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Abstract This paper proposes a Haar wavelet collocation approach to solve neutral delay differential
equations on a metric star graph (NDDE-MSG) with κ edges. The application of Haar wavelet, together
with its integration on NDDE-MSG, yields a system of equations, which on solving gives unknown
wavelet coefficients and subsequently the solution. The upper bound of the global error norm is estab-
lished to demonstrate that the proposed method converges exponentially. We conduct some numerical
experiments to test the computational convergence of our approach. In this study, the authors explore the
numerical solution for NDDE on metric star graphs for the first time.
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Mathematics Subject Classification (2020) 65T60 · 65N35 · 65N15

1 Introduction

A particular class of delay differential equations (DDEs), neutral delay differential equations (NDDEs),
are frequently used to model biological, physiological, chemical, and electronic processes, as well as
transportation systems (controlling ships and aircraft), neural networks, and economic growth. There is
great interest in neutral delay differential equation systems among researchers; refer [26] and references
therein. In particular, epidemiology [8] experienced a delay due to the time interval between infection and
the formation of new viruses; immunology [4] experienced a delay because of the duration of infectious
and immunological periods; population dynamics [9] experienced the delay due to the life cycle phases.
In [17], the authors used modified Euler sequences to prove the existence and uniqueness of the solution
of NDDEs triggered by state-dependent delays. In [15], the authors used the concept of fixed point theory
in 𭟋-metric space to demonstrate the existence and uniqueness of NDDEs with unbounded delay. The
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literature discusses the asymptotic behavior, existence, and uniqueness of higher-order differential equa-
tion solutions; see [10,1]. A rich literature exists for the numerical solution of NDDEs since analytical
solutions are difficult to obtain due to delays. Some authors used Taylor series expansion to remove the
delayed component from NDDEs and reduced them to ordinary differential equations; see [16,25]. While
this technique maintains the stability criteria of DDEs, it also adds the error term associated with the
Taylor series truncation to the overall error, resulting in an overall reduction in consistency. As a result,
researchers developed numerical methods for addressing the delay term directly. The works of authors in
[7,6] and references therein are particularly noteworthy.

The abovementioned applications motivated us to study neutral delay differential equations on the
metric star graph. Indeed, investigating differential equations on the metric star graph is crucial to study-
ing various natural phenomena. Partial differential equations (PDEs) on a graph can explain several other
essential processes, such as the flow on gas pipeline networks [31] and the propagation of water waves in
open channels [33]. The investigation of wind-induced vibrations in spider webs, the blackout of electric-
ity distributions via connected wires, and the propagation of electrons can be easily studied by PDE-MSG,
which can only travel along the atomic bonds of a connected structure because of excessive potential re-
strictions. A network-like system was used for the first time in the 1940s to study differential operators.
Differential equations on network-like domains have their roots in the studies of Kron [18], as well as
Ruedenberg and Scherr [27]. Numerous studies have been published on solving ODEs and PDEs on
graphs; see [19,20].

On the other hand, wavelets have proven to be an effective tool for computation. The critical prop-
erties of wavelets, including compact support and well localization, make them straightforward. The
use of wavelets is often associated with high-speed computations. As a key tool for investigating differ-
ential equations, wavelets are extensively used [2,32,23,28,24,13,29,3,11,14]. For example, Cheby-
shev cardinal wavelets have been utilized by Heydari and Razzaghi to solve time-fractional coupled
Klein–Gordon–Schrödinger equations and fractional integro-differential equations involving the ψ−Caputo
fractional derivative [12,13]. In the literature, several studies have addressed the solution of differential
equations on graph using wavelets. For instance, a Haar wavelet method was developed by Faheem and
Khan [5] in conjunction with the convergence analysis for fractional diffusion equations on graphs. We
also refer to [21,30] and references therein for more information about wavelet collocation methods for
differential equations on metric graphs. This paper approximates the solution to neutral delay differential
equations on a metric star graph (NDDE-MSG) using Haar wavelet.

Consider the graph G(V ,E) with a finite number of vertices (nodes) V = {vr}κ
r=0 and edges E . This

study examines a metric star graph [22] with continuous edges E . Thus, every edge E = {er}κ
r=1 has

an open interval (0, lr) with lr > 0. An example of a metric star graph is shown in Figure 1. This paper
analyzes the following NDDE-MSG:

∂tur(x,t) = Fr
(
x,t,ur,ur

(
x,t− τr

)
,∂xur(x,t),∂xur(x,t− τ1,r),∂xxur,∂xxur(x,t− τ2,r)

)
, x ∈ (0, lr) , t ∈

(
t0, t f

)
,

(1)

ur(x,t) = ϕr(x,t), t ≤ t0, (2)
ur(0, t) = us(0, t), r ̸= s,r = 1(1)κ,s = 1,2, . . . ,κ, (3)

κ

∑
r=1

∂xur(0, t) = 0, (4)

ur (lr, t) = 0,1 ≤ r ≤ κ, (5)

where Fr ∈C
(
[0, lr]×

[
t0, t f

]
×R6;R

)
is a Lipschitz function in last six arguments, ϕ(x,t)

(
= {ϕr(x,t)}κ

r=1
)
∈

C
(

G(V ,E)×
[
t0 − τr (x,t,ur(x,t)) , t f

]
;R

)
, and τr,τ1,r,τ2,r are continuous functions on [t0, t f ]× [0, lr]×

R such that t − τr ≤ t f , t − τi,r < t f , i = 1,2. Equation (3) is known as the continuity condition, while
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Fig. 1: Simplified schematic representation of a metric star graph consisting κ edges

equation (4) is known as the Kirchhoff condition. Our work focuses on solving equations (1) to (5) numer-
ically using Haar wavelet. To the best of the authors’ knowledge, this is the first attempt to solve NDDEs
numerically on a metric star graph. Due to its accuracy and ease of implementation, we chose the Haar
wavelet method over other numerical methods, such as finite difference schemes, collocation methods
based on spline polynomials, and Galerkin methods. Generally, the aforementioned numerical methods
have a constant order of convergence and require a large number of iterations or grid points to achieve de-
sirable accuracy. In contrast, the Haar wavelet method exhibits exponential convergence and requires only
a few grid points to produce accurate results. Since Haar wavelets uses piecewise functions as bases and
have compact support, wavelets yield sparse matrices in the approximation, and hence significantly re-
ducing the computational cost of the algorithm. Moreover, we use an integral operator approach, wherein
the highest order mixed derivative is approximated in terms of Haar wavelets, and its integration is used
to approximate the lower derivatives and the unknown variables. This approach effectively handles the
continuity and Kirchhoff conditions of NDDEs on metric star graphs. This paper makes the following
contributions:

– A metric star graph is used to study neutral delay differential equations for the first time.
– A Haar wavelet method has been developed to approximate the solution of NDDE-MSG. Both spatial

and temporal derivatives are approximated using Haar wavelets and their integrations.
– Wavelet bases and their integration have been directly used to approximate the delayed terms pre-

sented in NDDE-MSG.
– The proposed method converges exponentially based on the error bound established for its theoretical

applicability.

The paper is organized as follows. Section 2 provides a few basic definitions and preliminaries related
to wavelets and metric star graphs. The Haar wavelet and function approximation are briefly discussed in
Section 3. A general order integration of the Haar wavelet is given in Section 4. Section 5 discusses in
detail about the numerical method for solving NDDE-MSG. In Section 6, we establish the convergence
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analysis and error bounds for the approach. Section 7 presents five numerical examples based on NDDE-
MSG using the method developed. The conclusion is provided in Section 8.

2 Preliminaries

The rest of the manuscript relies on some basic definitions and symbols which are provided in this section.
We define the following space on metric star graph G(V ,E):

L2(G(V ,E)) = Π
κ
r=1L2 (0, lr) , (6)

with the following inner product

⟨ur,vr⟩L2(G(V ,E)) =
κ

∑
r=1

⟨ur,vr⟩L2(0,lr) , (7)

where L2 (0, lr) be the Hilbert space. Let C(G) denotes the space of all continuous functions on G(V ,E)
endowed with the norm

∥u∥C(G) = sup
1≤r≤κ

∥u∥∞, (8)

where ∥.∥∞ is the standard Chebyshev norm.

