
CORRECTIONS TO ERRORS IN THE PAPER1

“HADAMARD-TYPE INEQUALITIES FOR s-CONVEX2

FUNCTIONS I” AND NEW INTEGRAL INEQUALITIES OF3

s-CONVEX FUNCTIONS IN THE SECOND SENSE4

JING-YU WANG, HONG-PING YIN, BO-YAN XI, AND FENG QI*5

Abstract. In the work, the authors correct some errors appeared in the paper

“S. Hussain, M. I. Bhatti, and M. Iqbal, Hadamard-type inequalities for s-

convex functions I, Punjab Univ. J. Math. (Lahore) 41 (2009), 51–60” and
establish some new integral inequalities of s-convex functions in the second

sense.

1. Introduction6

Let I ⊆ R be an interval. A real-valued function f : I → R is said to be convex7

(or concave, respectivey) on I if the inequality8

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1]. Suppose that f : I ⊆ R → R is a convex9

function on an interval I such that a, b ∈ I and a < b. Then the well-known10

Hermite–Hadamard integral inequality reads that11

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
.

In [1, 4], the concept of s-convex functions was innovated below.12

Definition 1 ([1, 4]). Let s ∈ (0, 1] be a real number. A function f : R → R0 =13

[0,∞) is said to be s-convex in the second sense if the inequality14

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)

holds for all x, y ∈ I and t ∈ [0, 1].15

It is easy to see that for s = 1 the s-convexity reduces to the classical and16

ordinary convexity of functions defined on [0,∞).17

The Hermite–Hadamard type integral inequalities for s-convex functions in the18

second sense are a very active research topic. We now recall some of them as follows.19

Theorem 1 ([9]). Let f : I ⊆ R0 → R be differentiable on I◦, the numbers a, b ∈ I20

with a < b, and f ′ ∈ L1([a, b]). If |f ′|q is s-convex on [a, b] for some fixed s ∈ (0, 1]21

and q ≥ 1, then22
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2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

2

(
1

2

)1−1/q[
2 + 1/2s

(s+ 1)(s+ 2)

]1/q[
|f ′(a)|q + |f ′(b)|q

]1/q
.

Theorem 2 ([11]). Let f : I ⊆ R0 → R be differentiable on I◦, let a, b ∈ I with23

a < b, and let f ′ ∈ L1([a, b]). If |f ′| is s-convex on [a, b] for some s ∈ (0, 1], then24 ∣∣∣∣16
[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ (s− 4)6s+1 + 2× 5s+2 − 2× 3s+2 + 2

6s+2(s+ 1)(s+ 2)
(b− a)

(
|f ′(a)|+ |f ′(b)|

)
.

For some other related papers on Hermite–Hadamard type inequalities for convex25

functions and s-convex functions, please refer to [3, 7, 13, 16]26

In [5], Hussain and his two coauthors studied the Hermite–Hadamard type in-27

equality of s-convex functions in the second sense, established several Hermite–28

Hadamard type inequalities for differentiable and twice differentiable functions29

based on concavity and s-convexity, and applied to construct some special means.30

2. Hermite–Hadamard type inequalities by Hussain and his coauthors31

Hussain and his two coauthors introduced in [5] the following lemma.32

Lemma 1 ([5, Lemma 3]). Let I ⊆ R denote an interval, f : I → R be a differen-33

tiable function on I◦ (the interior of I), and a, b ∈ I◦ with a < b. If f ′ ∈ L1([a, b]),34

then35

f

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

=
(b− a)2

4

∫ 1

0

(1− t)

[
f ′
(
ta+ (1− t)

a+ b

2

)
+ f ′

(
tb+ (1− t)

a+ b

2

)]
dt. (1)

Using Lemma 1, Hussain and his coauthors established the following Theorems 336

to 6 in the paper [5].37

Theorem 3 ([5, Theorem 4]). Let f : I ⊆ R → R0 be a differentiable function38

on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is an s-convex39

function in the second sense on [a, b] for some fixed s ∈ (0, 1] and q ≥ 1, then40 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (1

2

)1/p
{[

|f ′(a)|q + (s+ 1)
∣∣f ′(a+b

2

)∣∣q]1/q
[(s+ 1)(s+ 2)]1/q

+

[
(s+ 1)

∣∣f ′(a+b
2

)∣∣q + |f ′(b)|q
]1/q

[(s+ 1)(s+ 2)]1/q

}
.

