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Abstract

In this paper, we discuss the new convergence properties of some gradient based iterative (GI) algorithms and
propose two new GI-like algorithms for solving the discrete-time periodic Sylvester (DTPS) matrix equations and
its generalized version, which often arise in the fields of physics, medicine and so forth. We first review the Jacobi
GI (JGI) and accelerated JGI (AJGI) algorithms (Appl. Numer. Math., 168 (2021) 251-273) for the DTPS matrix
equations, and establish the new and correct convergence conditions of these two algorithms. Then we apply a new
update strategy to the JGI algorithm and develop the effective Jacobi gradient based iterative (EJGI) algorithm
for solving the DTPS matrix equations, which is different from the AJGI one. Furthermore, based on the ideas of
the JGI and the Gauss-Seidel (G-S) algorithms, we construct the modified Jacobi gradient based iterative (MJGI)
algorithm for the generalized discrete-time periodic Sylvester (GDTPS) matrix equations. Compared with the JGI
algorithm, the MJGI algorithm can make full use of the latest information to compute the next result and lead
to a faster convergence rate. By utilizing the properties of the matrix norms, Kronecker product and techniques
of inequalities, we prove that two proposed iterative algorithms are convergent under proper restrictions. Finally,
some numerical examples are given to validate the efficiencies and advantages of the proposed EJGI and MJGI
algorithms for DTPS and GDTPS matrix equations.

Keywords: DTPS matrix equations, GDTPS matrix equations, EJGI algorithm, MJGI algorithm, convergence
properties

1. Introduction

In this paper, we aim to compute the numerical solution of the following discrete-time periodic Sylvester (DTPS)
matrix equations

AjYj + Yj+1Bj = Cj , j = 1, 2, . . . , γ, (1)

where the known matrices Aj ∈ Rm×m, Bj ∈ Rn×n, Cj ∈ Rm×n and the unknown matrices Yj ∈ Rm×n are periodic
with period γ, i.e., Aj+γ = Aj , Bj+γ = Bj , Cj+γ = Cj and Yj+γ = Yj for j = 1, . . . , γ.

Linear discrete periodic systems are widely used in the fields of physics, biology, medicine and many other
engineering fields [1–7]. For example, the following forward and backward periodic Sylvester matrix equations
(PSMEs)

AiYjBj + CjYj+1Dj = Fj , (2)

and
AjYj+1Bi + CjYjDj = Fj , (3)

with j = 1, 2, . . . , γ, and Yj being the unknown matrices, are an indispensable part of pole assignment and the design
of state observers for linear discrete periodic systems [8]. The forward PSME (2) is more general than (1), and
contains the DTPS matrix equation (1) as a special case. Up to now, a lot of efficient methods have been proposed
to solve various types of periodic matrix equations due to the universal existence and significance of this kind of
matrix equations. For instance, Varga [9] designed some efficient and numerically reliable algorithms for solving
periodic Lyapunov matrix equations based on the periodic Schur decomposition. Based on the conjugate gradient
normal equation error (CGNE) method, Hajarian [10] presented an iterative algorithm for solving the general
coupled discrete-time periodic matrix equations. And the same author proposed the matrix form of the biconjugate
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residual (BCR) algorithm for solving the forward PSME (2) in [11]. Note that the general periodic matrix equation
is also a kind of important matrix equation, which has important applications in many fields. Recently, Lv et al.
[12] constructed a finite iterative method for solving it. Subsequently, Hajarian [13] presented three types of BCR
method to find the generalized bisymmetric periodic solutions of general periodic matrix equations. And the same
author in [14] designed four new iterative methods based on the CGNE, conjugate gradient normal equation residual
(CGNR), and least-squares QR factorization (LSQR) algorithms to compute the reflexive periodic solutions of the
general periodic matrix equations.

Apart from the periodic matrix equations, there are many other linear matrix equations arising from many fields
of science and engineering, and playing a very significant role in various branches of them. Due to this fact, in the
past few decades, many researchers have devoted themselves to deriving a great deal of different methods to solve
these matrix equations, including the conjugate gradient iterative method [15], Newton method [16], parametric
iterative algorithms [17, 18], gradient based iterative (GI) algorithms [19, 20] and so on. In addition, Li and
Wu [21] extended the single-step HSS (SHSS) method for saddle point problems. Yan and Ma [22] designed an
iterative algorithm to solve a class of generalized coupled Sylvester-transpose matrix equations over bisymmetric or
skew-anti-symmetric matrices. And Wu and Zeng [23] proposed the ADMM-based methods to solve the nearness
symmetric solution of the system of matrix equations A1XB1 = C1 and A2XB2 = C2 recently. Besides, Wang and
Song [24] proposed a new BCR algorithm to compute the constraint solution of the coupled operator equations.
In [25–27], Shirilord and Dehghan constructed the efficient iteration methods for three different matrix equations,
and they also designed a stationary Landweber method with momentum acceleration in [28]. Also, Huang and Cui
[29] developed the modified and accelerated relaxed gradient-based iterative algorithms for the complex conjugate
and transpose matrix equations. What is more, Hajarian [30] established the matrix form of the BCR algorithm
for computing the generalized reflexive and anti-reflexive solutions of the generalized Sylvester matrix equation,
then the same author generalized the Lanczos version of BCR algorithm to compute the symmetric solutions of the
general Sylvester matrix equations in [31]. In [32], Zhang established the GI algorithm for solving the extended
coupled Sylvester matrix equations A1XB1 + A2Y B2 = F1, C1XD1 + C2Y D2 = F2 by using the hierarchical
identification principle. And Xie and Ma [33] derived the accelerated GI (AGI) algorithm to solve the generalized
Sylvester-transpose matrix equation AXB + CXTD = F by taking advantage of information generated in the
previous half-step and introducing a relaxation factor.

For the generalized coupled Sylvester matrix equation

Al1X1Bl1 +Al2X2Bi2 + · · ·+AlqXqBlq = Gl, l = 1, 2, · · · , p, (4)

with Xt (t = 1, 2, . . . , q) being the unknown matrices that need to be determined, Zhang [34] developed the residual
norm steepest descent (RNSD), conjugate gradient normal equation (CGNE) and biconjugate gradient stabilized
(Bi-CGSTAB) algorithms to solve (4). Subsequently, by constructing an objective function and using the gradient
search, Zhang [35] constructed the full-rank and reduced-rank gradient-based algorithms for solving the matrix
equation (4).

In addition, the generalized coupled Sylvester-conjugate matrix equation

El1X1Fl1 +Gl1X1Hl1 + · · ·+ ElqXqFlq +GlqXqHlq = Wl, l = 1, 2, . . . , p, (5)

with Xt (t = 1, 2, . . . , q) being the indeterminate matrices, is the general version of (4). When Glt = 0 and Hlt = 0
(l = 1, . . . , p; t = 1, . . . , q), (5) reduces to (4). For the matrix equation (5), Huang and Ma [36] introduced l relaxation
factors into the GI algorithm and derived two relaxed GI (RGI) algorithm. And they proved the convergence of the
RGI algorithms by utilizing the properties of the real representation of a complex matrix. Very recently, Wang and
Song [37] constructed a modified RGI (MRGI) algorithm to solve the coupled Sylvester-conjugate matrix equation
(5). Then Wang et al. [38] developed a cyclic GI (CGI) algorithm by introducing the modular operator, and the
most significant improvement of this algorithm is that less information is used during each iteration update.

As mentioned before, the DTPS and the GDTPS matrix equations arise widely in scientific and engineering
fields. Thus it is meaningful to design efficient algorithms for solving these two kinds of matrix equations. Based
on this fact, in this work, we aim to construct some new and efficient algorithms to compute the iterative solutions
of the DTPS and the GDTPS matrix equations. We first review the Jacobi GI (JGI) and the accelerated JGI
(AJGI) algorithms for the DTPS matrix equations in [39], and find that their convergence proofs are not correct
and can be improved. Then we establish the new convergence theorems of the JGI and AJGI algorithm by using
the properties of the vector stretching operator, matrix norm and Kronecker product of two matrices. Besides, to
further improve the convergence rates of the JGI and AJGI algorithms in [39], we apply a new update strategy to the
JGI algorithm [39], and then construct the effective Jacobi gradient based iterative (EJGI) algorithm for the DTPS
matrix equations, which is different from the AJGI one in [39]. Numerical experiments show that the proposed
EJGI algorithm is more efficient than the GI [40], JGI and AJGI ones [39]. Also, we consider the iterative solutions
of the GDTPS matrix equations. Based on the JGI algorithm [39], we propose the modified Jacobi gradient based
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iterative (MJGI) algorithm for the GDTPS matrix equations by combining the idea of the Jacobi method with the
update strategy. It is noteworthy that this idea stems from [41].

The main contributions of this paper are as follows:

• Propose the new convergence conditions of the JGI and the AJGI algorithms in [39], which correct and improve
the existing ones in [39].

• Apply a new update technique to the JGI algorithm in [39] and establish the EJGI algorithm, which is different
from the AJGI one and has higher computational efficiency than the AJGI one.

• By combining the idea of Jacobi algorithm and the update strategy, we design the MJGI algorithm for the
GDTPS matrix equations, and derive the sufficient and necessary condition for the convergence of the MJGI
algorithm. Compared with the JGI algorithm, the proposed MJGI algorithm can use the latest results to
compute the next results and has higher computational efficiency. Additionally, the MJGI algorithm requires
less computational complexity than the factor gradient iterative (FGI) one in [41].

The remainder of this paper is organized as follows. In Section 2, we list some useful notations, definitions and
lemmas that will be used throughout this paper. In Section 3, we review the JGI and AJGI algorithms proposed in
[39] for the DTPS matrix equations (1) and establish their new convergence conditions. In Section 4, we construct
the EJGI algorithm for the DTPS matrix equations (1) and analyze its convergence. Additionally, we derive a
new algorithm referred to as the MJGI algorithm for the GDTPS matrix equations and investigate its convergence
property in Section 5. In Section 6, several numerical examples are given to illustrate the effectivenesses and
advantages of the proposed EJGI and MJGI algorithms. Lastly, some conclusions and outlooks are given to end
this paper in Section 7.

2. Preliminaries

In this section, we list some notations, definitions and lemmas, which will be used in the subsequent sections.
Let Rn×n and Cn×n be the sets of all n × n real matrices and all n × n complex matrices, respectively. For

a given matrix B ∈ Rn×n, the notations B−1, BT and ρ(B) stand for the inverse, the transpose and the spectral
radius of B, respectively. If B is a square matrix, then tr(B) stands for the trace of B. The 2-norm and Frobenius
norm of B are denoted by ‖B‖2 =

√
ρ(BTB) and ‖B‖ =

√
tr(BTB), respectively. Let B = D +R, with D and R

being the diagonal and non-diagonal parts of the matrix B, respectively.
In addition, we present several useful definitions below.

Definition 2.1. [42] For two matrices F = (fij) ∈ Cm×n and G = (gij) ∈ Ck×l, the Kronecker product of F and
G is defined as

F ⊗G =


f11G f12G · · · f1nG
f21G f22G · · · f2nG

...
...

...
fm1G fm2G · · · fmnG

 = [fijG]m×n ∈ Cmk×nl. (6)

Definition 2.2. [43] Let eks be the s-dimensional column vector whose k-th element of eks is 1 and other elements
are 0. Then the vec-permutation matrix P (m,n) is defined as

P (t, s) :=


It ⊗ eT1s
It ⊗ eT2s

...
It ⊗ eTss

 . (7)

Definition 2.3. [42] Let G = [g1, g2, · · · , gs] ∈ Ct×s with gk being the k-th column of G. The vector stretching
function of G is defined as

vec(G) = [gT1 , g
T
2 , · · · , gTs ]T ∈ Cts. (8)

Next, some significant lemmas are reviewed in the following.

Lemma 2.1. [42] Let F ∈ Cm×q, G ∈ Cs×t and Y ∈ Cq×s, then

(1) vec(FY G) = (GT ⊗ F )vec(Y );

(2) vec(Y T ) = P (q, s)vec(Y ).
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Lemma 2.2. [44] Consider the matrix equation AY B = F , where A ∈ Rm×r, B ∈ Rs×n and F ∈ Rm×n are known
matrices, and Y ∈ Rr×s needs to be determined. For this matrix equation, an iterative algorithm is constructed as

Y (l + 1) = Y (l) + µAT (F −AY (l)B)BT , (9)

with

0 < µ <
2

‖A‖22‖B‖22
. (10)

If this matrix equation has a unique solution Y∗, then the iterative solution Y (l) converges to the unique solution
Y∗, that is lim

l→∞
Y (l) = Y∗.

3. New convergence analyses of the JGI and the AJGI algorithms

In this section, we first review the Jacobi gradient based iterative (JGI) and the accelerated Jacobi gradient
based iterative (AJGI) algorithms established in [39] for the DTPS matrix equation (1), then some errors in the
proofs of Theorem 3.2 and Theorem 3.3 in [39] are pointed out. At last, we deduce the new convergent properties
of the JGI and the AJGI algorithms, which correct and improve those in [39].

Based on the Jacobi iterative algorithm and the hierarchical identification principle, the JGI and the AJGI
algorithms have been proposed for solving the DTPS matrix equation (1) in [39].