Definition 1 Multiresolution analysis (MRA) is defined as the sequence of subspaces {V j} of functions
f ∈ L2(R) which meets the following axioms:

(i) V j ⊂V j+1, ∀ j ∈Z,
(ii) ∪

j∈Z
V j = L2(R),

(iii) The set {φ(·− k), k ∈Z} forms an orthonormal basis for V 0,
(iv) If f (·) ∈V 0 ⇒ f (2 j·) ∈V j.

Let W j = {ψk
j , k, j ∈Z} be defined as the subspace satisfying

V j ⊥W j and V j+1 =V j ⊕W j. (9)

Applying equation (9) recursively yields

V J =V J0 ⊕
J−1⊕
j=J0

W j, J > J0. (10)

Now if we denote PV J f as the projection of f ∈ L2(R) onto V J then considering equation (10) yields

PV J f (x) = ∑
k

hk
jϕ

k
j (x),

PV J f (x) = ∑
k

hk
J0

ϕ
k
J0
(x)+ ∑

k∈Z

J0−1

∑
j=1

gk
jψ

k
j (x), (11)

where hk
J0

’s and gk
j’s can be determined by utilizing the scaling and wavelet functions as follows:

hk
J0
=

∫
∞

−∞

f (x)ϕk
J0
(x)dx, gk

j =
∫

∞

−∞

f (x)ψk
j (x)dx. (12)

Definition 2 Multiresolution analysis (MRA) in two dimensions, is defined as the sequence of subspaces
{V jx, jt

2 } of functions f ∈ L2(R×R) which meets the following axioms:
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(i) V jx, jt
2 ⊂V jx+1, jt+1

2 , ∀ jx, jt ∈Z,

(ii) ∪
jx, jt∈Z

V jx, jt
2 = L2(R×R),

(iii) The set {φ(·− kx, ·− kt), kx,kt ∈Z} forms an orthonormal basis for V 0,0
2 ,

(iv) If f (·, ·) ∈V 0 ⇒ f (2 jx ·,2 jt ·) ∈V jx, jt
2 , where V jx, jt

2 =V jx ⊗V jt and ⊗ denotes the kronecker product.

Let W jx, jt
2 = {ψ

kx,kt
jx, jt , jx, jt,kx,kt ∈Z} be defined as the subspace satisfying

V jx, jt
2 ⊥W jx, jt

2 and V jx+1, jt+1
2 =V jx, jt

2 ⊕W jx, jt
2 . (13)

Applying equation (13) recursively yields

V Jx,Jt
2 =V

Jx,0,Jt,0
2 ⊕

jx=Jx−1
jt=Jt−1⊕
jx=Jx,0
jt=Jt,0

W jx, jt
2 , Jx > Jx,0, Jt > Jt,0. (14)

Now if denote P
V Jx ,Jt

2
f as the projection of f ∈ L2(R×R) onto V Jx,Jt

2 then considering equation (14) gives

P
V Jx,Jt

2
f (x,t)≈ ∑

kx,kt

hkx,kt
jx, jt ϕ

kx,kt
jx, jt (x,t),

P
V Jx ,Jt

2
f (x,t)≈ ∑

kx,kt

hkx,kt
Jx,0,Jt,0

ϕ
kx,kt
Jx,0,Jt,0

(x,t)+ ∑
kx,kt

Jx−1
Jt−1

∑
jx=Jx,0
jt=Jt,0

gkx,kt
jx, jt ψ

kx,kt
jx, jt (x,t), (15)

where hkx,kt
Jx,0,Jt,0

’s and gkx,kt
jx, jt ’s can be determined by utilizing the orthogonality of scaling and wavelet func-

tions as:

hkx,kt
Jx,0,Jt,0

=
∫

∞

−∞

∫
∞

−∞

f (x,t)ϕkx,kt
Jx,0,Jt,0

(x,t)dxdt, (16)

gkx,kt
jx, jt =

∫
∞

−∞

∫
∞

−∞

f (x,t)ψkx,kt
jx, jt (x,t)dxdt. (17)

3 Haar wavelet

A function ψ(x) is said to be a mother wavelet, if the following condition is satisfied:

2π

∫
∞

−∞

|ψ̃(ξ )|2

|ξ |
dξ < ∞, (18)

where ψ̃(ξ ) stands for the Fourier transform of ψ(x). In general, we may reduced the condition (18) to
the following weaker requirement: ∫

∞

−∞

ψ(x)dx = 0. (19)

That is, a function ψ(x) is termed as mother wavelet if the total integral of the function is zero.
Wavelet is a set of functions constructed by the dilation and translation of mother wavelet ψ(x) and

defined as:
ψd,T (x) = |d|

1
2 ψ

(
xd−1 −T d−1) , T,d(̸= 0) ∈ R. (20)
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The simplest example of wavelet is Haar wavelet which is constructed with help of the scaling function
ϕ(x) = 1, if x ∈ [0,1) and zero otherwise. The scaling function ϕ(x) satisfies the following dilation
equation:

ϕ(x) =
√

2∑
k

hkϕ(2x− k), (21)

where h0 = h1 =
1√
2

and hk = 0, ∀ k > 1.
The Haar mother wavelet can be define with the assistance of the scaling function ϕ(x) as follows:

ψ(x) = ∑
k

√
2gkϕ(2x− k), with gk = (−1)kh1−k, (22)

where hk and gk are respectively the low pass and high pass filter coefficients calculated for Haar wavelet
as: g0 =

1√
2
,g1 =− 1√

2
and gk = 0, ∀ k ̸= {0,1}.

Hence the Haar mother wavelet defined on [0,1) as:

ψ(x) =


1, x ∈

[
0, 1

2

)
,

−1, x ∈
[ 1

2 ,1
)
,

0, otherwise.
(23)

Finally, we can obtained the Haar wavelet simply by dilating and translating the Haar mother wavelet
function ψ(x) as follows:

ψ
kx
jx (x) =


1, x ∈

[
kx
2 jx ,

kx+0.5
2 jx

)
,

−1, x ∈
[

kx+0.5
2 jx , kx+1

2 jx

)
,

0, otherwise,

(24)

where kx = 0,1,2, . . . ,2 jx−1, jx = 0,1, . . . ,Jx −1, where Jx denotes the level of resolution.
Equivalently, we can define Haar wavelet for ix > 1 as:

ψix(x) =


1, x ∈

[
kx
2 jx ,

kx+0.5
2 jx

)
,

−1, x ∈
[

kx+0.5
2 jx , kx+1

2 jx

)
, where ix = 2 jx + kx +1,

0, otherwise

(25)

and ψ1(x) =

{
1, x ∈ [0,1),
0, otherwise.

(26)

Similarly, we can define Haar wavelet in temporal dimension for it > 1 as:

ψit(t) =


1, t ∈

[
kt
2 jt ,

kt+0.5
2 jt

)
,

−1, t ∈
[

kt+0.5
2 jt , kt+1

2 jt

)
, where it = 2 jt + kt +1,

0, otherwise

(27)

and ψ1(t) =

{
1, t ∈ [0,1),
0, otherwise.