Remark 1. If q ≥ 1, the factor
(
1
2

)1/p
in [5, Theorem 4] should be modified to41 (

1
2

)1−1/q
. Otherwise, if q = 1, the number p = q

q−1 is meaningless.42
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Theorem 4 ([5, Theorem 5]). Let f : I ⊆ R → R0 be a differentiable function on43

I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is a concave function44

on [a, b] for q > 1, then45 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a)2

4(p+ 1)1/p

[∣∣∣∣f ′
(
3a+ b

4

)∣∣∣∣+ ∣∣∣∣f ′
(
a+ 3b

4

)∣∣∣∣],
where 1

q + 1
q = 1.46

Theorem 5 ([5, Theorem 6]). Let f : I ⊆ [0,∞) → R be a differentiable function47

on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is an s-convex48

function in the second sense on [a, b] for some fixed s ∈ (0, 1] and q > 1, then49 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a)2

4(p+ 1)1/p

(
1

s+ 1

)1/q

×
[(

|f ′(a)|q +
∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)1/q

+

(∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q + |f ′(b)|q
)1/q]

,

where 1
q + 1

q = 1.50

Theorem 6 ([5, Theorem 7]). Let f : I ⊆ [0,∞) → R0 be a differentiable function51

on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is an s-concave52

function on [a, b] for some fixed s ∈ (0, 1] and q > 1, then53 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ (b− a)2

4(p+ 1)1/p
2(s−1)/q

[∣∣∣∣f ′
(
3a+ b

4

)∣∣∣∣+ ∣∣∣∣f ′
(
a+ 3b

4

)∣∣∣∣],
where 1

q + 1
q = 1.54

We note that many typos in the above lemma and theorems quoted from the55

paper [5] have been corrected.56

In this article, we will modify and correct the conditions and errors in Theorems 357

to 6 about s-convex functions in the second sense.58

3. Errors and two lemmas59

We first give a counterexample of [5, Lemma 3], that is, Lemma 1 mentioned60

above in this paper.61

Example 1. Letting f(x) = x2 for x ∈ [a, b] and taking a = 0 and b = 1 in62

Lemma 1, then63

f

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx− (b− a)2

4

∫ 1

0

(1− t)

[
f ′
(
ta+ (1− t)

a+ b

2

)
+ f ′

(
tb+ (1− t)

a+ b

2

)]
dt = −1

3
.

Therefore, we can be sure that Lemma 1, that is, [5, Lemma 3], is not valid.64

In [14, Remark 1], among other things, the invalidness of the integral identity65

in [5, Lemma 3] has been pointed out and alternatively corrected.66

Making use of [8, Lemma 2.1], we correct [5, Lemma 3] as follows.67
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Lemma 2. Let f : I ⊆ R → R be a differentiable function on I◦ and let a, b ∈ I68

with a < b. If f ′ ∈ L1([a, b]), then69

f

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

=
b− a

4

∫ 1

0

(1− t)

[
f ′
(
ta+ (1− t)

a+ b

2

)
− f ′

(
tb+ (1− t)

a+ b

2

)]
dt. (2)

Example 2. Let f(x) = x2 for x ∈ [a, b]. Then |f ′(x)|q is an s-convex function in70

the second sense on [a, b] for s = 1 and q = 1.71

If setting a = 0, b = 12.12, and s = q = 1 in Theorem 3, then72 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ = 1

12
(b− a)2 = 12.2412

> 12.12 =
|f ′(a)|+ 2

∣∣f ′(a+b
2

)∣∣
6

+
2
∣∣f ′(a+b

2

)∣∣+ |f ′(b)|
6

.

If letting a = 0, b = 6, and s = q = 1 in Theorem 3, then73 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ = 1

12
(b− a)2 = 3

< 6 =
|f ′(a)|+ 2

∣∣f ′(a+b
2

)∣∣
6

+
2
∣∣f ′(a+b

2

)∣∣+ |f ′(b)|
6

.