In [39], the coefficient matrices Aj , Bj (j = 1, . . . , γ) of the DTPS matrix equation (1) are decomposed into the
following forms:

Aj = D1,j +R1,j , (11)

Bj = D2,j +R2,j , (12)

where D1,j and D2,j are the diagonal parts of Aj and Bj , respectively.
Define

A0 = Aγ , B0 = Bγ , D1,0 = D1,γ , D2,0 = D2,γ ,

then the frameworks of the JGI and the AJGI algorithms are as follows.

Algorithm 3.1. The Jacobi gradient based iterative (JGI) algorithm [39]:
Step 1: Input matrices Aj ∈ Rm×m, Bj ∈ Rn×n, Cj ∈ Rm×n for j = 1, . . . , γ, and two constants µ, η > 0.

Choose the initial matrices Yj(0) ∈ Rm×m (j = 1, . . . , γ), and set l = 0;
Step 2: Take Yj+γ (0) = Yj (0) , Aj+γ = Aj , Bj+γ = Bj , Cj+γ = Cj , D1,j+γ = D1,j and D2,j+γ = D2,j;

Step 3: If ξl =

√√√√√ γ∑
j=1
‖Cj−AjYj(l)−Yj+1(l)Bj‖2

γ∑
j=1
‖Cj−AjYj(0)−Yj+1(0)Bj‖2

< η, then stop; otherwise, go to Step 4;

Step 4: For l = 0, 1, 2, · · · , and j = 1, . . . , γ, calculate

Y1,j (l + 1) = Yj (l) + µD1,j (Cj −AjYj (l)− Yj+1 (l)Bj),

Y2,j (l + 1) = Yj (l) + µ (Cj−1 −Aj−1Yj−1 (l)− Yj (l)Bj−1)D2,j−1,

Yj (l + 1) =
Y1,j(l+1)+Y2,j(l+1)

2 ,

Yj+γ (l + 1) = Yj (l + 1).
Step 5: Set l := l + 1 and return to Step 3.

Algorithm 3.2. The accelerated Jacobi gradient based iterative (AJGI) algorithm [39] :
Step 1: Input matrices Aj ∈ Rm×m, Bj ∈ Rn×n, Cj ∈ Rm×n for i = 1, . . . , γ, and three constants µ, η > 0 and

0 < ω < 1. Choose the initial matrices Yj (0) , Y2,j (0) ∈ Rm×n (j = 1, . . . , γ), and set l = 0;
Step 2: Take Yj+γ (0) = Yj (0) , Aj+γ = Aj , Bj+γ = Bj , Cj+γ = Cj , D1,j+γ = D1,j and D2,j+γ = D2,j;

Step 3: If ξl =

√√√√√ γ∑
j=1
‖Cj−AjYj(l)−Yj+1(l)Bj‖2

γ∑
j=1
‖Cj−AjYj(0)−Yj+1(0)Bj‖2

< η, stop; otherwise, go to Step 4;

Step 4: For l = 0, 1, 2, · · · , and j = 1, . . . , γ, calculate
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Y1,j (l + 1) = Yj (l) + µωD1,j (Cj −AjYj (l)− Yj+1 (l)Bj),

Ŷj (l) = (1− ω)Y1,j (l + 1) + ωY2,j (l),

Ŷj+γ (l) = Ŷj (l),

Y2,j (l + 1) = Ŷj (l) + µ (1− ω)
(
Cj−1 −Aj−1Ŷj−1 (l)− Ŷj (l)Bj−1

)
D2,j−1,

Yj (l + 1) = (1− ω)Y1,j (l + 1) + ωY2,j (l + 1),

Yj+γ (l + 1) = Yj (l + 1).
Step 5: Set l := l + 1 and return to Step 3.

Here, we re-present the function Z(k + 1) from the proof of Theorem 3.2 in [39] as follows

Z (l + 1) ≤
γ∑
j=1

(
1

2

∥∥∥Ỹ1,j (l + 1)
∥∥∥2 +

1

2

∥∥∥Ỹ2,j (l + 1)
∥∥∥2)

=

γ∑
i=1

[∥∥∥Ỹj (l)
∥∥∥2 − µtr (Ỹ Tj (l)D1,j δ̃j (l) +D2,j Ỹ

T
j+1 (l) δ̃j (l)

)
+

1

2
µ2
∥∥∥D1,j δ̃j (l)

∥∥∥2 +
1

2
µ2
∥∥∥δ̃j (l)D2,j

∥∥∥2]

≤ Z (l)− µ
γ∑
j=1

∥∥∥δ̃j (l)
∥∥∥2 +

1

2
µ2

γ∑
j=1

(
‖D1,j‖2 + ‖D2,j‖2

)∥∥∥δ̃j (l)
∥∥∥2, (13)

where δ̃j = Aj Ỹj (l) + Ỹj+1 (l)Bj .
Based on Equation (3.10) in [39] and Equations (11)-(12), we can get∥∥∥δ̃j (l)

∥∥∥2 = tr
(
δ̃Tj (l) δ̃j (l)

)
= tr

[(
Ỹ Tj (l)ATj +BTj Ỹ

T
j+1 (l)

)
δ̃j (l)

]
= tr

{[
Ỹ Tj (l)

(
D1,j +RT1,j

)
+
(
D2,j +RT2,j

)
Ỹ Tj+1 (l)

]
δ̃j (l)

}
= tr

[(
Ỹ Tj (l)D1,j +D2,j Ỹ

T
j+1 (l)

)
δ̃j (l)

]
+ tr

[(
Ỹ Tj (l)RT1,j +RT2,j Ỹ

T
j+1 (l)

)
δ̃j (l)

]
, (14)

which implies that
∥∥∥δ̃j (l)

∥∥∥2 ≤ tr [(Ỹ Tj (l)D1,j +D2,j Ỹ
T
j+1 (l)

)
δ̃j (l)

]
may not be true. The reason is that the sign

of tr
[(
Ỹ Tj (l)RT1,j +RT2,j Ỹ

T
j+1 (l)

)
δ̃j (l)

]
is uncertain.

Thus, the derivation of Inequality (13) is not correct. Next we investigate the new convergence condition of the
JGI algorithm.

Theorem 3.1. Assume that the DTPS matrix equation (1) is consistent, i.e., the solution of the DTPS matrix
equation (1) exists. Then the iterative sequences {Yj(l)} (j = 1, . . . , γ) generated by Algorithm 3.1 converge to the
unique solution Y ∗ =

(
Y ∗1 , Y

∗
2 , · · · , Y ∗γ

)
for any initial matrices Yj (0) (j = 1, . . . , γ), if the parameter µ satisfies

γ∑
j=1

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2 + µ‖D1,j−1‖2‖Bj−1‖2 + µ‖Aj‖2‖D2,j‖2

)
< 2. (15)

Proof. We first prove that the solution of the DTPS matrix equation (1) is unique. Assume that Ỹ ∗ =(
Ỹ ∗1 , Ỹ

∗
2 , · · · , Ỹ ∗γ

)
and Ŷ ∗ =

(
Ŷ ∗1 , Ŷ

∗
2 , · · · , Ŷ ∗γ

)
are two solutions of the DTPS matrix equation (1), then it holds

that

Aj Ỹ
∗
j + Ỹ ∗j+1Bj = Cj , Aj Ŷ

∗
j + Ŷ ∗j+1Bj = Cj , j = 1, 2, . . . , γ.

It follows from Aj Ỹ
∗
j + Ỹ ∗j+1Bj = Cj (j = 1, 2, . . . , γ) that

Ỹ ∗j = Ỹ ∗j + µD1,j

(
Cj −Aj Ỹ ∗j − Ỹ ∗j+1Bj

)
, Ỹ ∗j = Ỹ ∗j + µ

(
Cj−1 −Aj−1Ỹ ∗j−1 − Ỹ ∗j Bj−1

)
D2,j−1,
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from which one can deduce that

Ỹ ∗j = Ỹ ∗j +
µ

2
D1,j

(
Cj −Aj Ỹ ∗j − Ỹ ∗j+1Bj

)
+
µ

2

(
Cj−1 −Aj−1Ỹ ∗j−1 − Ỹ ∗j Bj−1

)
D2,j−1. (16)

In a manner similar to that done for (16), from Aj Ŷ
∗
j + Ŷ ∗j+1Bj = Cj (j = 1, 2, . . . , γ), we can derive

Ŷ ∗j = Ŷ ∗j +
µ

2
D1,j

(
Cj −Aj Ŷ ∗j − Ŷ ∗j+1Bj

)
+
µ

2

(
Cj−1 −Aj−1Ŷ ∗j−1 − Ŷ ∗j Bj−1

)
D2,j−1. (17)

Subtracting (17) from (16) yields that

Ỹ ∗j − Ŷ ∗j = Ỹ ∗j − Ŷ ∗j −
µ

2
D1,j

[
Aj(Ỹ

∗
j − Ŷ ∗j ) + (Ỹ ∗j+1 − Ŷ ∗j+1)Bj

]
−µ

2

[
Aj−1(Ỹ ∗j−1 − Ŷ ∗j−1) + (Ỹ ∗j − Ŷ ∗j )Bj−1

]
D2,j−1, j = 1, . . . , γ. (18)

Let Ȳ ∗j = Ỹ ∗j − Ŷ ∗j (j = 1, . . . , γ), then (18) can be written as

Ȳ ∗j = Ȳ ∗j −
µ

2
D1,j

(
Aj Ȳ

∗
j + Ȳ ∗j+1Bj

)
− µ

2

(
Aj−1Ȳ

∗
j−1 + Ȳ ∗j Bj−1

)
D2,j−1

=
1

2
Ȳ ∗j −

µ

2
D1,jAj Ȳ

∗
j −

µ

2
D1,j Ȳ

∗
j+1Bj +

1

2
Ȳ ∗j −

µ

2
Aj−1Ȳ

∗
j−1D2,j−1 −

µ

2
Ȳ ∗j Bj−1D2,j−1

=
1

2
(I − µD1,jAj) Ȳ

∗
j +

1

2
Ȳ ∗j (I − µBj−1D2,j−1)− µ

2
D1,j Ȳ

∗
j+1Bj −

µ

2
Aj−1Ȳ

∗
j−1D2,j−1. (19)

By taking the 2-norm in (19) and using the properties of the matrix norm, we have∥∥Ȳ ∗j ∥∥2 =

∥∥∥∥1

2
(I − µD1,jAj) Ȳ

∗
j +

1

2
Ȳ ∗j (I − µBj−1D2,j−1) −1

2
µD1,j Ȳ

∗
j+1Bj −

1

2
µAj−1Ȳ

∗
j−1D2,j−1

∥∥∥∥
2

≤ 1

2
‖I − µD1,jAj‖2

∥∥Ȳ ∗j ∥∥2 +
1

2
‖I − µBj−1D2,j−1‖2

∥∥Ȳ ∗j ∥∥2
+

1

2
µ‖D1,j‖2‖Bj‖2

∥∥Ȳ ∗j+1

∥∥
2

+
1

2
µ‖Aj−1‖2‖D2,j−1‖2

∥∥Ȳ ∗j−1∥∥2. (20)

Define Ū∗ =
γ∑
j=1

∥∥Ȳ ∗j ∥∥2, then in view of (20) we deduce that

Ū∗ =

γ∑
j=1

∥∥Ȳ ∗j ∥∥2 ≤ γ∑
j=1

[
1

2

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2

) ∥∥Ȳ ∗j ∥∥2]

+
1

2

γ∑
j=1

µ‖D1,j‖2‖Bj‖2
∥∥Ȳ ∗j+1

∥∥
2

+
1

2

γ∑
j=1

µ‖Aj−1‖2‖D2,j−1‖2
∥∥Ȳ ∗j−1∥∥2

=

γ∑
j=1

[
1

2

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2

) ∥∥Ȳ ∗j ∥∥2]

+
1

2

γ∑
j=1

µ‖D1,j−1‖2‖Bj−1‖2
∥∥Ȳ ∗j ∥∥2 +

1

2

γ∑
j=1

µ‖Aj‖2‖D2,j‖2
∥∥Ȳ ∗j ∥∥2

=
1

2

γ∑
j=1

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2 + µ‖D1,j−1‖2‖Bj−1‖2 + µ‖Aj‖2‖D2,j‖2

) ∥∥Ȳ ∗j ∥∥2
≤ 1

2

γ∑
j=1

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2 + µ‖D1,j−1‖2‖Bj−1‖2 + µ‖Aj‖2‖D2,j‖2

) γ∑
j=1

∥∥Ȳ ∗j ∥∥2.(21)

Denote

q =
1

2

γ∑
j=1

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2 + µ‖D1,j−1‖2‖Bj−1‖2 + µ‖Aj‖2‖D2,j‖2

)
,

then (21) leads to Ū∗ ≤ qŪ∗, and for any positive integer t, it holds that

0 ≤ Ū∗ ≤ qŪ∗ ≤ q2Ū∗ ≤ · · · ≤ qtŪ∗. (22)
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Under the condition
γ∑
j=1

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2 + µ‖D1,j−1‖2‖Bj−1‖2 + µ‖Aj‖2‖D2,j‖2

)
< 2, i.e.,

q < 1, we have lim
t→+∞

qt = 0. Let t→ +∞ in (22), then 0 ≤ Ū∗ =
γ∑
j=1

∥∥Ȳ ∗j ∥∥2 → 0, and hence Ȳ ∗j = 0 (j = 1, . . . , γ),

i.e., Ỹ ∗j = Ŷ ∗j (j = 1, . . . , γ), which leads to Ỹ ∗ =
(
Ỹ ∗1 , Ỹ

∗
2 , · · · , Ỹ ∗γ

)
=
(
Ŷ ∗1 , Ŷ

∗
2 , · · · , Ŷ ∗γ

)
= Ŷ ∗, thus we conclude

that the solution of the DTPS matrix equation (1) is unique.
Let Y ∗ =

(
Y ∗1 , Y

∗
2 , · · · , Y ∗γ

)
be the unique solution of the DTPS matrix equation (1). We define the following

error matrices

Ỹj (l) = Yj (l)− Y ∗j , Ỹ1,j (l) = Y1,j (l)− Y ∗j , Ỹ2,j (l) = Y2,j (l)− Y ∗j , j = 1, . . . , γ.