(28)

The analytic expression of a function u ∈ L2[0,1) in terms of Haar wavelet can be obtained with the help
of equation (11) as:

u(x) = h0
0ϕ

0
0 (x)+∑

kx

∑
jx

gkx
jx ψ

kx
jx (x). (29)
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The finest projection of u can be obtained by the terminated sum as follows:

u(x)≃ PV Jx u(x) = h0
0ϕ

0
0 (x)+∑

kx

Jx−1

∑
jx= jx,0

gkx
jx ψ

kx
jx (x) =

Nx

∑
ix=1

gixψix(x), (30)

where the coefficients gix ’s can be found by

gix =
∫

∞

−∞

u(x)ψix(x)dx. (31)

Similarly, the analytic expression of a function u ∈ L2([0,1)× [0,1)) in terms of Haar wavelet can be
found with the help of equation (15) as:

u(x,t) = h0,0
0,0ϕ

0,0
0,0 (x,t)+ ∑

kx,kt

∑
jx, jt

gkx,kt
jx, jt ψ

kx
jx (x)ψ

kt
jt (t). (32)

The finest projection of u(x,t) can be obtained by the terminated sum as follows:

u(x,t)≃ P
V Jx ,Jt

2
u(x,t) = h0,0

0,0ϕ
0,0
0,0 (x,t)+ ∑

kx,kt

Jx−1
Jt−1

∑
jx= jx,0
jt= jt,0

gkx,kt
jx, jt ψ

kx
jx (x)ψ

kt
jt (t)

=
Nx

∑
ix=1

Nt

∑
it=1

gix,it ψix(x)ψit(t), (33)

where the coefficients gix,it ’s can be found by

gix,it =
∫

∞

−∞

∫
∞

−∞

u(x,t)ψix(x)ψit(t)dxdt. (34)

4 Integration of Haar wavelet

Let J (m)
x ψix(x) and J (m)

t ψit(t) denote the mth order integrations of Haar wavelet against x and t respec-
tively. Then using expression (25), we have

J (m)
x ψix(x) =


1

m! (x−
kx
2 jx )

m, x ∈ [ kx
2 jx ,

kx+0.5
2 jx ),

1
m!

(
x− kx

2 jx

)m
−2 1

m!

(
x− kx+0.5

2 jx

)m
, x ∈

[
kx+0.5

2 jx , kx+1
2 jx

)
,

1
m!

(
x− kx

2 jx

)m
−2 1

m!

(
x− kx+0.5

2 jx

)m
+ 1

m!

(
x− kx+1

2 jx

)m
, x ≥ kx+1

2 jx .

(35)

In the same fashion, the integration of Haar wavelet in other direction is given by

J (m)
t ψit(t) =


1

m!

(
t− kt

2 jt

)m
, t ∈

[
kt
2 jt ,

kt+0.5
2 jt

)
,

1
m!

(
t− kt

2 jt

)m
−2 1

m!

(
t− kt+0.5

2 jt

)m
, t ∈

[
kt+0.5

2 jt , kt+1
2 jt

)
,

1
m!

(
t− kt

2 jt

)m
−2 1

m!

(
t− kt+0.5

2 jt

)m
+ 1

m!

(
t− kt+1

2 jt

)m
, t ≥ kt+1

2 jt .

(36)
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5 Numerical method

Herein, we approximate the highest order mixed derivative of ur(x,t) in terms of Haar wavelet. Next, we
approximate the lower order derivatives and unknown functions ur(x,t) in terms of the Haar wavelet and
its integrations. Plugging the values of ur(x,t) along the derivatives in equation (1), the system of alge-
braic equations is obtained, which on solving yields undetermined wavelet coefficients and subsequently
approximate solutions. Here, we develop the method for lr = 1, r = 1,2, . . .κ as described below.

We can approximate the mixed derivative ∂t∂xxur(x,t) in terms of Haar wavelet as:

∂t∂xxur(x,t) =
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,itψix(x)ψit(t). (37)

Integrating equation (37) against t, yields

∂xxur(x,t) =
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,itψix(x)J

(1)
t ψit(t)+∂xxur(x,0). (38)

In a similar way, subsequent integrations of equation (38) with respect to x, provides

∂xur(x,t) =
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it J

(1)
x ψix(x)J

(1)
t ψit(t)+∂xur(x,0)−∂xur(0,0)+∂xur(0, t), (39)

ur(x,t) =
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it J

(2)
x ψix(x)J

(1)
t ψit(t)+ur(x,0)−ur(0,0)−x∂xur(0,0)+x∂xur(0, t)+ur(0, t).

(40)

If we plug x = 1 into equation (40) and add up all the values, we obtain

κ

∑
r=1

ur(1, t) =
κ

∑
r=1

Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it J

(2)
x ψix(1)J

(1)
t ψit(t)+

κ

∑
r=1

(ur(1,0)−ur(0,0)−∂xur(0,0))

+
κ

∑
r=1

∂xur(0, t)+
κ

∑
r=1

ur(0, t),

⇒ ur(0, t) =− 1
κ

κ

∑
r=1

Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it J

(2)
x ψix(1)J

(1)
t ψit(t)−

1
κ

κ

∑
r=1

(ur(1,0)−ur(0,0)−∂xur(0,0)),1 ≤ r ≤ κ.

(41)

Again, for the equation (40), set x equal to 1, and then after simplifying, we obtain

∂xur(0, t)−∂xur(0,0) =−
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it J

(2)
x ψix(1)J

(1)
t ψit(t)−ur(1,0)+ur(0,0)+ur(0, t). (42)

Now, from equations (40), (41) and (42), we get

ur(x,t) =
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it J

(2)
x ψix(x)J

(1)
t ψit(t)−

Nx

∑
ix=1

Nt

∑
it=1

gr
ix,itxJ (2)

x ψix(1)J
(1)
t ψit(t)

− 1
κ

κ

∑
r=1

Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it(1−x)J (2)

x ψix(1)J
(1)
t ψit(t)−

1
κ

κ

∑
r=1

(1−x)(ur(1,0)−ur(0,0)−∂xur(0,0))

+ur(x,0)+(x−1)ur(0,0)−xur(1,0). (43)
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Again differentiation of equation (43) yields

∂tur(x,t) =
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it J

(2)
x ψix(x)ψit(t)−

Nx

∑
ix=1

Nt

∑
it=1

gr
ix,itxJ (2)

x ψix(1)ψit(t)

− 1
κ

κ

∑
r=1

Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it(1−x)J (2)

x ψix(1)ψit(t). (44)

Also, using equation (41) in (39) gives

∂xur(x,t) =
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it

(
J (1)

x ψix(x)− J (2)
x ψix(1)

)
J (1)

t ψit(t)−
1
κ

κ

∑
r=1

Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it J

(2)
x ψix(1)J

(1)
t ψit(t)

+∂xur(x,0)−ur(1,0)+ur(0,0)+
1
κ

κ

∑
r=1

(ur(1,0)−ur(0,0)). (45)

Now, replace t by t− τ2,r, t− τr, and t− τ1,r in equations (38), (43) and (45), respectively yields

∂xxur(x, t− τ2,r) =
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,itψix(x)J

(1)
t ψit(t− τ2,r)+∂xxur(x,0), (46)

ur(x, t− τr) =
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it J

(2)
x ψix(x)J

(1)
t ψit(t− τr)−

Nx

∑
ix=1

Nt

∑
it=1

gr
ix,itxJ (2)

x ψix(1)J
(1)
t ψit(t− τr)

− 1
κ

κ

∑
r=1

Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it(1− x)J (2)

x ψix(1)J
(1)
t ψit(t− τr)−

1
κ

κ

∑
r=1

(1−x)(ur(1,0)−ur(0,0)

−∂xur(0,0))+ur(x,0)+(x−1)ur(0,0)−xur(1,0), (47)

∂xur(x, t− τ1,r) =
Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it(J

(1)
x ψix(x)− J (2)

x ψix(1))J
(1)
t ψit(t− τ1,r)−

1
κ

κ

∑
r=1

Nx

∑
ix=1

Nt

∑
it=1

gr
ix,it J

(2)
x ψix(1)

× J (1)
t ψit(t− τ1,r)+∂xur(x,0)−ur(1,0)+ur(0,0)+

1
κ

κ

∑
r=1

(ur(1,0)−ur(0,0)). (48)

Substituting equations (38), (43)-(48) in equation (1) and collocating at xθ1 =
θ1−0.5

Nx
, tθ2 =

θ2−0.5
Nt

, where

θ1 = 1,2, . . . ,Nx,θ2 = 1,2, . . . ,Nt, forms the system of κ

(
(Nx)

2 × (Nt)
2
)

nonlinear algebraic equations.
Solving the resulting system provides undetermined wavelet coefficients gr

ix,it . These coefficient values
when substituted in equation (43) yield the required approximation.

