization of the Bresse system
with three types of fractional derivative dissipation. We began by analyzing the
polynomial stability of the system (1.1)-(1.3). Then, we applied a finite difference
scheme to compute numerical solutions, demonstrating the stability of the discrete
energy.

This manuscript makes a significant contribution to numerical analysis and
applied mathematics by enhancing the use of Physics-Informed Neural Networks



Theoretical and Numerical Stability of the Bresse System 31

(PINNs) in solving complex fractional and coupled PDEs. This advancement pro-
vides a powerful tool for researchers and practitioners facing sophisticated modeling
challenges.

Our findings suggest that PINNs represent a robust and promising approach for
addressing complex PDEs, potentially offering a transformative alternative in the
field.
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