According to Algorithm 3.1, we obtain

Ỹ1,j (l + 1) = Ỹj (l)− µD1,j

(
Aj Ỹj (l) + Ỹj+1 (l)Bi

)
= Ỹj (l)− µD1,jAj Ỹj (l)− µD1,j Ỹj+1 (l)Bj , (23)

Ỹ2,j (l + 1) = Ỹj (l)− µ
(
Aj−1Ỹj−1 (l) + Ỹj (l)Bj−1

)
D2,j−1

= Ỹj (l)− µAj−1Ỹj−1 (l)D2,j−1 − µỸj (l)Bj−1D2,j−1, (24)

Ỹj (l + 1) =
1

2
Ỹ1,j (l + 1) +

1

2
Ỹ2,j (l + 1) . (25)

Then substituting (23)-(24) into (25) leads to

Ỹj (l + 1) =
1

2
Ỹj (l)− 1

2
µD1,jAj Ỹj (l) +

1

2
Ỹj (l)− 1

2
µỸj (l)Bj−1D2,j−1

−1

2
µD1,j Ỹj+1 (l)Bj −

1

2
µAj−1Ỹj−1 (l)D2,j−1

=
1

2
(I − µD1,jAj) Ỹj (l) +

1

2
Ỹj (l) (I − µBj−1D2,j−1)

−1

2
µD1,j Ỹj+1 (l)Bj −

1

2
µAj−1Ỹj−1 (l)D2,j−1. (26)

By taking the 2-norm in (26) and using the properties of the matrix norm, we deduce that∥∥∥Ỹj (l + 1)
∥∥∥
2

=

∥∥∥∥1

2
(I − µD1,jAj) Ỹj (l) +

1

2
Ỹj (l) (I − µBj−1D2,j−1)

−1

2
µD1,j Ỹj+1 (l)Bj −

1

2
µAj−1Ỹj−1 (l)D2,j−1

∥∥∥∥
2

≤ 1

2
‖I − µD1,jAj‖2

∥∥∥Ỹj (l)
∥∥∥
2

+
1

2
‖I − µBj−1D2,j−1‖2

∥∥∥Ỹj (l)
∥∥∥
2

+
1

2
µ‖D1,j‖2‖Bj‖2

∥∥∥Ỹj+1 (l)
∥∥∥
2

+
1

2
µ‖Aj−1‖2‖D2,j−1‖2

∥∥∥Ỹj−1 (l)
∥∥∥
2
. (27)

Next we define the following non-negative matrix norm function H(l)

H (l) =

γ∑
j=1

∥∥∥Ỹj (l)
∥∥∥
2
,

which together with (27) gives

H (l + 1) =

γ∑
j=1

∥∥∥Ỹj (l + 1)
∥∥∥
2

≤
γ∑
j=1

[
1

2

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2

) ∥∥∥Ỹj (l)
∥∥∥
2

]

+
1

2

γ∑
j=1

µ‖D1,j‖2‖Bj‖2
∥∥∥Ỹj+1 (l)

∥∥∥
2

+
1

2

γ∑
j=1

µ‖Aj−1‖2‖D2,j−1‖2
∥∥∥Ỹj−1 (l)

∥∥∥
2
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=

γ∑
j=1

[
1

2

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2

) ∥∥∥Ỹj (l)
∥∥∥
2

]

+
1

2

γ∑
j=1

µ‖D1,j−1‖2‖Bj−1‖2
∥∥∥Ỹj (l)

∥∥∥
2

+
1

2

γ∑
j=1

µ‖Aj‖2‖D2,j‖2
∥∥∥Ỹj (l)

∥∥∥
2

=
1

2

γ∑
j=1

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2 + µ‖D1,j−1‖2‖Bj−1‖2 + µ‖Aj‖2‖D2,j‖2

) ∥∥∥Ỹj (l)
∥∥∥
2

≤ 1

2

γ∑
j=1

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2 + µ‖D1,j−1‖2‖Bj−1‖2 + µ‖Aj‖2‖D2,j‖2

) γ∑
j=1

∥∥∥Ỹj (l)
∥∥∥
2

= qH (l) .

This leads to the following result

H (l + 1) ≤ qH (l) ≤ q2H (l − 1) ≤ · · · ≤ ql+1H (0) .

Hence, if q < 1, that is

γ∑
j=1

(
‖I − µD1,jAj‖2 + ‖I − µBj−1D2,j−1‖2 + µ‖D1,j−1‖2‖Bj−1‖2 + µ‖Aj‖2‖D2,j‖2

)
< 2,

then lim
l→+∞

γ∑
j=1

∥∥∥Ỹj (l + 1)
∥∥∥
2

= 0 and therefore lim
l→+∞

Ỹj(l + 1) = 0 (j = 1, . . . , γ). This shows that

lim
l→+∞

Yj (l + 1) = Y ∗j , j = 1, 2, . . . , γ.

The proof is completed. �
Now we turn to review the function Z(l + 1) in the proof of Theorem 3.3 in [39]:

Z (l + 1) =

γ∑
j=1

∥∥∥(1− ω) Ỹ1,j (l + 1) + ωỸ2,j (l + 1)
∥∥∥2 (28)

≤ 2

γ∑
j=1

[
(1− ω)

2
∥∥∥Ỹ1,j (l + 1)

∥∥∥2 + ω2
∥∥∥Ỹ2,j (l + 1)

∥∥∥2] (29)

= 2

γ∑
j=1

[
(1− ω)

2
∥∥∥Ỹj (l)

∥∥∥2 − 2µω(1− ω)
2
tr
(
Ỹ Tj (l)D1,j δ̃j (l)

)
+ µ2ω2(1− ω)

2
∥∥∥D1,j δ̃j (l)

∥∥∥2 (30)

+ω2
∥∥∥˜̂Y j(l)∥∥∥2 − 2µω2 (1− ω) tr

(˜̂
Y
T

j+1(l)ψ̃j (l)D2,j

)
+ µ2ω2(1− ω)

2
∥∥∥ψ̃j (l)D2,j

∥∥∥2]
≤ 2

γ∑
j=1

[
(1− ω)

2
∥∥∥Ỹj (l)

∥∥∥2 − 2µω(1− ω)
2
∥∥∥δ̃j (l)

∥∥∥2 + µ2ω2(1− ω)
2‖D1,j‖2

∥∥∥δ̃j (l)
∥∥∥2 (31)

+ ω2
∥∥∥˜̂Y j(l)∥∥∥2 − 2µω2 (1− ω)

∥∥∥ψ̃j (l)
∥∥∥2 + µ2ω2(1− ω)

2
∥∥∥ψ̃j (l)

∥∥∥2‖D2,j‖2
]
,

where δ̃j(l) = Aj Ỹj(l) + Ỹj+1(l)Bj and ψ̃j(l) = Aj
˜̂
Y j(l) +

˜̂
Y j+1(l)Bj .

By using the same analytical method applied in (14), we observe that∥∥∥δ̃j (l)
∥∥∥2 = tr

{[
Ỹ Tj (l)

(
D1,j +RT1,j

)
+
(
D2,j +RT2,j

)
Ỹ Tj+1 (l)

]
δ̃j (l)

}
≤ tr

[
Ỹ Tj (l)D1,j δ̃j (l)

]
(32)

and∥∥∥ψ̃j (l)
∥∥∥2 = tr

[ ˜̂
Y
T

j (l)ATj ψ̃j (l) + (D2,j +RT2,j)
˜̂
Y
T

j+1(l)ψ̃j (l)

]
≤ tr

[
D2,j

˜̂
Y
T

j+1(l)ψ̃j (l)

]
= tr

[ ˜̂
Y
T

j+1(l)ψ̃j (l)D2,j

]
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are not always true. Therefore, the derivation of (25) from (24) is not correct. In what follows, we establish the
correct convergence theorem of the AJGI algorithm. To this end, we first define the following matrix

z =



(1− ω)M1 ωM1 (1− ω)N1 ωN1 0 0 · · · 0 0 0 0
(1− ω)2V1 ωZ1 (1− ω)2P1 ω (1− ω)P1 0 0 · · · 0 0 (1− ω)2Wγ ωUγ
0 0 (1− ω)M2 ωM2 (1− ω)N2 ωN2 · · · 0 0 0 0
(1− ω)2W1 ωU1 (1− ω)2V2 ωZ2 (1− ω)2P2 ω (1− ω)P2 · · · 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
(1− ω)Nγ ωNγ 0 0 0 0 · · · 0 0 (1− ω)Mγ ωMγ

(1− ω)2Pγ ω (1− ω)Pγ 0 0 0 0 · · · (1− ω)2Wγ−1 ωUγ−1 (1− ω)2Vγ ωZγ


,

(33)

with

Mj = I ⊗ (I − µωD1,jAj) , Nj = −µωBTj ⊗D1,j ,

Gj = [I − µ (1− ω)BjD2,j ]
T ⊗ I, Hj = −µ (1− ω)D2,j ⊗Aj ,

Pj = Gj−1Nj , Wj = HjMj , Uj = Hj [(1− ω)Mj + I] ,

Vj = Gj−1Mj +Hj−1Nj−1, Zj = Gj−1 [(1− ω)Mj + I] + (1− ω)Hj−1Nj−1, j = 1, . . . , γ.

Theorem 3.2. Assume that the DTPS matrix equation (1) is consistent, i.e., the solution of the DTPS matrix
equation (1) exists. Then the iterative sequences {Yj(l)} (j = 1, . . . , γ) generated by the AJGI algorithm converge
to the unique solution Y ∗ =

(
Y ∗1 , Y

∗
2 , · · · , Y ∗γ

)
for any initial matrices Yj (0) (j = 1, . . . , γ) if the parameters µ and

ω are selected to satisfy
ρ(z) < 1,

where the matrix z is defined as in (33).

Proof. First of all, we prove that the solution of the DTPS matrix equation (1) is unique. Assume that Ỹ ∗ =(
Ỹ ∗1 , Ỹ

∗
2 , · · · , Ỹ ∗γ

)
and Ŷ ∗ =

(
Ŷ ∗1 , Ŷ

∗
2 , · · · , Ŷ ∗γ

)
are two solutions of the DTPS matrix equation (1), then we have

Aj Ỹ
∗
j + Ỹ ∗j+1Bj = Cj , Aj Ŷ

∗
j + Ŷ ∗j+1Bj = Cj , j = 1, 2, . . . , γ.