6 Convergence

In this section, we examine upper estimate of the error norm for the described method. We now write
equation (43) in analytic form in order to demonstrate that the proposed method converges:

ur(x,t) =
∞

∑
ix=1

∞

∑
it=1

gr
ix,it J

(2)
x ψix(x)J

(1)
t ψit(t)−

∞

∑
ix=1

∞

∑
it=1

gr
ix,it J

(2)
x ψix(1)J

(1)
t ψit(t)

− 1
κ

κ

∑
r=1

∞

∑
ix=1

∞

∑
it=1

gr
ix,it(1−x)J (2)

x ψix(1)J
(1)
t ψit(t)+B(x,t), (49)

where B(x,t) represents the function containing boundary terms.

9



Lemma 1 Let ur(x,t) ∈ L2((0, lr)× (0,1)) with lr = 1 such that |∂tt∂xxxur(x,t)| ≤ ℜr,∀(x,t) ∈ (0,1)×
(0,1) and ℜr > 0, r = 1(1)κ . If ∂t∂xxur(x,t) = ∑

∞
ix=1 ∑

∞
it=1 gr

ix,itψix(x)ψit(t), then the following inequality
holds:

κ

∑
r=1

∣∣gr
ix,it

∣∣≤ 2−2( jx+ jt+1)
κℜ, (50)

where ℜ = max
1≤r≤κ

ℜr.

Proof We have

∂t∂xxur(x,t) =
∞

∑
ix=1

∞

∑
it=1

gr
ix,itψix(x)ψit(t),

gr
ix,it =

∫ 1

0

∫ 1

0
∂t∂xxur(x,t)ψix(x)ψit(t)dxdt = ⟨ψix(x),⟨∂t∂xxur(x,t),ψit(t)⟩⟩ .

Now

⟨∂t∂xxur(x,t),ψit(t)⟩=
∫ 1

0
∂t∂xxur(x,t)ψit(t)dt

=
∫ kt+0.5

2 jt

kt
2 jt

∂t∂xxur(x,t)dt−
∫ kt+1

2 jt

kt+0.5
2 jt

∂t∂xxur(x,t)dt

=
1

2 jt+1 ∂t∂xxur (x,χ1)−
1

2 jt+1 ∂t∂xxur (x,χ2) .

Here the mean value theorem for integral is employed for χ1 ∈
(
kt2− jt ,(kt +0.5)2− jt

)
and χ2 ∈ ((kt +

0.5)2− jt ,(kt +1)2− jt). Again applying mean value theorem for χ ∈ (χ1,χ2), we have

⟨∂t∂xxur(x,t),ψit(t)⟩=
1

2 jt+1 (χ1 −χ2)∂tt∂xxur(x,χ).

Now

⟨ψix(x),⟨∂t∂xxur(x,χ),ψit(t)⟩⟩=
1

2 jt+1 (χ1 −χ2)
∫ 1

0
∂tt∂xxur(x,χ)ψix(x)dx

=
1

2 jt+1 (χ1 −χ2)

(∫ kx+0.5
2 jx

kx
2 jx

∂tt∂xxur(x,χ)dx−
∫ kx+1

2 jx

kx+0.5
2 jx

∂tt∂xxur(x,χ)dx
)

=
(χ1 −χ2)

2 jx+ jt+2

(
∂tt∂xxur(ω1,χ)−∂tt∂xxur(ω2,χ)

)
. (51)

The abovementioned relation is attained by utilizing mean value theorem, provided ω1 ∈
(
kx2− jx ,(kx +0.5)2− jx

)
and ω2 ∈

(
(kx +0.5)2− jx ,(kx +1)2− jx

)
. Again applying mean value theorem for ω ∈ (ω1,ω2), we obtain

⟨ψix(x),⟨∂t∂xxur(x,t),ψit(t)⟩⟩=
1

2 jx+ jt+2 (χ1 −χ2)(ω1 −ω2)∂tt∂xxxur(ω,χ).

Therefore, we have ∣∣gr
ix,it

∣∣= 1
2 jx+ jt+2 |χ2 −χ1| |ω2 −ω1| |∂tt∂xxxur(ω,χ)| ,∣∣gr

ix,it

∣∣≤ 2−2( jx+ jt+1)
ℜr,

κ

∑
r=1

∣∣gr
ix,it

∣∣≤ 2−2( jx+ jt+1)
κℜ,

where ℜ = max
1≤r≤κ

ℜr.
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Lemma 2 Let ur(x,t) be the accurate solution of NDDE-MSG (1) and P
V Jx ,Jt

2
ur(x,t) be the projection

of analytic solution such that |∂tt∂xxxur(x,t)| ≤ ℜr, ∀ (x,t) ∈ (0,1)× (0,1) and ℜr > 0,r = 1(1)κ and
∂t∂xxur(x,t) = ∑

∞
ix=1 ∑

∞
it=1 gr

ix,itψix(x)ψit(t), then the following inequality holds:

κ

∑
r=1

∥ur(x,t)−P
V Jx ,Jt

2
ur(x,t)∥L2(0,lr) ≤Θ12−4Jx−3Jt , (52)

where Θ1 is a constant given in the proof below.

Proof Denote ∑
∞
jx=Jx+1 ∑

jx+1
ix=2 jx ∑

∞
jt=Jt+1 ∑

2 jt+1−1
it=2 jt := Ω

jx,ix, jt,it
. Then, we have

κ

∑
r=1

∥∥∥∥(ur(x,t)−P
V Jx,Jt

2
ur(x,t)

)∥∥∥∥
L2(0,lr)

=
κ

∑
r=1

∥∥∥∥ Ω
jx,ix, jt,it

gr
ix,it

(
J (2)

x ψix(x)J
(1)
t ψit(t)−xJ (2)

x ψix(1)J
(1)
t ψit(t)

)
− 1

κ
Ω

jx,ix, jt,it

κ

∑
r=1

gr
ix,it(1−x)J (2)

x ψix(1)J
(1)
t ψit(t)

∥∥∥∥
L2(0,lr)

. (53)

Using Minkowski and Hölder inequalities, we have

κ

∑
r=1

∥ur(x,t)−P
V Jx ,Jt

2
ur(x,t)∥L2(0,lr) ≤

κ

∑
r=1

Ω
jx,ix, jt,it

|gr
ix,it |

((∫ 1

0
|J (2)

x ψix(x)|2dx
) 1

2
(∫ 1

0
|J (1)

t ψit(t)|2dt
) 1

2

+

(∫ 1

0
|xJ (2)

x ψix(1)|2dx
) 1

2
(∫ 1

0
|J (1)

t ψit(t)|2dt
) 1

2

+

(∫ 1

0
|(1−x)J (2)

x ψix(1)|2dx
) 1

2
(∫ 1

0
|J (1)

t ψit(t)|2dt
) 1

2
)
. (54)

Now consider

J (m)
x ψix(x) =

1
Γ (m)

∫ x

0
(x− s)m

ψis(s)ds

=
1

Γ (m)

(∫ kx+0.5
2 jx

kx
2 jx

(x− s)mds−
∫ kx+1

2 jx

kx+0.5
2 jx

(x− s)mds
)

=
1

(m+1)Γ (m)

((
x− kx

2 jx

)m+1 −2
(
x− kx +0.5

2 jx

)m+1
+
(
x− kx +1

2 jx

)m+1
)
,

|J (m)
x ψix(x)| ≤A2− jx(m+1), (55)

where A= max
y∈(0,1)

∣∣∣ ym+1−2(y−0.5)m+1+(y−1)m+1

(m+1)Γ (m)

∣∣∣ , y = 2 jxx− kx. Therefore, we have

|J (1)
x ψix(x)| ≤ A2−2 jx , |J (2)

x ψix(x)| ≤ A2−3 jx , and |J (1)
t ψit(t)| ≤ A2−2 jt . (56)

Now from equations (54) and (56), we obtain

κ

∑
r=1

∥ur(x,t)−P
V Jx ,Jt

2
ur(x,t)∥L2(0,lr) ≤ Ω

jx,ix, jt,it

3κA2ℜ

4
2−5 jx−4 jt

=
3κℜA2

4

∞

∑
jx=Jx+1

2 jx+1−1

∑
ix=2 jx

2−5 jx
∞

∑
jt=Jt+1

2−3 jt

11



=
3κℜA22−3Jt

28

∞

∑
jx=Jx+1

2−4 jx ,

κ

∑
r=1

∥ur(x,t)−P
V Jx ,Jt

2
ur(x,t)∥L2(0,lr) ≤Θ12−4Jx−3Jt , (57)

where Θ1 is a constant given by Θ1 =
3κℜA2

420 .