These numerical computations reveal that Theorems 3 to 6 are not necessarily true.74

Remark 2. Comparing the factors (b−a)2

4 and b−a
4 on the right hand sides of the75

integral equalities (1) and (2), we can illustrate that Theorems 5 to 6 are not76

necessarily true.77

Now we establish the Jensen type integral inequalities for s-concave functions.78

Lemma 3. Let φ : [a, b] → R0 be continuous and g, p : [a, b] → R be integrable79

functions with g(x) ∈ [a, b], p(x) ≥ 0 for x ∈ [a, b], and
∫ b

a
p(x) dx > 0. If φ is80

an s-concave function in the second sense for some s ∈ (0, 1], then the Jensen type81

integral inequality82

φ

(∫ b

a
p(x)g(x) dx∫ b

a
p(x) dx

)
≥
∫ b

a
[p(x)]sφ(g(x)) dx[∫ b

a
p(x) dx

]s (3)

is sound.83

Proof. Let x0 < x1 < · · · < xn be a partition of [a, b] and denote ∆xi = xi − xi−184

for i = 1, 2, . . . , n such that max1≤i≤n{∆xi} ≤ 1. In this way, we see that (∆xi)
s ≥85

∆xi for i = 1, 2, . . . , n. By the s-concavity in the second sense of φ on [a, b], see [15,86

Corollary 4], we obtain87

φ

(∑n
i=1 p(xi)g(xi)∆xi∑n

i=1 p(xi)∆xi

)
≥
∑n

i=1[p(xi)∆xi]
sφ(g(xi))[∑n

i=1 p(xi)∆xi

]s
≥
∑n

i=1[p(xi)]
sφ(g(xi))∆xi[∑n

i=1 p(xi)∆xi

]s .

Further taking the limit of n → ∞ on both sides of the above inequality leads to88

the inequality (3). The proof of Lemma 3 is completed. □89
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4. Modifications and corrections of integral inequalities of90

s-convex functions in the second sense91

In this section, we modify and correct the conditions and errors in Theorems 392

to 6 about s-convex functions in the second sense.93

Theorem 7 (Modifications and corrections of Theorem 3). Let f : I ⊆ R → R0 be94

a differentiable function on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b.95

If |f ′|q is an s-convex function in the second sense on [a, b] for some fixed s ∈ (0, 1]96

and q ≥ 1, then97 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a

4

(
1

2

)1−1/q

×

{[
|f ′(a)|q + (s+ 1)

∣∣f ′(a+b
2

)∣∣q]1/q
[(s+ 1)(s+ 2)]1/q

+

[
(s+ 1)

∣∣f ′(a+b
2

)∣∣q + |f ′(b)|q
]1/q

[(s+ 1)(s+ 2)]1/q

}
. (4)

Proof. Since |f ′|q is s-convex in the second sense on [a, b], using Lemma 2 and by98

the Hölder integral inequality, we have99 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

4

∫ 1

0

(1− t)

[∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣+ ∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣] dt
≤ b− a

4

[∫ 1

0

(1− t) dt

]1−1/q{[∫ 1

0

(1− t)

(
ts|f ′(a)|q + (1− t)s

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)dt

]1/q
+

[∫ 1

0

(1− t)

(
ts|f ′(b)|q + (1− t)s

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)dt

]1/q}
=

b− a

4

(
1

2

)1−1/q
{[

|f ′(a)|q + (s+ 1)
∣∣f ′(a+b

2

)∣∣q]1/q
[(s+ 1)(s+ 2)]1/q

+

[
(s+ 1)

∣∣f ′(a+b
2

)∣∣q + |f ′(b)|q
]1/q

[(s+ 1)(s+ 2)]1/q

}
.

The proof of Theorem 7 is completed. □100

Theorem 8 (Generalization of Theorem 5). Let f : I ⊆ R → R0 be a differentiable101

function on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is an102

s-convex function in the second sense on [a, b] for some fixed s ∈ (0, 1] and for q > 1103

and q ≥ ℓ ≥ 0, then104 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

4

(
q − 1

2q − (ℓ+ 1)

)1−1/q{[sB(s, ℓ+ 1)|f ′(a)|q +
∣∣f ′(a+b

2

)∣∣q
s+ ℓ+ 1

]1/q
+

[∣∣f ′(a+b
2

)∣∣q + sB(s, ℓ+ 1)|f ′(b)|q

s+ ℓ+ 1

]1/q}
,
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where B(u, v) denotes the classical beta function defined by105

B(u, v) =

∫ 1

0

zu−1(1− z)v−1 dz, ℜ(u) > 0,ℜ(v) > 0.