It follows from Aj Ỹ
∗
j + Ỹ ∗j+1Bj = Cj (j = 1, 2, . . . , γ) that

Ỹ ∗j = Ỹ ∗j + µωD1,j

(
Cj −Aj Ỹ ∗j − Ỹ ∗j+1Bj

)
, Ỹ ∗j = Ỹ ∗j + µ(1− ω)

(
Cj−1 −Aj−1Ỹ ∗j−1 − Ỹ ∗j Bj−1

)
D2,j−1,

Ỹ ∗j = (1− ω) Ỹ ∗j + ωỸ ∗j , Ỹ
∗
j = (1− ω) Ỹ ∗j + ωỸ ∗j . (34)

Similarly, from Aj Ŷ
∗
j + Ŷ ∗j+1Bj = Cj (j = 1, 2, . . . , γ), we can deduce that

Ŷ ∗j = Ŷ ∗j + µωD1,j

(
Cj −Aj Ŷ ∗j − Ŷ ∗j+1Bj

)
, Ŷ ∗j = Ŷ ∗j + µ(1− ω)

(
Cj−1 −Aj−1Ŷ ∗j−1 − Ŷ ∗j Bj−1

)
D2,j−1,

Ŷ ∗j = (1− ω) Ŷ ∗j + ωŶ ∗j , Ŷ
∗
j = (1− ω) Ŷ ∗j + ωŶ ∗j . (35)

Let Ȳ ∗j = Ỹ ∗j − Ŷ ∗j (j = 1, . . . , γ). The combination of (34) and (35) gives

Ȳ ∗j = Ȳ ∗j − µωD1,j

(
Aj Ȳ

∗
j + Ȳ ∗j+1Bj

)
= Ȳ ∗j − µωD1,jAj Ȳ

∗
j − µωD1,j Ȳ

∗
j+1Bj = (I − µωD1,jAj) Ȳ

∗
j − µωD1,j Ȳ

∗
j+1Bj , (36)

Ȳ ∗j = Ȳ ∗j − µ(1− ω)
(
Aj−1Ȳ

∗
j−1 + Ȳ ∗j Bj−1

)
D2,j−1

= Ȳ ∗j − µ(1− ω)Aj−1Ȳ
∗
j−1D2,j−1 − µ(1− ω)Ȳ ∗j Bj−1D2,j−1

= Ȳ ∗j [I − µ (1− ω)Bj−1D2,j−1]− µ (1− ω)Aj−1Ȳ
∗
j−1D2,j−1, (37)

Ȳ ∗j = (1− ω) Ȳ ∗j + ωȲ ∗j , (38)

Ȳ ∗j = (1− ω) Ȳ ∗j + ωȲ ∗j . (39)

Taking the vec-operator on both sides of (36)-(39) results in

vec
(
Ȳ ∗j
)

= [I ⊗ (I − µωD1,jAj)] vec
(
Ȳ ∗j
)
−
(
µωBTj ⊗D1,j

)
vec
(
Ȳ ∗j+1

)
= Mjvec

(
Ȳ ∗j
)

+Njvec
(
Ȳ ∗j+1

)
, (40)

vec
(
Ȳ ∗j
)

=
{

[I − µ (1− ω)Bj−1D2,j−1]
T ⊗ I

}
vec
(
Ȳ ∗j
)
− [µ (1− ω)D2,j−1 ⊗Aj−1] vec

(
Ȳ ∗j−1

)
= Gj−1vec

(
Ȳ ∗j
)

+Hj−1vec
(
Ȳ ∗j−1

)
, (41)
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vec
(
Ȳ ∗j
)

= (1− ω) vec
(
Ȳ ∗j
)

+ ωvec
(
Ȳ ∗j
)
, (42)

vec
(
Ȳ ∗j
)

= (1− ω) vec
(
Ȳ ∗j
)

+ ωvec
(
Ȳ ∗j
)
, (43)

in terms of Lemma 2.1. By substituting (43) into (40), it holds that

vec
(
Ȳ ∗j
)

= (1− ω)Mjvec
(
Ȳ ∗j
)

+ ωMjvec
(
Ȳ ∗j
)

+ (1− ω)Njvec
(
Ȳ ∗j+1

)
+ ωNjvec

(
Ȳ ∗j+1

)
. (44)

By combining (44) with (42), we have

vec
(
Ȳ ∗j
)

= (1− ω)
{

(1− ω)Mjvec
(
Ȳ ∗j
)

+ ωMjvec
(
Ȳ ∗j
)

+ (1− ω)Njvec
(
Ȳ ∗j+1

)
+ ωNjvec

(
Ȳ ∗j+1

)}
+ ωvec

(
Ȳ ∗j
)

= (1− ω)
2
Mjvec

(
Ȳ ∗j
)

+ (1− ω)
2
Njvec

(
Ȳ ∗j+1

)
+ω [(1− ω)Mj + I] vec

(
Ȳ ∗j
)

+ ω (1− ω)Njvec
(
Ȳ ∗j+1

)
. (45)

In addition, substituting (45) into (41) results in

vec
(
Ȳ ∗j
)

= (1− ω)
2
Hj−1Mj−1vec

(
Ȳ ∗j−1

)
+ ωHj−1 [(1− ω)Mj−1 + I] vec

(
Ȳ ∗j−1

)
+(1− ω)

2
(Gj−1Mj +Hj−1Nj−1) vec

(
Ȳ ∗j
)

+ ω {Gj−1 [(1− ω)Mj + I] + (1− ω)Hj−1Nj−1} vec
(
Ȳ ∗j
)

+(1− ω)
2
Gj−1Njvec

(
Ȳ ∗j+1

)
+ ω (1− ω)Gj−1Njvec

(
Ȳ ∗j+1

)
= (1− ω)

2
Wj−1vec

(
Ȳ ∗j−1

)
+ ωUj−1vec

(
Ȳ ∗j−1

)
+ (1− ω)

2
Vjvec

(
Ȳ ∗j
)

+ ωZjvec
(
Ȳ ∗j
)

+(1− ω)
2
Pjvec

(
Ȳ ∗j+1

)
+ ω (1− ω)Pjvec

(
Ȳ ∗j+1

)
. (46)

Then from (33), (44) and (46), we conclude that for any positive integer t, it has

vec
(
Ȳ ∗1
)

vec
(
Ȳ ∗1
)

vec
(
Ȳ ∗2
)

vec
(
Ȳ ∗2
)

...
vec
(
Ȳ ∗γ
)

vec
(
Ȳ ∗γ
)


= z



vec
(
Ȳ ∗1
)

vec
(
Ȳ ∗1
)

vec
(
Ȳ ∗2
)

vec
(
Ȳ ∗2
)

...
vec
(
Ȳ ∗γ
)

vec
(
Ȳ ∗γ
)


= zt



vec
(
Ȳ ∗1
)

vec
(
Ȳ ∗1
)

vec
(
Ȳ ∗2
)

vec
(
Ȳ ∗2
)

...
vec
(
Ȳ ∗γ
)

vec
(
Ȳ ∗γ
)


. (47)

If ρ(z) < 1, then it follows that lim
t→+∞

zt = 0. Let t → +∞ in (47), we obtain vec
(
Ȳ ∗j
)

= 0 (j = 1, . . . , γ), thus

Ỹ ∗j = Ŷ ∗j (j = 1, . . . , γ). This implies that Ỹ ∗ =
(
Ỹ ∗1 , Ỹ

∗
2 , · · · , Ỹ ∗γ

)
=
(
Ŷ ∗1 , Ŷ

∗
2 , · · · , Ŷ ∗γ

)
= Ŷ ∗, and therefore the

solution of the DTPS matrix equation (1) is unique.
Let Y ∗ =

(
Y ∗1 , Y

∗
2 , · · · , Y ∗γ

)
be the unique solution of the DTPS matrix equation (1). Similar to Theorem 3.1,

we define the error matrices

Ỹ1,j(l) = Y1,j (l)− Y ∗j , Ỹ2,j (l) = Y2,j (l)− Y ∗j ,˜̂
Y j(l) = Ŷj (l)− Y ∗j , Ỹj (l) = Yj (l)− Y ∗j , j = 1, . . . , γ. (48)

According to the iteration scheme of Algorithm 3.2, it holds that

Ỹ1,j (l + 1) = Ỹj (l)− µωD1,j

(
Aj Ỹj (l) + Ỹj+1 (l)Bj

)
= Ỹj (l)− µωD1,jAj Ỹj (l)− µωD1,j Ỹj+1 (l)Bj

= (I − µωD1,jAj) Ỹj (l)− µωD1,j Ỹj+1 (l)Bj , (49)

Ỹ2,j (l + 1) =
˜̂
Y j(l)− µ(1− ω)

(
Aj−1

˜̂
Y j−1(l) +

˜̂
Y j(l)Bj−1

)
D2,j−1

=
˜̂
Y j(l)− µ(1− ω)Aj−1

˜̂
Y j−1(l)D2,j−1 − µ(1− ω)

˜̂
Y j(l)Bj−1D2,j−1

=
˜̂
Y j(l) [I − µ (1− ω)Bj−1D2,j−1]− µ (1− ω)Aj−1

˜̂
Y j−1(l)D2,j−1, (50)
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˜̂
Y j(l) = (1− ω) Ỹ1,j (l + 1) + ωỸ2,j (l) , (51)

Ỹj (l + 1) = (1− ω) Ỹ1,j (l + 1) + ωỸ2,j (l + 1) . (52)

By taking the vec-operator on both sides of (49)-(52) and using Lemma 2.1, we have

vec
[
Ỹ1,j (l + 1)

]
= [I ⊗ (I − µωD1,jAj)] vec

[
Ỹj (l)

]
−
(
µωBTj ⊗D1,j

)
vec
[
Ỹj+1 (l)

]
= Mjvec

[
Ỹj (l)

]
+Njvec

[
Ỹj+1 (l)

]
, (53)

vec
[
Ỹ2,j (l + 1)

]
=
{

[I − µ (1− ω)Bj−1D2,j−1]
T ⊗ I

}
vec
[ ˜̂
Y j(l)

]
− [µ (1− ω)D2,j−1 ⊗Aj−1] vec

[ ˜̂
Y j−1(l)

]
= Gj−1vec

[ ˜̂
Y j(l)

]
+Hj−1vec

[ ˜̂
Y j−1(l)

]
, (54)

vec
[ ˜̂
Y j(l)

]
= (1− ω) vec

[
Ỹ1,j (l + 1)

]
+ ωvec

[
Ỹ2,j (l)

]
, (55)

vec
[
Ỹj(l + 1)

]
= (1− ω) vec

[
Ỹ1,j (l + 1)

]
+ ωvec

[
Ỹ2,j (l + 1)

]
. (56)

Substituting (56) into (53) yields that

vec
[
Ỹ1,j (l + 1)

]
= (1− ω)Mjvec

[
Ỹ1,j (l)

]
+ ωMjvec

[
Ỹ2,j (l)

]
+ (1− ω)Njvec

[
Ỹ1,j+1 (l)

]
+ ωNjvec

[
Ỹ2,j+1 (l)

]
. (57)

By combining (57) with (55), it has

vec
[ ˜̂
Y j(l)

]
= (1− ω)

{
(1− ω)Mjvec

[
Ỹ1,j (l)

]
+ ωMjvec

[
Ỹ2,j (l)

]
+ (1− ω)Njvec

[
Ỹ1,j+1 (l)

]
+ ωNjvec

[
Ỹ2,j+1 (l)

]}
+ ωvec

[
Ỹ2,j (l)

]
= (1− ω)

2
Mjvec

[
Ỹ1,j (l)

]
+ (1− ω)

2
Njvec

[
Ỹ1,j+1 (l)

]
+ ω [(1− ω)Mj + I] vec

[
Ỹ2,j (l)

]
+ ω (1− ω)Njvec

[
Ỹ2,j+1 (l)

]
. (58)

Besides, substituting (58) into (54) results in

vec
[
Ỹ2,j (l + 1)

]
= (1− ω)

2
Hj−1Mj−1vec

[
Ỹ1,j−1 (l)

]
+ ωHj−1 [(1− ω)Mj−1 + I] vec

[
Ỹ2,j−1 (l)

]
+ (1− ω)

2
(Gj−1Mj +Hj−1Nj−1) vec

[
Ỹ1,j (l)

]
+ ω {Gj−1 [(1− ω)Mj + I] + (1− ω)Hj−1Nj−1} vec

[
Ỹ2,j (l)

]
+ (1− ω)

2
Gj−1Njvec

[
Ỹ1,j+1 (l)

]
+ ω (1− ω)Gj−1Njvec

[
Ỹ2,j+1 (l)

]
= (1− ω)

2
Wj−1vec

[
Ỹ1,j−1 (l)

]
+ ωUj−1vec

[
Ỹ2,j−1 (l)

]
+ (1− ω)

2
Vjvec

[
Ỹ1,j (l)

]
+ ωZjvec

[
Ỹ2,j (l)

]
+ (1− ω)

2
Pjvec

[
Ỹ1,j+1 (l)

]
+ ω (1− ω)Pjvec

[
Ỹ2,j+1 (l)

]
. (59)

Then it follows from (33), (57) and (59) that

vec
[
Ỹ1,1 (l + 1)

]
vec
[
Ỹ2,1 (l + 1)

]
vec
[
Ỹ1,2 (l + 1)

]
vec
[
Ỹ2,2 (l + 1)

]
...

vec
[
Ỹ1,γ (l + 1)

]
vec
[
Ỹ2,γ (l + 1)

]



= z



vec
[
Ỹ1,1 (l)

]
vec
[
Ỹ2,1 (l)

]
vec
[
Ỹ1,2 (l)

]
vec
[
Ỹ2,2 (l)

]
...

vec
[
Ỹ1,γ (l)

]
vec
[
Ỹ2,γ (l)

]



. (60)
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Therefore, the matrix z in (60) is the iteration matrix of the AJGI algorithm, then the necessary and sufficient
condition for the convergence of the AJGI algorithm is

ρ(z) < 1,

which completes the proof of this theorem. �

Remarl 3.1. Although the convergence condition of the AJGI algorithm is given in Theorem 3.2, intervals of the
step size factor µ and the relaxation factor ω have not been determined. The reason is that the parameters ω, µ are
contained in the matrices in z, and they can not be separated from the matrices in z. Thus it is difficult to derive
the convergence intervals of ω, µ, and this problem needs to be investigated in our future work.

4. The EJGI algorithm for the DTPS matrix equations

In this section, to further improve the efficiency of the AJGI algorithm proposed in [39], based on Lemma 2.2,
we introduce a new update technique for the JGI algorithm [39], and construct an effective JGI (EJGI) algorithm
for the DTPS matrix equations, which is different from the AJGI algorithm and has better numerical performance.
Then we investigate the convergence property of the EJGI algorithm. The framework of the EJGI algorithm is as
follows.