Lemma 3 Let ur(x,t) be the accurate solution of NDDE-MSG (1) and P
V Jx ,Jt

2
ur(x,t) be the projection

of analytic solution such that |∂tt∂xxxur(x,t)| ≤ ℜr, ∀ (x,t) ∈ (0,1)× (0,1) and ℜr > 0,r = 1(1)κ and
∂t∂xxur(x,t) = ∑

∞
ix=1 ∑

∞
it=1 gr

ix,itψix(x)ψit(t), then the following inequality holds:

κ

∑
r=1

∥ur(x,t− τr)−P
V Jx ,Jt

2
ur(x,t− τr)∥L2(0,lr) ≤Θ12−4Jx−3Jt . (58)

Proof Similar techniques to those used in proving Lemma 2 can be employed in establishing the proof of
this lemma.

Lemma 4 Let ur(x,t) be the accurate solution of NDDE-MSG (1) and P
V Jx ,Jt

2
ur(x,t) be the projection

of analytic solution such that |∂tt∂xxxur(x,t)| ≤ ℜr, ∀ (x,t) ∈ (0,1)× (0,1) and ℜr > 0,r = 1(1)κ and
∂t∂xxur(x,t) = ∑

∞
ix=1 ∑

∞
it=1 gr

ix,itψix(x)ψit(t), then the following inequality holds:

κ

∑
r=1

∥∂xur(x,t)−P
V Jx ,Jt

2
∂xur(x,t)∥L2(0,lr) ≤ 2−3Jt

(
Θ22−3Jx +Θ32−4Jx

)
, (59)

where Θ2 and Θ3 are constants given in the proof below.

Proof From equation (53), we have

κ

∑
r=1

∥∂xur(x,t)−P
V Jx ,Jt

2
∂xur(x,t)∥L2(0,lr) =

κ

∑
r=1

∥∥ Ω
jx,ix, jt,it

gr
ix,it(J

(1)
x ψix(x)J

(1)
t ψit(t)− J (2)

x ψix(1)J
(1)
t ψit(t))

+
1
κ

Ω
jx,ix, jt,it

κ

∑
r=1

gr
ix,it J

(2)
x ψix(1)J

(1)
t ψit(t)

∥∥
L2(0,lr)

. (60)

Using Minkowski and Hölder inequalities, we have

κ

∑
r=1

∥∂xur(x,t)−P
V Jx ,Jt

2
∂xur(x,t)∥L2(0,lr) ≤

κ

∑
r=1

Ω
jx,ix, jt,it

|gr
ix,it |

((∫ 1

0
|J (1)

x ψix(x)|2dx
) 1

2
(∫ 1

0
|J (1)

t ψit(t)|2dt
) 1

2

+

(∫ 1

0
|J (2)

x ψix(1)|2dx
) 1

2
(∫ 1

0
|J (1)

t ψit(t)|2dt
) 1

2

+

(∫ 1

0
|J (2)

x ψix(1)|2dx
) 1

2 (∫ 1

0
|J (1)

t ψit(t)|2dt
) 1

2

)
. (61)

Now from equations (55), (56) and (61), we obtain

κ

∑
r=1

∥∂xur(x,t)−P
V Jx ,Jt

2
∂xur(x,t)∥L2(0,lr) ≤ Ω

jx,ix, jt,it

ℜκA2

4

(
2−4 jx +2−5 jx+1

)
2−4 jt

=
ℜκA2

4

∞

∑
jx=Jx+1

2 jx+1−1

∑
ix=2 jx

(
2−4 jx +2−5 jx+1

)
∞

∑
jt=Jt+1

2−3 jt

12



=
2−3JtℜκA2

28

∞

∑
jx=Jx+1

(
2−3 jx +2−4 jx+1),

κ

∑
r=1

∥∂xur(x,t)−P
V Jx ,Jt

2
∂xur(x,t)∥L2(0,lr) ≤ 2−3Jt

(
Θ22−3Jx +Θ32−4Jx

)
, (62)

where Θ2 and Θ3 are constants given by Θ2 =
ℜκA2

196 , Θ3 =
ℜκA2

210 .

Lemma 5 Let ur(x,t) be the accurate solution of NDDE-MSG (1) and P
V Jx ,Jt

2
ur(x,t) be the projection

of analytic solution such that |∂tt∂xxxur(x,t)| ≤ ℜr, ∀(x,t) ∈ (0,1)× (0,1) and ℜr > 0,r = 1(1)κ and
∂t∂xxur(x,t) = ∑

∞
ix=1 ∑

∞
it=1 gr

ix,itψix(x)ψit(t), then the following inequality holds:

κ

∑
r=1

∥∂xur(x,t− τ1,r)−P
V Jx ,Jt

2
∂xur(x,t− τ1,r)∥L2(0,lr) ≤2−3Jt

(
Θ22−3Jx +Θ32−4Jx

)
. (63)

Proof Similar techniques to those used in proving Lemma 4 can be employed in establishing the proof of
this lemma.

Lemma 6 Let ur(x,t) be the accurate solution of NDDE-MSG (1) and P
V Jx ,Jt

2
ur(x,t) be the projection

of analytic solution such that |∂tt∂xxxur(x,t)| ≤ ℜr, ∀(x,t) ∈ (0,1)× (0,1) and ℜr > 0,r = 1(1)κ and
∂t∂xxur(x,t) = ∑

∞
ix=1 ∑

∞
it=1 gr

ix,itψix(x)ψit(t), then the following inequality holds:

κ

∑
r=1

∥∂xxur(x,t)−P
V Jx ,Jt

2
∂xxur(x,t)∥L2(0,lr) ≤Θ42−Jx−3Jt , (64)

where Θ4 is a constant given in the proof below.

Proof From equation (53), we have

κ

∑
r=1

∥∥∥∂xxur(x,t)−P
V Jx ,Jt

2
∂xxur(x,t)

∥∥∥
L2(0,lr)

=
κ

∑
r=1

∥∥∥∥ Ω
jx,ix, jt,it

gr
ix,itψix(x)J

(1)
t ψit(t)

∥∥∥∥
L2(0,lr)

. (65)

Using Hölder inequality, we have

κ

∑
r=1

∥∥∥∂xxur(x,t)−P
V Jx,Jt

2
∂xxur(x,t)

∥∥∥
L2(0,lr)

≤
κ

∑
r=1

Ω
jx,ix, jt,it

|gr
ix,it |

(∫ 1

0
|ψix(x)|2dx

) 1
2
(∫ 1

0
|J (1)

t ψit(t)|2dt
) 1

2
.