Proof. Similar to the proof of the inequality (4) in Theorem 7, using Lemma 2,106

employing the Hölder integral inequality, and utilizing the s-convexity in the second107

sense on [a, b] of |f ′|q, we derive108 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a

4

[∫ 1

0

(1− t)(q−ℓ)/(q−1) dt

]1−1/q

×
{[∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q
+

[∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q}
≤ b− a

4

(
q − 1

2q − (ℓ+ 1)

)1−1/q

×
{[∫ 1

0

(1− t)ℓ
(
ts|f ′(a)|q + (1− t)s

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)dt]1/q
+

[∫ 1

0

(1− t)ℓ
(
ts|f ′(b)|q + (1− t)s

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)dt]1/q}
=

b− a

4

(
q − 1

2q − (ℓ+ 1)

)1−1/q{[sB(s, ℓ+ 1)|f ′(a)|q +
∣∣f ′(a+b

2

)∣∣q
s+ ℓ+ 1

]1/q
+

[∣∣f ′(a+b
2

)∣∣q + sB(s, ℓ+ 1)|f ′(b)|q

s+ ℓ+ 1

]1/q}
.

The proof of Theorem 8 is completed. □109

If q > 1 and 1
p = 1 − 1

q , then
1

(p+1)1/p
=
(

q−1
2q−1

)1−1/q
. Therefore, putting ℓ = 0110

in Theorem 8 yields111

Corollary 1 (Modifications and corrections of Theorem 5). Under conditions of112

Theorem 8 applied to ℓ = 0, we have113 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a

4

(
q − 1

2q − 1

)1−1/q(
1

s+ 1

)1/q

×
[(

s|f ′(a)|q +
∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q)1/q

+

(∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣q + s|f ′(b)|q
)1/q]

.

Next, we will study the Hermite–Hadamard type integral inequalities of s-concave114

functions. We first establish an Hermite–Hadamard type integral inequality of s-115

concave functions in the case of q ≥ 1.116

Theorem 9. Let f : I ⊆ R → R0 be a differentiable function on I◦ such that117

f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is an s-concave function in the118

second sense on [a, b] for q ≥ 1 and some fixed s ∈ (0, 1], then119 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a

23−1/q

(
s

s+ 1

)s/q
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×
[∣∣∣∣f ′

(
(3s+ 1)a+ (s+ 1)b

2(2s+ 1)

)∣∣∣∣+ ∣∣∣∣f ′
(
(s+ 1)a+ (3s+ 1)b

2(2s+ 1)

)∣∣∣∣]. (5)

Proof. Using Lemma 2 and employing the Hölder integral inequality, we obtain120 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

4

∫ 1

0

(1− t)

[∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣dt+ ∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣] dt
≤ b− a

4

(∫ 1

0

(1− t) dt

)1−1/q{[∫ 1

0

(1− t)

∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q
+

[∫ 1

0

(1− t)

∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q}.
Taking p(t) = (1 − t)1/s for [0, 1] in Lemma 3, utilizing Lemma 3, and using the121

s-convexity of |f ′|q in the second sense of [a, b], we derive122 ∫ 1

0

(1− t)

∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q dt
≤
(∫ 1

0

(1− t)1/s dt

)s∣∣∣∣f ′
(∫ 1

0
(1− t)1/s

(
ta+ (1− t)a+b

2

)
dt∫ 1

0
(1− t)1/s dt

)∣∣∣∣q
=

(
s

s+ 1

)s∣∣∣∣f ′
(
(3s+ 1)a+ (s+ 1)b

2(2s+ 1)

)∣∣∣∣q
and123 ∫ 1

0

(1− t)

∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q dt ≤ ( s

s+ 1

)s∣∣∣∣f ′
(
(s+ 1)a+ (3s+ 1)b

2(2s+ 1)

)∣∣∣∣q.
Substituting these two inequalities into the first inequality in this proof yields the124

inequality (5). The proof of Theorem 9 is completed. □125

If taking s = 1 in Theorem 9, we have126

Corollary 2. Let f : I ⊆ R → R0 be a differentiable function on I◦ such that127

f ′ ∈ L1([a, b]), where a, b ∈ I with a < b. If |f ′|q is a concave function in the128

second sense on [a, b] for q ≥ 1, then129 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a

8

[∣∣∣∣f ′
(
2a+ b

3

)∣∣∣∣ + ∣∣∣∣f ′
(
a+ 2b

3

)∣∣∣∣].
Theorem 10 (Generalization of Theorems 4 and 6). Suppose q > 1 and q ≥ ℓ ≥ 0.130

Let f : I ⊆ R → R0 be a differentiable function on I◦ such that f ′ ∈ L1([a, b]),131

where a, b ∈ I with a < b. If |f ′|q is an s-concave function on [a, b] for some fixed132

s ∈ (0, 1], then133 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a

4

(
q − 1

2q − (ℓ+ 1)