Algorithm 4.1. The effective Jacobi gradient based iterative (EJGI) algorithm:
Step 1: Input matrices Aj ∈ Rm×m, Bj ∈ Rn×n, Cj ∈ Rm×n for j = 1, . . . , γ, and three constants µ, η > 0 and

0 < ω < 1. Choose the initial matrices Yj (0) ∈ Rm×n (j = 1, . . . , γ), and set l = 0;
Step 2: Take Yj+γ (0) = Yj (0) , Aj+γ = Aj , Bj+γ = Bj , Cj+γ = Cj , D1,j+γ = D1,j and D2,j+γ = D2,j;

Step 3: If ηl =

√√√√√ γ∑
j=1
‖Cj−AjYj(l)−Yj+1(l)Bj‖2

γ∑
j=1
‖Cj−AjYj(0)−Yj+1(0)Bj‖2

< η, stop; otherwise, go to Step 4;

Step 4: For l = 0, 1, 2, . . . , and j = 1, . . . , γ, calculate

Y1,j (l + 1) = Yj (l) + µωD1,j (Cj −AjYj (l)− Yj+1 (l)Bj),

Ŷj (l) = (1− ω)Y1,j (l + 1) + ωYj (l),

Ŷj+γ (l) = Ŷj (l),

Y2,j (l + 1) = Ŷj (l) + µ (1− ω)
(
Cj−1 −Aj−1Ŷj−1 (l)− Ŷj (l)Bj−1

)
D2,j−1,

Yj (l + 1) = (1− ω)Y1,j (l + 1) + ωY2,j (l + 1),

Yj+γ (l + 1) = Yj (l + 1).
Step 5: Set l := l + 1 and return to Step 3.

Remarl 4.1. Compared with the AJGI algorithm, the proposed EJGI algorithm is obtained by using a new and
different update technique to the JGI algorithm. In the AJGI algorithm, Ŷj (l) are computed by Y1,j (l + 1) and

Y2,j (l) (j = 1, · · · , γ). While in the proposed EJGI algorithm, Y2,j (l) are replaced by Yj (l) to compte Ŷj (l)
(j = 1, · · · , γ). Although the frameworks of the AJGI algorithm [39] and the proposed EJGI algorithm are similar
and the only differences between these two algorithms are the formulas for Ŷj(l) (j = 1, · · · , γ), the latter one may
perform better than the former one. The reason is that Yj (l) = (1− ω)Y1,j (l) +ωY2,j (l) may be better than Y2,j (l)
if the relaxation factor ω is chosen properly. And this fact will be illustrated by numerical experiments in Section 6.

In what follows, we establish the convergence theorem of the proposed EJGI algorithm.

Theorem 4.1. Suppose that the DTPS matrix equation (1) is consistent, i.e., the solution of the DTPS matrix
equation (1) exists. Then the iterative sequences {Yj(l)} (j = 1, . . . , γ) generated by Algorithm 4.1 converge to the
unique solution Y ∗ =

(
Y ∗1 , Y

∗
2 , · · · , Y ∗γ

)
for any initial matrices Yj (0) (j = 1, . . . , γ), if the parameters µ and ω

satisfy

(1− ω)
γ∑
j=1

(
‖I − µωD1,jAj‖2 + µω‖D1,j−1‖2‖Bj−1‖2

)
+ω

γ∑
j=1

[
‖I − µ(1− ω)Bj−1D2,j−1‖2 + µ(1− ω)‖Aj‖2‖D2,j‖2

]
p < 1,
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where

p =

γ∑
j=1

[
‖I − µω (1− ω)D1,jAj‖2 + µω (1− ω)‖D1,j−1‖2‖Bj−1‖2

]
.

Proof. By assumptions, we can prove that the solution of the DTPS matrix equation (1) is unique by applying the
similar method utilized in Theorem 3.1. Let Y ∗ =

(
Y ∗1 , Y

∗
2 , · · · , Y ∗γ

)
be the unique solution of the DTPS matrix

equation (1). It follows from Algorithm 4.1 and the notations in (48) that

Ỹ1,j (l + 1) = Ỹj (l)− µωD1,j

(
Aj Ỹj (l) + Ỹj+1 (l)Bj

)
= Ỹj (l)− µωD1,jAj Ỹj (l)− µωD1,j Ỹj+1 (l)Bj , (61)

and

Ỹ2,j (l + 1) =
˜̂
Y j(l)− µ(1− ω)

(
Aj−1

˜̂
Y j−1(l) +

˜̂
Y j(l)Bj−1

)
D2,j−1

=
˜̂
Y j(l)− µ(1− ω)Aj−1

˜̂
Y j−1(l)D2,j−1 − µ(1− ω)

˜̂
Y j(l)Bj−1D2,j−1. (62)

By combining (61) with (62), we have

˜̂
Y j(l) = (1− ω) Ỹ1,j (l + 1) + ωỸj (l)

= (1− ω)
[
Ỹj (l)− µωD1,jAj Ỹj (l)− µωD1,j Ỹj+1 (l)Bj

]
+ ωỸj (l)

= Ỹj (l)− µω (1− ω)D1,jAj Ỹj (l)− µω (1− ω)D1,j Ỹj+1 (l)Bj

= [I − µω (1− ω)D1,jAj ] Ỹj (l)− µω (1− ω)D1,j Ỹj+1 (l)Bj , (63)

and

Ỹj (l + 1) = (1− ω) Ỹ1,j (l + 1) + ωỸ2,j (l + 1)

= (1− ω)
[
Ỹj (l)− µωD1,jAj Ỹj (l)− µωD1,j Ỹj+1 (l)Bj

]
+ ω[

˜̂
Y j(l)− µ(1− ω)Aj−1

˜̂
Y j−1(l)D2,j−1 − µ(1− ω)

˜̂
Y j(l)Bj−1D2,j−1]

= (1− ω)Ỹj (l)− µω(1− ω)D1,jAj Ỹj (l)− µω(1− ω)D1,j Ỹj+1 (l)Bj

+ ω
˜̂
Y j(l)− µω(1− ω)Aj−1

˜̂
Y j−1(l)D2,j−1 − µω(1− ω)

˜̂
Y j(l)Bj−1D2,j−1

= (1− ω)[I − µωD1,jAj ]Ỹj(l)− µω(1− ω)D1,j Ỹj+1(l)Bj

− µω(1− ω)Aj−1
˜̂
Y j−1(l)D2,j−1 + ω

˜̂
Y j(l)[I − µ(1− ω)Bj−1D2,j−1]. (64)

By taking the 2-norm in (63) and (64), and using the properties of the matrix norm, it holds that∥∥∥˜̂Y j(l)∥∥∥
2

=
∥∥∥[I − µω (1− ω)D1,jAj ] Ỹj (l)− µω (1− ω)D1,j Ỹj+1 (l)Bj

∥∥∥
2

≤ ‖I − µω (1− ω)D1,jAj‖2
∥∥∥Ỹj (l)

∥∥∥
2

+ µω (1− ω) ‖D1,j‖2‖Bj‖2
∥∥∥Ỹj+1 (l)

∥∥∥
2
, (65)

and ∥∥∥Ỹj (l + 1)
∥∥∥
2

=
∥∥∥(1− ω)[I − µωD1,jAj ]Ỹj(l)− µω(1− ω)D1,j Ỹj+1(l)Bj

− µω(1− ω)Aj−1
˜̂
Y j−1(l)D2,j−1 + ω

˜̂
Y j(l)[I − µ(1− ω)Bj−1D2,j−1]‖2

≤ (1− ω)‖I − µωD1,jAj‖2
∥∥∥Ỹj (l)

∥∥∥
2

+ µω(1− ω)‖D1,j‖2‖Bj‖2
∥∥∥Ỹj+1 (l)

∥∥∥
2

+ ω‖I − µ(1− ω)Bj−1D2,j−1‖2
∥∥∥˜̂Y j(l)∥∥∥

2
+ µω(1− ω)‖Aj−1‖2‖D2,j−1‖2

∥∥∥˜̂Y j−1(l)
∥∥∥
2
. (66)

From (65), we can derive the following inequality

γ∑
j=1

∥∥∥˜̂Y j(l)∥∥∥
2
≤

γ∑
j=1

‖I − µω (1− ω)D1,jAj‖2
∥∥∥Ỹj (l)

∥∥∥
2

+

γ∑
j=1

µω (1− ω)‖D1,j‖2‖Bj‖2
∥∥∥Ỹj+1 (l)

∥∥∥
2
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=

γ∑
j=1

‖I − µω (1− ω)D1,jAj‖2
∥∥∥Ỹj (l)

∥∥∥
2

+

γ∑
j=1

µω (1− ω)‖D1,j−1‖2‖Bj−1‖2
∥∥∥Ỹj (l)

∥∥∥
2

=

γ∑
j=1

[
‖I − µω (1− ω)D1,jAj‖2 + µω (1− ω)‖D1,j−1‖2‖Bj−1‖2

] ∥∥∥Ỹj (l)
∥∥∥
2

≤
γ∑
j=1

[
‖I − µω (1− ω)D1,jAj‖2 + µω (1− ω)‖D1,j−1‖2‖Bj−1‖2

] γ∑
j=1

∥∥∥Ỹj (l)
∥∥∥
2
. (67)

Let

p =

γ∑
j=1

[
‖I − µω (1− ω)D1,jAj‖2 + µω (1− ω)‖D1,j−1‖2‖Bj−1‖2

]
,

then (67) can be written as

γ∑
j=1

∥∥∥˜̂Y j(l)∥∥∥
2
≤ p

γ∑
j=1

∥∥∥Ỹj (l)
∥∥∥
2
. (68)

Below we construct a non-negative function Z(l) as follows

Z (l) =

γ∑
j=1

∥∥∥Ỹj (l)
∥∥∥
2
,

which together with (66) and (68) yields that

Z (l + 1) =

γ∑
j=1

∥∥∥Ỹj (l + 1)
∥∥∥
2

≤
γ∑
j=1

(1− ω)‖I − µωD1,jAj‖2
∥∥∥Ỹj (l)

∥∥∥
2

+

γ∑
j=1

µω(1− ω)‖D1,j‖2‖Bj‖2
∥∥∥Ỹj+1 (l)

∥∥∥
2

+

γ∑
j=1

ω‖I − µ(1− ω)Bj−1D2,j−1‖2
∥∥∥˜̂Y j(l)∥∥∥

2
+

γ∑
j=1

µω(1− ω)‖Aj−1‖2‖D2,j−1‖2
∥∥∥˜̂Y j−1(l)

∥∥∥
2

=

γ∑
j=1

(1− ω)‖I − µωD1,jAj‖2
∥∥∥Ỹj (l)

∥∥∥
2

+

γ∑
j=1

µω(1− ω)‖D1,j−1‖2‖Bj−1‖2
∥∥∥Ỹj (l)

∥∥∥
2

+

γ∑
j=1

ω‖I − µ(1− ω)Bj−1D2,j−1‖2
∥∥∥˜̂Y j(l)∥∥∥

2
+

γ∑
j=1

µω(1− ω)‖Aj‖2‖D2,j‖2
∥∥∥˜̂Y j(l)∥∥∥

2

= (1− ω)

γ∑
j=1

(
‖I − µωD1,jAj‖2 + µω‖D1,j−1‖2‖Bj−1‖2

) ∥∥∥Ỹj (l)
∥∥∥
2

+ ω

γ∑
j=1

[
‖I − µ(1− ω)Bj−1D2,j−1‖2 + µ(1− ω)‖Aj‖2‖D2,j‖2

] ∥∥∥ ˜̂Y j(l)∥∥∥
2

≤ (1− ω)

γ∑
j=1

(
‖I − µωD1,jAj‖2 + µω‖D1,j−1‖2‖Bj−1‖2

) γ∑
j=1

∥∥∥Ỹj (l)
∥∥∥
2

+ ω

γ∑
j=1

[
‖I − µ(1− ω)Bj−1D2,j−1‖2 + µ(1− ω)‖Aj‖2‖D2,j‖2

] γ∑
j=1

∥∥∥˜̂Y j(l)∥∥∥
2

≤ (1− ω)

γ∑
j=1

(
‖I − µωD1,jAj‖2 + µω‖D1,j−1‖2‖Bj−1‖2

) γ∑
j=1

∥∥∥Ỹj (l)
∥∥∥
2

+ ω

γ∑
j=1

[
‖I − µ(1− ω)Bj−1D2,j−1‖2 + µ(1− ω)‖Aj‖2‖D2,j‖2

]
p

γ∑
j=1

∥∥∥Ỹj (l)
∥∥∥
2

=

(1− ω)

γ∑
j=1

(
‖I − µωD1,jAj‖2 + µω‖D1,j−1‖2‖Bj−1‖2

)
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+ω

γ∑
j=1

[
‖I − µ(1− ω)Bj−1D2,j−1‖2 + µ(1− ω)‖Aj‖2‖D2,j‖2

]
p


γ∑
j=1

∥∥∥Ỹj (l)
∥∥∥
2
. (69)

Let

Q = (1− ω)

γ∑
j=1

(
‖I − µωD1,jAj‖2 + µω‖D1,j−1‖2‖Bj−1‖2

)
+ ω

γ∑
j=1

[
‖I − µ(1− ω)Bj−1D2,j−1‖2 + µ(1− ω)‖Aj‖2‖D2,j‖2

]
p. (70)

Then (69) can be written as
Z (l + 1) ≤ QZ (l) ,

which leads to
Z (l + 1) ≤ QZ (l) ≤ Q2Z (l − 1) ≤ · · · ≤ Ql+1Z (0) .