(66)

Using equations (56), we have

κ

∑
r=1

∥∂xxur(x,t)−P
V Jx ,Jt

2
∂xxur(x,t)∥L2(0,lr) ≤ Ω

jx,ix, jt,it

ℜκA

4
2−2 jx−4 jt

=
ℜκA

4

∞

∑
jx=Jx+1

2 jx+1−1

∑
ix=2 jx

2−2 jx
∞

∑
jt=Jt+1

2−3 jt

=
2−3JtℜκA

28

∞

∑
jx=Jx+1

2− jx ,

κ

∑
r=1

∥∂xxur(x,t)−P
V Jx ,Jt

2
∂xxur(x,t)∥L2(0,lr) ≤Θ42−Jx−3Jt , (67)

where Θ4 =
ℜκA
28 .
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Lemma 7 Let ur(x,t) be the accurate solution of NDDE-MSG (1) and P
V Jx ,Jt

2
ur(x,t) be the projection

of analytic solution such that |∂tt∂xxxur(x,t)| ≤ ℜr, ∀(x,t) ∈ (0,1)× (0,1) and ℜr > 0,r = 1(1)κ and
∂t∂xxur(x,t) = ∑

∞
ix=1 ∑

∞
it=1 gr

ix,itψix(x)ψit(t), then the following inequality holds:

κ

∑
r=1

∥∥∥∂xxur (x,t− τ2,r)−P
V Jx,Jt

2
∂xxur (x,t− τ2,r)

∥∥∥
L2(0,lr)

≤Θ42−Jx−3Jt . (68)

Proof Similar techniques to those used in proving Lemma 6 can be employed in establishing the proof of
this lemma.

Lemma 8 Let ur(x,t) be the accurate solution of NDDE-MSG (1) and P
V Jx ,Jt

2
ur(x,t) be the projection

of analytic solution such that |∂tt∂xxxur(x,t)| ≤ ℜr, ∀(x,t) ∈ (0,1)× (0,1) and ℜr > 0,r = 1(1)κ and
∂t∂xxur(x,t) = ∑

∞
ix=1 ∑

∞
it=1 gr

ix,itψix(x)ψit(t), then the following inequality holds:

κ

∑
r=1

∥∥∥(∂tur(x,t)−P
V Jx ,Jt

2
∂tur(x,t)

)∥∥∥
L2(0,lr)

≤Θ52−4Jx−Jt , (69)

where θ5 is a constant given in the proof below.

Proof From equation (53), we have

κ

∑
r=1

∥∥(∂tur(x,t)−P
V Jx,Jt

2
∂tur(x,t)

)∥∥
L2(0,lr)

=
κ

∑
r=1

∥∥ Ω
jx,ix, jt,it

gr
ix,it(J

(2)
x ψix(x)ψit(t)−xJ (2)

x ψix(1))ψit(t)

− 1
κ

Ω
jx,ix, jt,it

κ

∑
r=1

gr
ix,it(1−x)J (2)

x ψix(1)ψit(t)
∥∥

L2(0,lr)
. (70)

Using Minkowski and Hölder inequalities, we have

κ

∑
r=1

∥∂tur(x,t)−P
V Jx ,Jt

2
∂tur(x,t)∥L2(0,lr) ≤

κ

∑
r=1

Ω
jx,ix, jt,it

|gr
ix,it |

((∫ 1

0
|J (2)

x ψix(x)|2dx
) 1

2
(∫ 1

0
|ψit(t)|2dt

) 1
2

+

(∫ 1

0
|xJ (2)

x ψix(1)|2dx
) 1

2
(∫ 1

0
|ψit(t)|2dt

) 1
2

+

(∫ 1

0
|(1−x)J (2)

x ψix(1)|2dx
) 1

2
(∫ 1

0
|ψit(t)|2dt

) 1
2
)
. (71)

Using equation (56), we obtain

κ

∑
r=1

∥∂tur(x,t)−P
V Jx ,Jt

2
∂tur(x,t)∥L2(0,lr) ≤ Ω

jx,ix, jt,it

3κℜA

4
2−5 jx−2 jt

=
3κℜA

4

∞

∑
jx=Jx+1

2 jx+1−1

∑
ix=2 jx

2−5 jx
∞

∑
jt=Jt+1

2− jt

=
2−Jt3κℜA

4

∞

∑
jx=Jx+1

2−4 jx ,

κ

∑
r=1

∥∂tur(x,t)−P
V Jx ,Jt

2
∂tur(x,t)∥L2(0,lr) ≤Θ52−4Jx−Jt , (72)

where Θ5 =
κℜA
20 .
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Theorem 1 Let ur(x,t)(= {ur(x,t)}κ

r=1)∈C
(

G(V ,E)×
[
t0 − τr (x,t,ur(x,t)) , t f

]
;R

)
be the exact solution

of NDDE-MSG (1) and P
V Jx,Jt

2
ur(x,t) be the approximate solution such that |∂tt∂xxxur(x,t)| ≤ ℜr,∀(x,t) ∈

(0,1)× (0,1) and ℜr > 0,r = 1(1)κ and ∂t∂xxur(x,t) = ∑
∞
ix=1 ∑

∞
it=1 gr

ix,itψix(x)ψit(t). Let Fr in equation
(1) be the Lipschitz function with Lipschitz coefficients Li,r, i = 1,2, ...,6. If we denote εr

Jx,Jt
as the ob-

tained error associated with the rth edge, then the global error associated with the graph is denoted by
ε

G(V ,E)
JxJt

= ∑
κ
r=1 ∥εr

Jx,Jt
∥L2(0,lr) and estimated by the following inequality:

ε
G(V ,E)
JxJt

=
κ

∑
r=1

∥ε
r
Jx,Jt∥L2(0,lr) ≤ C12−4Jx−Jt +(C22−4Jx +C32−3Jx +C42−2Jx)2−3Jt , (73)

where C1, C2, C3 and C4 are constants given in the proof below.

Proof We have

κ

∑
r=1

∥∥ε
r
Jx,Jt

∥∥
L2(0,lr)

=
κ

∑
r=1

∥∥∥∥∂tur(x,t)−Fr(x,t,ur,ur(x,t− τr),∂xur(x,t),∂xur (x,t− τ1,r) ,∂xxur(x,t),

∂xxur (x,t− τ2,r))−P
V Jx ,Jt

2
∂tur(x,t)+Fr

(
x,t,P

V Jx ,Jt
2

ur,PV Jx ,Jt
2

ur (x,t− τr) ,PV Jx ,Jt
2

∂xur(x,t),

P
V Jx ,Jt

2
∂xur (x,t− τ1,r) ,PV Jx ,Jt

2
∂xxur(x,t),P

V Jx ,Jt
2

∂xxur (x,t− τ2,r)
)∥∥∥∥

L2(0,lr)

≤
κ

∑
r=1

(
∥∂tur(x,t)−P

V Jx ,Jt
2

∂tur(x,t)∥L2(0,lr)+L1,r∥ur(x,t)−P
V Jx ,Jt

2
ur(x,t)∥L2(0,lr)

+L2,r∥ur(x,t− τr)−P
V Jx ,Jt

2
ur(x,t− τr)∥L2(0,lr)+L3,r∥∂xur(x,t)−P

V Jx ,Jt
2

∂xur(x,t)∥L2(0,lr)

+L4,r∥∂xur(x,t− τ1,r)−P
V Jx ,Jt

2
∂xur(x,t− τ1,r)∥L2(0,lr)+L5,r∥∂xxur(x,t)−P

V Jx ,Jt
2

∂xxur(x,t)∥L2(0,lr)

+L6,r∥∂xxur(x,t− τ2,r)−P
V Jx ,Jt

2
∂xxur(x,t− τ2,r)∥L2(0,lr)

)
. (74)

Using Lemmas 1-8 in equation (74) provides

κ

∑
r=1

∥ε
r
Jx,Jt∥L2(0,lr) ≤ C12−4Jx−Jt +(C22−4Jx +C32−3Jx +C42−2Jx)2−3Jt , (75)

where C1 = κΘ5, C2 = (L1 +L2)Θ1 +(L3 +L4)Θ3, C3 = (L3 +L4)Θ2 and C4 = (L5 +L6)Θ4, Li =
max

1≤r≤κ
Li,r, i = 1,2, ...,6. From equation (75), it is obvious that the error is inversely proportional to the

resolution levels Jx and Jt. Hence, if Jx and Jt tend to ∞, the global error goes to zero. This completes the
proof.