)1−1/q(
s

s+ ℓ

)s/q

×
[∣∣∣∣f ′

(
(3s+ ℓ)a+ (s+ ℓ)b

2(2s+ ℓ)

)∣∣∣∣+ ∣∣∣∣f ′
(
(s+ ℓ)a+ (3s+ ℓ)b

2(2s+ ℓ)

)∣∣∣∣]. (6)
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Proof. Using Lemma 2 and utilizing the Hölder integral inequality, we obtain134 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a

4

(∫ 1

0

(1− t)(q−ℓ)/(q−1)

)1−1/q

×
{[∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q
+

[∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q dt]1/q}.
(7)

Taking p(t) = (1 − t)ℓ/s for t ∈ [0, 1] in Lemma 3 and using the s-convexity of135

|f ′|q in the second sense on [a, b], we have136 ∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
ta+ (1− t)

a+ b

2

)∣∣∣∣q dt
≤
[∫ 1

0

(1− t)ℓ/s dt

]s∣∣∣∣f ′
(∫ 1

0
(1− t)ℓ/s

(
ta+ (1− t)a+b

2

)
dt∫ 1

0
(1− t)ℓ/s dt

)∣∣∣∣q
=

(
s

s+ ℓ

)s∣∣∣∣f ′
(
(3s+ ℓ)a+ (s+ ℓ)b

2(2s+ ℓ)

)∣∣∣∣q
and137 ∫ 1

0

(1− t)ℓ
∣∣∣∣f ′
(
tb+ (1− t)

a+ b

2

)∣∣∣∣q dt ≤ ( s

s+ ℓ

)s∣∣∣∣f ′
(
(s+ ℓ)a+ (3s+ ℓ)b

2(2s+ ℓ)

)∣∣∣∣q.
Substituting these two inequalities into the inequality (7) yields the inequality (6).138

The proof of Theorem 10 is completed. □139

If putting s = 1 and ℓ = 0 in Theorem 10, we acquire140

Corollary 3. (Modifications and corrections of Theorem 4) Let f : I ⊆ R → R0 be141

a differentiable function on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b.142

If |f ′|q is a concave function on [a, b] for q > 1, then143 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

4

(
q − 1

2q − 1

)1−1/q[∣∣∣∣f ′
(
3a+ b

4

)∣∣∣∣+ ∣∣∣∣f ′
(
a+ 3b

4

)∣∣∣∣].
If letting ℓ = 0 in Theorem 10, we obtain144

Corollary 4. (Modifications and corrections of Theorem 6) Let f : I ⊆ R → R0 be145

a differentiable function on I◦ such that f ′ ∈ L1([a, b]), where a, b ∈ I with a < b.146

If |f ′|q is an s-concave function on [a, b] for some fixed s ∈ (0, 1] and q > 1, then147 ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣
≤ b− a

4

(
q − 1

2q − 1

)1−1/q[∣∣∣∣f ′
(
3a+ b

4

)∣∣∣∣+ ∣∣∣∣f ′
(
a+ 3b

4

)∣∣∣∣].
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5. Conclusions148

In this paper, we pointed out many errors appeared in the article [5], corrected149

these errors, and established several new integral inequalities of s-convex functions150

in the second sense.151

For more information on recent developments of this topic, please refer to the152

papers [2, 6, 10, 12, 14, 17] and closely-related references therien.153
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[2] B. Çelik, E. Set, A. O. Akdemir, M. E. Özdemir, Novel generalizations for Grüss type in-173

equalities pertaining to the constant proportional fractional integrals, Appl. Comput. Math.174

22 (2023), no. 2, 275–291; available online at https://doi.org/10.30546/1683-6154.22.2.175

2023.275.176

[3] G. Gulshan, H. Budak, R. Hussain, and K. Nonlaopon, Some new quantum Hermite-177

Hadamard type inequalities for s-convex functions, Symmetry, 14(2022), no. 5, Art. 870,178

14 pages; available online at https://doi.org/10.3390/sym14050870.179

[4] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48180

(1994), no. 1, 100–111; available online at http://dx.doi.org/10.1007/BF01837981.181

[5] S. Hussain, M. I. Bhatti, and M. Iqbal, Hadamard-type inequalities for s-convex functions I,182

Punjab Univ. J. Math. (Lahore) 41 (2009), 51–60.183
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