Thus if Q < 1, then it holds that

lim
l→+∞

γ∑
j=1

∥∥∥Ỹj (l + 1)
∥∥∥
2

= 0,

and therefore lim
l→+∞

Ỹj(l + 1) = 0 (j = 1, · · · , γ), i.e.,

lim
l→+∞

Yj (l + 1) = Y ∗j , j = 1, 2, · · · , γ.

The proof of this theorem is completed. �

5. The MJGI algorithm for the GDTPS matrix equations

In this section, we consider the iterative solution of the following generalized DTPS (GDTPS) matrix equations

p∑
s=1

Aj,sYjBj,s +

q∑
v=1

Ej,vYj+1Fj,v = Cj , j = 1, 2, · · · , γ, (71)

where the known matrices Aj,s, Ej,v ∈ Rm×m, Bj,s, Fj,v ∈ Rn×n, Cj ∈ Rm×n and the unknown matrices Yj ∈ Rm×n
are periodic with period γ, i.e., Aj+γ,s = Aj,s, Bj+γ,s = Bj,s, Ej+γ,v = Ej,v, Fj+γ,v = Fj,v, Cj+γ = Cj and
Yj+γ = Yj .

First of all, we split the system matrices Aj,s, Bj,s, Ej,v, Fj,v (j = 1, . . . , γ, s = 1, . . . , p, v = 1, . . . , q) of the
GDTPS matrix equation (71) into the following forms:

Aj,s = D
(1)
j,s +R

(1)
j,s ,

Bj,s = D
(2)
j,s +R

(2)
j,s ,

Ej,v = D
(3)
j,v +R

(3)
j,v ,

Fj,v = D
(4)
j,v +R

(4)
j,v ,

where D
(1)
j,s , D

(2)
j,s , D

(3)
j,v , D

(4)
j,v are the diagonal parts of Aj,s, Bj,s, Ej,v, Fj,v, respectively. In [39], Wang and Song also

extended the JGI algorithm to solve the GDTPS matrix equations by replacing the coefficient matrices by their
diagonal parts. Before developing a new algorithm for the GDTPS matrix equations, we review the JGI algorithm
proposed in [39] for the GDTPS matrix equations as follows.

Algorithm 5.1. The JGI algorithm for the GDTPS matrix equations (71) [39]:
Step 1: Input matrices Aj,s, Ej,v ∈ Rm×m, Bj,s, Fj,v ∈ Rn×n, Cj ∈ Rm×n for j = 1, . . . , γ, s = 1, . . . , p, v =

1, . . . , q, and two constants µ, η > 0. Choose the initial matrices Yj (0) ∈ Rm×n (j = 1, . . . , γ), and set l = 0;

Step 2: Take Yj+γ (0) = Yj (0) , Aj+γ,s = Aj,s, Bj+γ,s = Bj,s, Ej+γ,v = Ej,v, Fj+γ,v = Fj,v, Cj+γ = Cj , D
(1)
j+γ,s =

D
(1)
j,s , D

(2)
j+γ,s = D

(2)
j,s , D

(3)
j+γ,v = D

(3)
j,v and D

(4)
j+γ,v = D

(4)
j,v ;
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Step 3: If ξl =

√√√√√ γ∑
j=1
‖Cj−

p∑
s=1

Aj,sYj(l)Bj,s−
q∑
v=1

Ej,vYj+1(l)Fj,v‖2

γ∑
j=1
‖Cj−

p∑
s=1

Aj,sYj(0)Bj,s−
q∑
v=1

Ej,vYj+1(0)Fj,v‖2
< η, then stop; otherwise, go to Step 4;

Step 4: For l = 0, 1, 2, . . . and j = 1, . . . , γ, calculate

Y1,j (l + 1) = Yj (l) + µ
p∑
s=1

D
(1)
j,s

[
Cj −

(
p∑
k=1

Aj,kYj (l)Bj,k +
q∑
t=1

Ej,tYj+1 (l)Fj,t

)]
D

(2)
j,s ,

Y2,j (l + 1) = Yj (l) + µ
q∑
v=1

D
(3)
j−1,v

[
Cj−1 −

(
p∑
k=1

Aj−1,kYj−1 (l)Bj−1,k +
q∑
t=1

Ej−1,tYj (l)Fj−1,t

)]
D

(4)
j−1,v,

Yj (l + 1) =
Y1,j(l+1)+Y2,j(l+1)

2 ,

Yj+γ (l + 1) = Yj (l + 1).

Step 5: Set l := l + 1 and return to Step 3.

In the following, we apply the update strategy to Algorithm 5.1 and then propose the modified Jacobi gradient
based iterative (MJGI) algorithm for the GDTPS matrix equations. The details are presented as follows.

It can be observed that Y1,j (l + 1) is computed by Yj (l) and Yj+1 (l) (j = 1, . . . , γ). Then for j = γ, we can
calculate Y1,γ (l + 1) by Yγ (l) and Yγ+1 (l) = Y1 (l). Note that when we compute Y1,γ (l + 1), the matrix Y1 (l + 1)
has been determined. To improve the convergence rate of the JGI algorithm, motivated by the ideas of the FGI
algorithm in [41] and the Gauss-Seidel iteration method, we replace Y1 (l) by the latest information Y1 (l + 1) to
compute Y1,γ (l + 1). In addition, we see that Y2,j (l + 1) are computed by Yj−1 (l) and Yj (l) (j = 1, . . . , γ). Also,
for j = 2, 3, · · · , γ, when we compute Y2,γ (l + 1), the matrices Yj−1 (l + 1) have been obtained. Similar to the
above analysis, in second line of Step 4 of the JGI algorithm, Yj−1 (l) are replaced by Yj−1 (l + 1) to compute
Y2,j (l + 1). By summarizing the above discussions, we can establish the following modified JGI (MJGI) algorithm
for the GDTPS matrix equations (71).

Algorithm 5.2. The modified Jacobi gradient based iterative (MJGI) algorithm for the GDTPS matrix equations
(71):

Step 1: Input matrices Aj,s, Ej,v ∈ Rm×m, Bj,s, Fj,t ∈ Rn×n, Cj ∈ Rm×n for j = 1, . . . , γ, s = 1, . . . , p, v =
1, . . . , q, and two constants µ, η > 0. Choose the initial matrices Yj (0) ∈ Rm×n (j = 1, . . . , γ), and set l = 0;

Step 2: Take Yj+γ (0) = Yj (0) , Aj+γ,s = Aj,s, Bj+γ,s = Bj,s, Ej+γ,v = Ej,v, Fj+γ,v = Fj,v, Cj+γ = Cj , D
(1)
j+γ,s =

D
(1)
j,s , D

(2)
j+γ,s = D

(2)
j,s , D

(3)
j+γ,v = D

(3)
j,v and D

(4)
j+γ,v = D

(4)
j,v ;

Step 3: If ξl =

√√√√√ γ∑
j=1
‖Cj−

p∑
s=1

Aj,sYj(l)Bj,s−
q∑
v=1

Ej,vYj+1(l)Fj,v‖2

γ∑
j=1
‖Cj−

p∑
s=1

Aj,sYj(0)Bj,s−
q∑
v=1

Ej,vYj+1(0)Fj,v‖2
< η, then stop; otherwise, go to Step 4;

Step 4: For l = 0, 1, 2, . . . and j = 1, . . . , γ, calculate

Y1,j (l + 1) =


Yj (l) + µ

p∑
s=1

D
(1)
j,s

[
Cj −

(
p∑
k=1

Aj,kYj (l)Bj,k +
q∑
t=1

Ej,tYj+1 (l)Fj,t

)]
D

(2)
j,s , j = 1, 2, · · · , γ − 1.

Yj (l) + µ
p∑
s=1

D
(1)
j,s

[
Cj −

(
p∑
k=1

Aj,kYj (l)Bj,k +
q∑
t=1

Ej,tYj+1 (l + 1)Fj,t

)]
D

(2)
j,s , j = γ,

Y2,j (l + 1) =


Yj (l) + µ

q∑
v=1

D
(3)
j−1,v

[
Cj−1 −

(
p∑
k=1

Aj−1,kYj−1 (l)Bj−1,k +
q∑
t=1

Ej−1,tYj (l)Fj−1,t

)]
D

(4)
j−1,v, j = 1.

Yj (l) + µ
q∑
v=1

D
(3)
j−1,v

[
Cj−1 −

(
p∑
k=1

Aj−1,kYj−1 (l + 1)Bj−1,k +
q∑
t=1

Ej−1,tYj (l)Fj−1,t

)]
D

(4)
j−1,v, j = 2, 3, · · · , γ,

Yj (l + 1) =
Y1,j(l+1)+Y2,j(l+1)

2
, j = 1, 2, · · · , γ,

Yj+γ (l + 1) = Yj (l + 1) , j = 1, 2, · · · , γ.

Step 5: Set l := l + 1 and return to Step 3.

Below we derive the necessary and sufficient condition for the convergence of the MJGI algorithm by utilizing
the properties of the vector stretching operator and the Kronecker product of two matrices. To this end, we define
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the following two matrices:

L =



0 0 0 · · · 0 0
c1 0 0 · · · 0 0
0 c2 0 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 cγ−2 0 0
bγ 0 0 0 cγ−1 0


, H =



a1 b1 0 0 · · · cγ
0 a2 b2 0 · · · 0
0 0 a3 b3 · · · 0
...

...
...

. . .
. . .

...
0 0 0 · · · aγ−1 bγ−1
0 0 0 0 · · · aγ


(72)

with

aj =
p∑
s=1

p∑
k=1

D
(2)
j,sB

T
j,k ⊗D

(1)
j,sAj,k +

q∑
v=1

q∑
t=1

D
(4)
j−1,vF

T
j−1,t ⊗D

(3)
j−1,vEj−1,t,

bj =
p∑
s=1

q∑
t=1

(
D

(2)
j,sF

T
j,t ⊗D

(1)
j,sEj,t

)
,

cj =
q∑
v=1

p∑
k=1

(
D

(4)
j,vB

T
j,k ⊗D

(3)
j,vAj,k

)
, j = 1, . . . , γ.

Theorem 5.1. Assume that the GDTPS matrix equation (71) is consistent, i.e., the solution of the GDTPS matrix
equation (71) exists. Then the iterative sequences {Yj(l)}(j = 1, . . . , γ) generated by Algorithm 5.2 converge to the
unique solution Y ∗ =

(
Y ∗1 , Y

∗
2 , · · · , Y ∗γ

)
for any initial matrices Yj(0) (j = 1, . . . , γ) if and only if the parameter µ

satisfies

ρ

[(
I +

µ

2
L
)−1 (

I − µ

2
H
)]

< 1.

Proof. By assumptions, we can prove that the solution of the GDTPS matrix equation (71) is unique by applying
the similar method utilized in Theorem 3.2. Let Y ∗ =

(
Y ∗1 , Y

∗
2 , · · · , Y ∗γ

)
be the unique solution of the GDTPS

matrix equation (71). According to (48), we have

Ỹ1,j(l) = Y1,j (l)− Y ∗j , Ỹ2,j (l) = Y2,j (l)− Y ∗j , Ỹj (l) = Yj (l)− Y ∗j , j = 1, . . . , γ. (73)

Based on Algorithm 5.2, we distinguish the following cases to discuss:

• when j = 1, it has

Y1,1 (l + 1) = Y1 (l) + µ

p∑
s=1

D
(1)
1,s

[
C1 −

(
p∑
k=1

A1,kY1 (l)B1,k +

q∑
t=1

E1,tY2 (l)F1,t

)]
D

(2)
1,s , (74)

Y2,1 (l + 1) = Y1 (l) + µ

q∑
v=1

D(3)
γ,v

[
Cγ −

(
p∑
k=1

Aγ,kYγ (l)Bγ,k +

q∑
t=1

Eγ,tY1 (l)Fγ,t

)]
D(4)
γ,v, (75)

Y1 (l + 1) =
Y1,1 (l + 1) + Y2,1 (l + 1)

2
. (76)

Then it follows from (73)–(76) that

Ỹ1 (l + 1) =
Ỹ1,1 (l + 1) + Ỹ2,1 (l + 1)

2

= Ỹ1 (l)− µ

2

[
p∑
s=1

D
(1)
1,s

(
p∑
k=1

A1,kỸ1 (l)B1,k +

q∑
t=1

E1,tỸ2 (l)F1,t

)
D

(2)
1,s

+

q∑
v=1

D(3)
γ,v

(
p∑
k=1

Aγ,kỸγ (l)Bγ,k +

q∑
t=1

Eγ,tỸ1 (l)Fγ,t

)
D(4)
γ,v

]

= Ỹ1 (l)− µ

2

p∑
s=1

p∑
k=1

D
(1)
1,sA1,kỸ1 (l)B1,kD

(2)
1,s −

µ

2

p∑
s=1

q∑
t=1

D
(1)
1,sE1,tỸ2 (l)F1,tD

(2)
1,s

− µ

2

q∑
v=1

p∑
k=1

D(3)
γ,vAγ,kỸγ (l)Bγ,kD

(4)
γ,v−

µ

2

q∑
v=1

q∑
t=1

D(3)
γ,vEγ,tỸ1 (l)Fγ,tD

(4)
γ,v. (77)

By taking vector straightening operator on both sides of (77), we get

vec
[
Ỹ1 (l + 1)

]
=

[
Imn −

µ

2

(
p∑
s=1

p∑
k=1

D
(2)
1,sB

T
1,k ⊗D

(1)
1,sA1,k +

q∑
v=1

q∑
t=1

D(4)
γ,vF

T
γ,t ⊗D(3)

γ,vEγ,t

)]
vec
[
Ỹ1 (l)

]
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− µ

2

p∑
s=1

q∑
t=1

(
D

(2)
1,sF

T
1,t ⊗D

(1)
1,sE1,t

)
vec
[
Ỹ2 (l)

]
− µ

2

q∑
v=1

p∑
k=1

(
D(4)
γ,vB

T
γ,k ⊗D(3)

γ,vAγ,k

)
vec
[
Ỹγ (l)

]
,

(78)

in view of Lemma 2.1.