7 Numerical examples

This section presents five examples of NDDE-MSG using the Haar wavelet approach. Calculations were
performed using MATLAB R2021a, an AMD Ryzen 5 PRO 5650U processor, and Windows 11. The
following error norms are computed for numerical results:

ε
r,∞
Jx,Jt

= max
ix,it

∣∣∣ur(x,t)−P
V Jx ,Jt

2
ur(x,t)

∣∣∣ , r = 1(1)κ, (76)

ε
r,2
Jx,Jt

=
∥∥∥ur(x,t)−P

V Jx ,Jt
2

ur(x,t)
∥∥∥

L2(0,lr)
, r = 1(1)κ. (77)
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Example 1 Consider the following linear NDDE-MSG (1) with three edges:

∂tur(x,t) = ∂xxur(x, t −
√

t)+ur(x, t − sin(t))+ fr(x,t), x ∈ (0,1) , t ∈ (0,1) ,
ur(x,t) = 0, t ≤ 0,

ur(0, t) = us(0, t), r ̸= s,r = 1,2,3, s = 1,2,3,
3

∑
r=1

∂xur(0, t) = 0,

ur (1, t) = 0, 1 ≤ r ≤ 3. (78)

The analytical solutions of this example are u1(x,t) = u2(x,t) = t2 sin(πx), u3(x,t) = −2t2 sin(πx) and
the source functions fr(x,t), r = 1,2,3 can be calculated with the assistance of the exact solutions. The
obtained maximum absolute errors (MAEs) (εr,∞

Jx,Jt
, r = 1,2,3) and root mean square errors (RMSEs)

(εr,2
Jx,Jt

, r = 1,2,3) are tabulated in Table 1. The table shows that as the values of the resolution parameters
Jx, Jt are increased, the absolute errors (AEs) decrease significantly, which is a good support of Theorem
1. The graphs of approximate solutions P

V Jx ,Jt
2

ur(x,tNt), r = 1,2,3 are given in Figure 2a. The accurate and

approximate solutions of u1(x,tNt ) are compared in Figure 2b, which demonstrates that the approximate
and exact solutions are similar. In addition, the influence of the resolution parameters Jx, Jt on the be-
haviour of AEs are illustrated in Figure 3. According to the figures, the AEs for Jx = Jt = 4 are O(e−03),
but for Jx = Jt = 5, they are O(e−04), which is in good accordance with the theoretical results.

Table 1: Effect of Jx, Jt on the obtained MAEs and RMSEs of Example 1.

Jx = Jt ε
1,∞
Jx,Jt

= ε
2,∞
Jx,Jt

ε
3,∞
Jx,Jt

CPU ε
1,2
Jx,Jt

= ε
2,2
Jx,Jt

ε
3,2
Jx,Jt

CPU

1 3.9580e−02 7.9161e−02 0.04 8.0851e−02 1.6170e−01 0.03
2 1.2404e−02 2.4808e−02 0.04 4.6820e−02 9.3641e−02 0.04
3 3.4796e−03 6.9592e−03 0.40 2.5690e−02 5.1381e−02 0.05
4 8.9695e−04 1.7939e−03 1.06 1.3131e−02 2.6262e−02 0.41
5 2.2871e−04 4.5742e−04 6.48 6.6772e−03 1.3354e−02 6.47

Example 2 Consider the following linear NDDE-MSG (1) with three edges:

∂tur(x,t) = ∂xxur(x,t)+∂xur(x,sin(
√

t))+ fr(x,t), x ∈ (0,1) , t ∈ (0,1) ,
u1(x,t) = u2(x,t) = sin(2πx), u3(x,t) =−2sin(2πx), t ≤ 0,

ur(0, t) = us(0, t), r ̸= s,r = 1,2,3, s = 1,2,3,
3

∑
r=1

∂xur(0, t) = 0,

ur (1, t) = 0, 1 ≤ r ≤ 3. (79)

The analytical solutions of this example are u1(x,t) = u2(x,t) = t3 sin(2πx)+ sin(2πx),
u3(x,t) = −2t3 sin(2πx)− 2sin(2πx) and the source functions fr(x,t), r = 1,2,3 can be calculated with
the assistance of the exact solutions. The obtained MAEs (εr,∞

Jx,Jt
, r = 1,2,3) and RMSEs (εr,2

Jx,Jt
, r =

1,2,3) are tabulated in Table 2. The table shows that as the values of the resolution parameters Jx, Jt
are increased, the AEs decrease significantly, which is a good support of the Theorem 1. The graphs of
approximate solutions P

V Jx ,Jt
2

ur(x,tNt), r = 1,2,3 are given in Figure 4a. Figure 4b compares the accurate
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(a) (b)

Fig. 2: (2a) Graph of P
V Jx ,Jt

2
ur(x,t), r = 1,2,3 of Example 1 at t = tNt for Jx = Jt = 5. (2b) Graphical

comparison of analytic and approximate solutions of u1(x,t) at t = tNt for Jx = Jt = 5

(a) (b)

Fig. 3: Impact of resolution parameters Jx, Jt on AEs obtained for u(x,t) of Example 1 at t = tNt : (3a) for
Jx = Jt = 4, (3b) for Jx = Jt = 5

and approximate solutions of u2(x,tNt ), demonstrating that the approximate solution is similar to the exact
solution. In addition, Figure 5 illustrates the influence of the resolution parameters Jx, Jt on the behaviour
of AEs. According to the figures, the AEs for Jx = Jt = 3 are O(e−02), but the AEs for Jx = Jt = 4 are
O(e−03), which is in good accordance with the theoretical results.

Example 3 Consider the following linear NDDE-MSG (1) with four edges:

∂tur(x,t) = ∂xxur(x,t)−ur(x,
√

sin(t))+ fr(x,t), x ∈ (0,1) , t ∈ (0,1) , 1 ≤ r ≤ 4,
ur(x,t) = 0, t ≤ 0,

ur(0, t) = us(0, t), r ̸= s,r = 1,2,3,4, s = 1,2,3,4,
4

∑
r=1

∂xur(0, t) = 0,
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Table 2: Effect of Jx, Jt on the obtained MAEs and RMSEs of Example 2

Jx = Jt ε
1,∞
Jx,Jt

= ε
2,∞
Jx,Jt

ε
3,∞
Jx,Jt

CPU ε
1,2
Jx,Jt

= ε
2,2
Jx,Jt

ε
3,2
Jx,Jt

CPU

1 5.6551e−02 1.1310e−01 0.06 7.8003e−02 1.5600e−01 0.04
2 2.1736e−02 4.3472e−02 0.05 4.9131e−02 9.8262e−02 0.05
3 6.3922e−03 1.2784e−02 0.09 2.6085e−02 5.2170e−02 0.08
4 1.6580e−03 3.3160e−03 1.20 1.3131e−02 2.6262e−02 1.29
5 4.2724e−04 8.5449e−04 52.97 6.5944e−03 1.3188e−02 53.30

(a) (b)

Fig. 4: (4a) Graph of P
V Jx ,Jt

2
ur(x,t), r = 1,2,3 of Example 2 at t = tNt for Jx = Jt = 5. (4b) Comparison of

exact and approximate solution of u2(x,t) at t = tNt for Jx = Jt = 5

(a) (b)

Fig. 5: Impact of resolution parameters Jx, Jt on AEs obtained for u(x,t) of Example 2 at t = tNt : (5a) for
Jx = Jt = 3, (5b) for Jx = Jt = 4
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ur (1, t) = 0, 1 ≤ r ≤ 4. (80)

The analytical solutions of this example are u1(x,t)= u2(x,t)= t2x(1−x), u3(x,t)= u4(x,t)=−t2x(1−x)
and the source functions fr(x,t), r = 1,2,3,4 can be calculated with the assistance of the exact solutions.
The obtained MAEs (εr,∞

Jx,Jt
, r = 1,2,3,4) and RMSEs (εr,2

Jx,Jt
, r = 1,2,3,4) are tabulated in Table 3. The

table shows that when the values of the resolution parameters Jx, Jt are increased, the MAEs and RMSEs
decrease gradually, which is a good support of Theorem 1.

Table 3: Effect of Jx, Jt on the obtained MAEs and RMSEs of Example 3.

Jx = Jt ε
1,∞
Jx,Jt

= ε
2,∞
Jx,Jt

ε
3,∞
Jx,Jt

= ε
4,∞
Jx,Jt

CPU ε
1,2
Jx,Jt

= ε
2,2
Jx,Jt

ε
3,2
Jx,Jt

= ε
4,2
Jx,Jt

CPU

1 1.6603e−03 1.6603e−03 0.04 2.5831e−03 2.5831e−03 0.03
2 6.4079e−04 6.4079e−04 0.04 1.3779e−03 1.3779e−03 0.04
3 1.9078e−04 1.9078e−04 0.06 6.6389e−04 6.6389e−04 0.07
4 5.4193e−05 5.4193e−05 0.60 3.3886e−04 3.3886e−04 0.58
5 1.4269e−05 1.4269e−05 14.89 1.6473e−04 1.6473e−04 15.22

Example 4 Consider the following nonlinear NDDE-MSG (1) with three edges:

∂tur(x,t) = ∂xxur(x,sin t)+u2
r + fr(x,t), x ∈ (0,1) , t ∈ (0,1) , 1 ≤ r ≤ 3,

ur(x,t) = 0, t ≤ 0,
ur(0, t) = us(0, t), r ̸= s,r = 1,2,3, s = 1,2,3,

3

∑
r=1

∂xur(0, t) = 0,

ur (1, t) = 0, 1 ≤ r ≤ 3. (81)

The analytical solutions of this example are u1(x,t) = u2(x,t) = t2 sin(2πx), u3(x,t) = −2t2 sin(2πx)
and the source functions fr(x,t), r = 1,2,3 can be calculated with the assistance of the exact solu-
tions. The obtained MAEs (εr,∞

Jx,Jt
, r = 1,2,3) and RMSEs (εr,2

Jx,Jt
, r = 1,2,3) are tabulated in Table 4.

The table shows that as the values of the resolution parameters Jx, Jt are increased, the MAEs and RM-
SEs decrease significantly, which is a good support of Theorem 1. The graphs of approximate solutions
P

V Jx ,Jt
2

ur(x,tNt), r = 1,2,3 are given in Figure 6a. Figure 6b compares the accurate and approximate solu-

tions of u2(x,tNt ), demonstrating that the approximate solution is similar to the exact solution. In addition,
Figure 7 illustrates the effect of the resolution parameters Jx, Jt on the behaviour of AEs. According to
the Figures, the AEs for Jx = Jt = 4 are O(e−02), but the AEs for Jx = Jt = 5 are O(e−03), which is in
good accordance with the theoretical results.

Example 5 Consider the following linear NDDE-MSG (1) with three edges:

∂tur(x,t) = ∂xxur(x, t)+ur(x,
√

sin t)+ fr(x,t), x ∈ (0,2) , t ∈ (0,2) ,
ur(x,t) = 0, t ≤ 0,

ur(0, t) = us(0, t), r ̸= s,r = 1,2,3, s = 1,2,3,
3

∑
r=1

∂xur(0, t) = 0,

ur (2, t) = 0, 1 ≤ r ≤ 3. (82)
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Table 4: Effect of Jx, Jt on the obtained MAEs and RMSEs of Example 4.

Jx = Jt ε
1,∞
Jx,Jt

= ε
2,∞
Jx,Jt

ε
3,∞
Jx,Jt

CPU ε
1,2
Jx,Jt

= ε
2,2
Jx,Jt

ε
3,2
Jx,Jt

CPU

1 1.5039e−01 7.9161e−01 0.07 2.7422e−01 5.9493e−01 0.07
2 7.7248e−02 2.1235e−01 0.09 1.8332e−01 4.2204e−01 0.13
3 2.5588e−02 7.7248e−02 0.37 1.0573e−01 2.4800e−01 0.49
4 7.3959e−03 2.3482e−02 10.64 5.8825e−02 1.3936e−01 11.41

(a) (b)

Fig. 6: (6a) Graph of P
V Jx ,Jt

2
ur(x,t), r = 1,2,3 of Example 4 at t = tNt for Jx = Jt = 5. (6b) Comparison of

exact and approximate solution of u2(x,t) at t = tNt for Jx = Jt = 5

(a) (b)

Fig. 7: Impact of resolution parameters Jx, Jt on AEs obtained for u(x,t) of Example 4 at t = tNt : (7a) for
Jx = Jt = 4, (7b) for Jx = Jt = 5
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The analytical solutions of Example 5 are given by

u1(x, t) = u2(x, t) = t sinπx,
u3(x, t) =−2t sinπx.

The source functions fr(x,t), r = 1,2,3 can be calculated with the assistance of the exact solutions. The
MAE and RMSE are presented in Table 5. As evident from the table, the computational results align well
with the theoretical findings. Specifically, increasing the resolution levels (Jx, ;Jt) leads to convergence
of the approximate solution toward the analytical solution. A linear transformation w = ax+b is applied
to approximate the solution over a larger domain. For example, in equations (25) and (27), x is replaced
with x

2 , and the same procedure was used to determine the integration of Haar wavelet and implement the
numerical method for the approximate solution. Figures 8a and 8b illustrate the approximate and exact
solutions for J = 5 in the larger domain (x, t) ∈ (0,2)× (0,2). The close similarity between the graphs of
the exact and approximate solutions demonstrates the accuracy of the proposed method in larger domains.

Table 5: Effect of Jx, Jt on the obtained MAEs and RMSEs of Example 5.

Jx = Jt ε
1,∞
Jx,Jt

= ε
2,∞
Jx,Jt

ε
3,∞
Jx,Jt

CPU ε
1,2
Jx,Jt

= ε
2,2
Jx,Jt

ε
3,2
Jx,Jt

CPU

1 9.2363e−02 1.8472e−01 0.02 2.4043e−01 4.8086e−01 0.03
2 4.1649e−02 8.3299e−02 0.03 1.5574e−01 3.1148e−01 0.03
3 1.1999e−02 2.3998e−02 0.04 8.1946e−02 1.6389e−01 0.04
4 3.1288e−03 6.2576e−03 0.21 4.1471e−02 8.2943e−02 0.20
5 7.9348e−04 1.5869e−03 2.98 2.0797e−02 4.1595e−02 3.06

(a) (b)

Fig. 8: (8a) Graph of P
V Jx ,Jt

2
ur(x,t), r = 1,2,3 of Example 5 at t = tNt for Jx = Jt = 5. (8b) Graphical

comparison of analytic and approximate solutions of u1(x,t) at t = tNt for Jx = Jt = 5
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8 Conclusion

In this paper, we have examined the neutral delay differential equations on the metric star graph. As
the authors know, NDDEs on a metric star graph have never been numerically studied. NDDE-MSG is
approximated with Haar wavelet collocation method. This method converts NDDE-MSG into a set of
algebraic equations that can easily be solved for the wavelet coefficients. One can obtain the approx-
imate solution by plugging in these coefficients. A convergence analysis determines that the proposed
method converges exponentially, thus justifying its theoretical application. We have solved some numeri-
cal examples using the proposed method, and the results are presented in Tables 1-5. When the resolution
parameters Jx, Jt are increased, the MAEs and RMSEs drop significantly. Figures 2a, 4a, and 6a illustrate
numerical solutions, whereas Figures 2b, 4b, 6b and 8b compare accurate and approximate solutions.
When comparing the graphs of accurate and approximate wavelet solutions, we can see that the proposed
method is effective. As shown in Figures 3, 5, and 7, resolution parameters have an impact on AEs as
well. It can be seen from these graphs that the associated AEs are significantly reduced as the convergence
parameters Jx, Jt are increased.
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