• when j = 2, · · · , γ − 1, it holds that

Y1,j (l + 1) = Yj (l) + µ

p∑
s=1

D
(1)
j,s

[
Cj −

(
p∑
k=1

Aj,kYj (l)Bj,k +

q∑
t=1

Ej,tYj+1 (l)Fj,t

)]
D

(2)
j,s , (79)

Y2,j (l + 1) = Yj (l) + µ

q∑
v=1

D
(3)
j−1,v

[
Cj−1 −

(
p∑
k=1

Aj−1,kYj−1 (l + 1)Bj−1,k +

q∑
t=1

Ej−1,tYj (l)Fj−1,t

)]
D

(4)
j−1,v,

(80)

Yj (l + 1) =
Y1,j (l + 1) + Y2,j (l + 1)

2
. (81)

Then from (73) and (79)–(81), straightforward computations show that

Ỹj (l + 1) =
Ỹ1,j (l + 1) + Ỹ2,j (l + 1)

2

= Ỹj (l)− µ

2

[
p∑
s=1

D
(1)
j,s

(
p∑
k=1

Aj,kỸj (l)Bj,k +

q∑
t=1

Ej,tỸj+1 (l)Fj,t

)
D

(2)
j,s

+

q∑
v=1

D
(3)
j−1,v

(
p∑
k=1

Aj−1,kỸj−1 (l + 1)Bj−1,k +

q∑
t=1

Ej−1,tỸj (l)Fj−1,t

)
D

(4)
j−1,v

]

= Ỹj (l)− µ

2

p∑
s=1

p∑
k=1

D
(1)
j,sAj,kỸj (l)Bj,kD

(2)
j,s −

µ

2

p∑
s=1

q∑
t=1

D
(1)
j,sEj,tỸj+1 (l)Fj,tD

(2)
j,s

− µ

2

q∑
v=1

p∑
k=1

D
(3)
j−1,vAj−1,kỸj−1 (l + 1)Bj−1,kD

(4)
j−1,v−

µ

2

q∑
v=1

q∑
t=1

D
(3)
j−1,vEj−1,tỸj (l)Fj−1,tD

(4)
j−1,v.

(82)

Using vector straightening operator on both sides of relation (82) and applying Lemma 2.1 yield that

vec
[
Ỹj (l + 1)

]
=

[
I − µ

2

(
p∑
s=1

p∑
k=1

D
(2)
j,sB

T
j,k ⊗D

(1)
j,sAj,k +

q∑
v=1

q∑
v=1

D
(4)
j−1,vF

T
j−1,t ⊗D

(3)
j−1,vEj−1,t

)]
vec
[
Ỹj (l)

]
− µ

2

p∑
s=1

q∑
t=1

(
D

(2)
j,sF

T
j,t ⊗D

(1)
j,sEj,t

)
vec
[
Ỹj+1 (l)

]
− µ

2

q∑
v=1

p∑
k=1

(
D

(4)
j−1,vB

T
j−1,k ⊗D

(3)
j−1,vAj−1,k

)
vec
[
Ỹj−1 (l + 1)

]
,

which is equivalent to

µ

2

q∑
v=1

p∑
k=1

(
D

(4)
j−1,vB

T
j−1,k ⊗D

(3)
j−1,vAj−1,k

)
vec
[
Ỹj−1 (l + 1)

]
+ vec

[
Ỹj (l + 1)

]
=

[
I − µ

2

(
p∑
s=1

p∑
k=1

D
(2)
j,sB

T
j,k ⊗D

(1)
j,sAj,k +

q∑
v=1

q∑
t=1

D
(4)
j−1,vF

T
j−1,t ⊗D

(3)
j−1,vEj−1,t

)]
vec
[
Ỹj (l)

]
− µ

2

p∑
s=1

q∑
t=1

(
D

(2)
j,sF

T
j,t ⊗D

(1)
j,sEj,t

)
vec
[
Ỹj+1 (l)

]
, j = 2, . . . , γ − 1. (83)

• when j = γ, it follows that

Y1,γ (l + 1) = Yγ (l) + µ

p∑
s=1

D(1)
γ,s

[
Cγ −

(
p∑
k=1

Aγ,kYγ (l)Bγ,k +

q∑
t=1

Eγ,tY1 (l + 1)Fγ,t

)]
D(2)
γ,s, (84)
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Y2,γ (l + 1) = Yγ (l) + µ

q∑
v=1

D
(3)
γ−1,v

[
Cγ−1 −

(
p∑
k=1

Aγ−1,kYγ−1 (l + 1)Bγ−1,k +

q∑
t=1

Eγ−1,tYγ (l)Fγ−1,t

)]
D

(4)
γ−1,v,

(85)

Yγ (l + 1) =
Y1,γ (l + 1) + Y2,γ (l + 1)

2
. (86)

Then the combination of (73) and (84)–(86) results in

Ỹγ (l + 1) =
Ỹ1,γ (l + 1) + Ỹ2,γ (l + 1)

2

= Ỹγ (l)− µ

2

[
p∑
s=1

D(1)
γ,s

(
p∑
k=1

Aγ,kỸγ (l)Bγ,k +

q∑
t=1

Eγ,tỸ1 (l + 1)Fγ,t

)
D(2)
γ,s

+

q∑
v=1

D
(3)
γ−1,v

(
p∑
k=1

Aγ−1,kỸγ−1 (l + 1)Bγ−1,k +

q∑
t=1

Eγ−1,tỸγ (l)Fγ−1,t

)
D

(4)
γ−1,v

]

= Ỹγ (l)− µ

2

p∑
s=1

p∑
k=1

D(1)
γ,sAγ,kỸγ (l)Bγ,kD

(2)
γ,s −

µ

2

p∑
s=1

q∑
t=1

D(1)
γ,sEγ,tỸ1 (l + 1)Fγ,tD

(2)
γ,s

− µ

2

q∑
v=1

p∑
k=1

D
(3)
γ−1,vAγ−1,kỸγ−1 (l + 1)Bγ−1,kD

(4)
γ−1,v−

µ

2

q∑
v=1

q∑
t=1

D
(3)
γ−1,vEγ−1,tỸγ (l)Fγ−1,tD

(4)
γ−1,v.

(87)

By applying the vector stretching function to (87) and according to Lemma 2.1, it has

vec
[
Ỹγ (l + 1)

]
=

[
I − µ

2

(
p∑
s=1

p∑
k=1

D(2)
γ,sB

T
γ,k ⊗D(1)

γ,sAγ,k +

q∑
v=1

q∑
t=1

D
(4)
γ−1,vF

T
γ−1,t ⊗D

(3)
γ−1,vEγ−1,t

)]
vec
[
Ỹγ (l)

]
− µ

2

p∑
s=1

q∑
t=1

(
D(2)
γ,sF

T
γ,t ⊗D(1)

γ,sEγ,t

)
vec
[
Ỹ1 (l + 1)

]
− µ

2

q∑
v=1

p∑
k=1

(
D

(4)
γ−1,vB

T
γ−1,k ⊗D

(3)
γ−1,vAγ−1,k

)
vec
[
Ỹγ−1 (l + 1)

]
,

(88)

which can be rewritten into the following equivalent form

µ

2

p∑
s=1

q∑
t=1

(
D(2)
γ,sF

T
γ,t ⊗D(1)

γ,sEγ,t

)
vec
[
Ỹ1 (l + 1)

]
+
µ

2

q∑
v=1

p∑
k=1

(
D

(4)
γ−1,vB

T
γ−1,k ⊗D

(3)
γ−1,vAγ−1,k

)
vec
[
Ỹγ−1 (l + 1)

]
+ vec

[
Ỹγ (l + 1)

]
=

[
I − µ

2

(
p∑
s=1

p∑
k=1

D(2)
γ,sB

T
γ,k ⊗D(1)

γ,sAγ,k +

q∑
v=1

q∑
t=1

D
(4)
γ−1,vF

T
γ−1,t ⊗D

(3)
γ−1,vEγ−1,t

)]
vec
[
Ỹγ (l)

]
. (89)

In view of (78), (83) and (89), we deduce that

(
I +

µ

2
L
)


vec
[
Ỹ1 (l + 1)

]
vec
[
Ỹ2 (l + 1)

]
...

vec
[
Ỹγ−1 (l + 1)

]
vec
[
Ỹγ (l + 1)

]


=
(
I − µ

2
H
)


vec
[
Ỹ1 (l)

]
vec
[
Ỹ2 (l)

]
...

vec
[
Ỹγ−1 (l)

]
vec
[
Ỹγ (l)

]


, (90)
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where the matrices L and H are defined as in (72). It is evident that I + µ
2L is a nonsingular matrix, then it follows

from (90) that 

vec
[
Ỹ1 (l + 1)

]
vec
[
Ỹ2 (l + 1)

]
...

vec
[
Ỹγ−1 (l + 1)

]
vec
[
Ỹγ (l + 1)

]


=
(
I +

µ

2
L
)−1 (

I − µ

2
H
)


vec
[
Ỹ1 (l)

]
vec
[
Ỹ2 (l)

]
...

vec
[
Ỹγ−1 (l)

]
vec
[
Ỹγ (l)

]


, (91)

and the matrix
(
I + µ

2L
)−1 (

I − µ
2H
)

is the iteration matrix of the MJGI algorithm. Therefore, the MJGI algo-
rithm is convergent if and only if the parameter µ satisfies

ρ

[(
I +

µ

2
L
)−1 (

I − µ

2
H
)]

< 1,

which completes the proof of this theorem. �

6. Numerical experiments

This section provides several numerical examples to validate the effectiveness and advantages of the proposed
algorithms, and compare their numerical performances with those of the GI, JGI and AJGI ones, with respect to
the number of iteration steps (IT) and the elapsed time in seconds (CPU). All numerical experiments are computed
in MATLAB (version R2018b) on a personal computer with AMD Ryzen 7 5800H, CPU 3.20 GHz and 16.0 GB
memory.

Example 6.1. Consider the discrete-time periodic Sylvester (DTPS) matrix equations

AjYj + Yj+1Bj = Cj , j = 1, 2, 3,

with the following coefficient matrices:

A1 =

[
2.7 0.9
−1.1 2.3

]
⊗ I200 + I200 ⊗

[
2.7 0.9
−1.1 2.3

]
, A2 =

[
4.2 1.3
−1.9 3.8

]
⊗ I200 + I200 ⊗

[
4.2 1.3
−1.9 3.8

]
,

A3 =

[
6.1 3.8
−3.1 6.3

]
⊗ I200 + I200 ⊗

[
6.1 3.8
−3.1 6.3

]
, B1 =

[
1.5 −0.2
0.4 1.0

]
⊗ I200 + I200 ⊗

[
1.5 −0.2
0.4 1.0

]
,

B2 =

[
2.1 −0.4
0.4 2.0

]
⊗ I200 + I200 ⊗

[
2.1 −0.4
0.4 2.0

]
, B3 =

[
3.1 −0.6
0.7 3.5

]
⊗ I200 + I200 ⊗

[
3.1 −0.6
0.7 3.5

]
,

C1 =

[
13.2 10.6
0.6 8.4

]
⊗ I200 + I200 ⊗

[
13.2 10.6
0.6 8.4

]
, C2 =

[
26.4 21.2
1.2 16.8

]
⊗ I200 + I200 ⊗

[
26.4 21.2
1.2 16.8

]
,

C3 =

[
38.6 32.1
1.6 24.2

]
⊗ I200 + I200 ⊗

[
38.6 32.1
1.6 24.2

]
.

In our computations, the initial matrices are taken to be

Yj(0) = 10−6 × I400, j = 1, 2, 3,

and all iterations are terminated once

RES =

√
‖C1 −A1Y1 (l)− Y2 (l)B1‖2 + ‖C2 −A2Y2 (l)− Y3 (l)B2‖2 + ‖C3 −A3Y3 (l)− Y1 (l)B3‖2

‖C1‖2 + ‖C2‖2 + ‖C3‖2
≤ η

with η being a positive number, or l reaches the maximal number of iteration steps lmax = 10000.
For all tested algorithms, their parameters are the experimentally found optimal ones which minimize their IT.

And the experimental optimal parameters, IT, CPU time and RES of the GI, JGI, AJGI and EJGI algorithms for
Example 6.1 with respect to five different values of η are listed in Table 1. Comparing the numerical results of
Table 1, we see that all tested algorithms can successfully compute approximate solutions satisfying the prescribed
stopping criterion, and their IT and CPU time increase gradually with decreasing of η. Meanwhile, the proposed
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EJGI algorithm performs better than the GI, JGI and AJGI ones in terms of both the IT and CPU time. The IT
and CPU time of the EJGI algorithms are less than half of those for the GI one, and are almost one half of those
of the JGI one. Additionally, the proposed EJGI algorithm is more stable than the other ones in view of IT, due
to the fact that the variational range of the IT of the former one is smaller than those of the latter ones. Finally,
the numerical results in Table 1 show that the new updated technique applied in the EJGI algorithm can improve
the convergence speed of the AJGI and JGI ones effectively, and the EJGI algorithm has higher computational
efficiency than the AJGI and JGI ones.

To better show the superiority of the proposed EJGI algorithm, RES(log10) of four tested algorithms with
respect to IT are depicted in Figure 1 for four different values of η. It follows from Figure 1 that all tested
algorithms are convergent, and the EJGI algorithm has advantages over the other ones in view of IT, because it
requires less IT to achieve the termination criterion. Additionally, the advantage of the EJGI algorithm becomes
more pronounced as the value of η decreases. This further confirms that the superiority of the EJGI algorithm for
solving the discrete-time periodic Sylvester matrix equations. These conclusions are in accordance with the results
of Table 1, and indicate that the convergent speed of the EJGI algorithm is the fastest among the tested algorithms.

Table 1: IT, CPU and RES of four GI-like algorithms for Example 6.1 with five values of η

Algorithm η

10−11 10−12 10−13 10−14 10−15

GI IT 193 213 233 254 274

µ = 1.32e− 02 CPU 4.2756 4.7080 5.1694 5.6498 6.1270

RES 9.7007e-12 9.8186e-13 9.9392e-14 8.9720e-15 9.0839e-16

JGI IT 167 184 201 218 235

µ = 1.37e− 02 CPU 3.6882 3.9536 4.3340 4.6930 5.1178

RES 9.6503e-12 9.5642e-13 9.3266e-14 9.0767e-15 9.0251e-16

AJGI IT 94 103 112 122 131

µ = 5.4e− 02 CPU 2.0608 2.2297 2.4185 2.6734 2.8348

ω = 1
4 RES 8.9108e-12 9.1837e-13 9.5810e-14 7.9475e-15 8.4493e-16

EJGI IT 84 91 99 106 114

µ = 9.1e− 02 CPU 1.7813 1.9564 2.1095 2.3178 2.4503

ω = 1
6 RES 9.3393e-12 8.8473e-13 7.7208e-14 9.6760e-15 9.2025e-16
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Figure 1: Comparisons for the convergence curves of four GI-like algorithms for Example 6.1.

Example 6.2. Consider the discrete-time periodic Sylvester (DTPS) matrix equations

AjYj + Yj+1Bj = Cj , j = 1, 2, 3,

where the coefficient matrices are as follows:

A1 = I2 ⊗G1 + 0.022E2 ⊗ triu(ones(5, 5)) + 0.015E1 ⊗ tril(ones(5, 5)),

A2 = I2 ⊗G2 + 0.013E2 ⊗ triu(ones(5, 5)) + 0.020E1 ⊗ tril(ones(5, 5)),

A3 = I2 ⊗G3 + 0.016E2 ⊗ tril(ones(5, 5)) + 0.013E1 ⊗ triu(ones(5, 5)),

B1 = I2 ⊗H1 + 0.012E2 ⊗ tril(ones(5, 5)) + 0.016E1 ⊗ triu(ones(5, 5)),

B2 = I2 ⊗H2 + 0.011E2 ⊗ triu(ones(5, 5)) + 0.021E1 ⊗ tril(ones(5, 5)),

B3 = I2 ⊗H3 + 0.014E2 ⊗ tril(ones(5, 5)) + 0.015E1 ⊗ triu(ones(5, 5)),

C1 = I2 ⊗ T1 + 0.52E2 ⊗ triu(ones(5, 5)) + 0.31E1 ⊗ tril(ones(5, 5)),

C2 = I2 ⊗ T2 + 0.29E2 ⊗ triu(ones(5, 5)) + 0.34E1 ⊗ tril(ones(5, 5)),

C3 = I2 ⊗ T3 + 0.54E2 ⊗ tril(ones(5, 5)) + 0.41E1 ⊗ tril(ones(5, 5)),
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with

G1 =


3.0725 0.0975 0.1576 0.1419 0.6557
0.9058 1.8103 0.9706 0.4218 0.0357
0.1270 0.5469 2.7743 0.9157 0.8491
0.9134 0.9575 0.4854 4.0874 0.9340
0.6324 0.9649 0.8003 0.9595 2.9334

 , G2 =


2.1122 0.3517 0.2858 0.0759 0.1299
0.1966 2.6938 0.7572 0.0540 0.5688
0.2511 0.5853 2.5827 0.5308 0.4694
0.6160 0.5497 0.3804 2.4573 0.0119
0.4733 0.9172 0.5678 0.9340 2.7544

 ,

G3 =


−7.4617 0.9200 0.1939 0.5488 0.6273
0.0199 −1.7766 0.9048 0.9316 0.6991
0.4199 0.3678 −7.2374 0.3352 0.3972
0.7597 0.6208 0.6318 −6.4845 0.4136
0.7939 0.7313 −0.2344 0.3919 −2.4036

 , H1 =


0.1529 0.7621 0.6154 0.4057 0.0579
−0.2311 0.1033 0.7919 0.9005 −0.3529
0.0068 0.0185 0.0470 −0.0169 0.5132
0.2860 0.0214 0.2382 −1.0898 −0.0099
0.8913 0.4447 0.1763 0.8936 1.0085

 ,

H2 =


0.0962 0.6979 0 0 0.0010
0.6822 0.3353 0.3998 0 0
0.1028 0.8600 0.0740 0.2897 0
0.5417 0.8537 0.6449 −0.5403 0.5681
0.1509 0.4936 −0.8180 0.5341 −0.3587

 , H3 =


0.2536 0.1259 0 0 0
0.2235 0.1233 0.1798 0 0
0.5155 0.6604 0.0513 −0.0592 0
0.3340 0.5298 0.6808 0.1317 0.0150
−0.4329 0.5405 0.4611 0.0503 0.0431

 ,

T1 =


−5.7240 0.4984 0.7513 0.9593 0.8407
0.6797 −5.0403 0.2551 0.5472 0.2543
0.6551 0.3404 −5.4940 0.1386 0.8143
0.1626 0.5853 0.6991 −5.8507 0.2435
0.1190 0.2238 0.8909 0.2575 −5.0707

 , T2 =


−5.7240 0.4984 0.7513 0.9593 0.8407
0.6797 −5.0403 0.2551 0.5472 0.2543
0.6551 0.3404 −5.4940 0.1386 0.8143
0.1626 0.5853 0.6991 −5.8507 0.2435
0.1190 0.2238 0.8909 0.2575 −5.0707

 ,

T3 =


−5.7240 0.4984 0.7513 0.9593 0.8407
0.6797 −5.0403 0.2551 0.5472 0.2543
0.6551 0.3404 −5.4940 0.1386 0.8143
0.1626 0.5853 0.6991 −5.8507 0.2435
0.1190 0.2238 0.8909 0.2575 −5.0707

 , E1 =

[
0 1
0 0

]
, E2 =

[
0 0
1 0

]
.

In this example, we choose the initial matrices to be

Yj(0) = 10−6 × I10, j = 1, 2, 3

and adopt the termination criterion as in Example 6.1, i.e.,

RES =

√
‖C1 −A1Y1 (l)− Y2 (l)B1‖2 + ‖C2 −A2Y2 (l)− Y3 (l)B2‖2 + ‖C3 −A3Y3 (l)− Y1 (l)B3‖2

‖C1‖2 + ‖C2‖2 + ‖C3‖2
≤ η,

with η > 0 or l exceeds the prescribed maximal number of iteration steps 10000.
As in Example 6.1, the parameters adopted in the GI, JGI, AJGI and EJGI algorithms for Example 6.2 are the

experimentally found optimal ones, which are obtained experimentally by minimizing the corresponding iteration
steps. In Table 2, we list the parameters, IT, CPU time and RES of the tested algorithms for Example 6.2 with five
different values of η. According to the numerical results in Table 2, we can conclude some observations: Firstly, all
tested algorithms are valid for all cases. Secondly, the IT of all tested algorithms are increasing with the decreasing
of η. Thirdly, the numerical performances of the JGI and the AJGI algorithms are comparable, and they outperform
the GI one with respect to computational efficiency. Fourthly, among the tested algorithms, the proposed EJGI
algorithm performs the best in view of IT and CPU time, and the advantage becomes more pronounced as η
decreases. Besides, the IT and CPU time of the EJGI algorithm are almost one in ten of those for the GI one.
Finally, the EJGI algorithm is the most stable among the tested algorithms, because the variational range of IT of
the EJGI algorithm is the smallest compared with other tested ones. In summary, the EJGI algorithm has higher
computational efficiency than the GI, JGI and AJGI ones, and applying the new updated technique to the JGI one
can ameliorate the convergence speeds and efficiencies of the GI, JGI and AJGI ones.

In Figure 2, we compare the RES(log10) curves of the GI, JGI, AJGI and EJGI algorithms in terms of IT with
η = 10−13 and η = 10−14. It can be seen from Figure 2 that the IT of the JGI, AJGI and EJGI algorithms are far
less than that of the GI one. This indicates that the JGI, AJGI and EJGI algorithms have faster convergence rates
than the GI one, which coincides with the results in Table 2. To further confirm the effectiveness of the proposed
EJGI algorithm compared with the JGI and AJGI ones, the graphs of RES(log10) against number of iterations for
four different values of η are displayed in Figure 3. By observation, we find that among these tested algorithms,
the EJGI one is the most effective algorithm as its residual reduces the fastest, and the advantage of the EJGI
algorithm becomes more pronounced as the value of η decreases. This is consistent with the results in Table 2.
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Table 2: IT, CPU and RES of four GI-like algorithms for Example 6.2 with five values of η

Algorithm η

10−10 10−11 10−12 10−13 10−14

GI IT 6587 7339 8090 8841 9595

µ = 5.988e− 02 CPU 0.2202 0.2751 0.2821 0.3060 0.3232

RES 9.9984e-11 9.9697e-12 9.9718e-13 9.9795e-14 9.9910e-15

JGI IT 731 813 896 978 1061

µ = 6.82e− 02 CPU 0.0222 0.0333 0.0399 0.0438 0.0344

RES 9.8601e-11 9.9699e-12 9.8119e-13 9.9302e-14 9.7611e-15

AJGI IT 724 806 887 969 1050

µ = 7.565e− 01 CPU 0.0222 0.0320 0.0357 0.0345 0.0342

ω = 1
22 RES 9.9059e-11 9.7627e-12 9.9075e-13 9.7742e-14 9.8805e-15

EJGI IT 682 759 835 912 988

µ = 2.175e− 1 CPU 0.0207 0.0284 0.0279 0.0254 0.0271

ω = 1
1.1 RES 9.8787e-11 9.7136e-12 9.8593e-13 9.7236e-14 9.8030e-15

Figure 2: Comparisons for the convergence curves of four GI-like algorithms for Example 6.1 with η = 10−13 and η = 10−14.
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Figure 3: Comparisons for the convergence curves of the JGI, AJGI and EJGI algorithms for Example 6.2.

Example 6.3. Consider the generalized discrete-time periodic Sylvester (GDTPS) matrix equations

2∑
s=1

Aj,sYjBj,s +

2∑
v=1

Ej,vYj+1Fj,v = Cj , j = 1, 2, 3,

where the coefficient matrices are as follows

A11 = I20 ⊗G11 + 0.022E2 ⊗ triu(ones(30, 30)) + 0.015E3 ⊗ tril(ones(30, 30)),

A12 = I20 ⊗G12 + 0.012E1 ⊗ triu(ones(30, 30)) + 0.017E4 ⊗ tril(ones(30, 30)),

A21 = I20 ⊗G21 + 0.011E2 ⊗ triu(ones(30, 30)) + 0.021E4 ⊗ tril(ones(30, 30)),

A22 = I20 ⊗G22 + 0.012E1 ⊗ triu(ones(30, 30)) + 0.025E2 ⊗ tril(ones(30, 30)),

A31 = I20 ⊗G31 + 0.031E3 ⊗ triu(ones(30, 30)) + 0.008E4 ⊗ tril(ones(30, 30)),

A32 = I20 ⊗G32 + 0.024E2 ⊗ triu(ones(30, 30)) + 0.013E1 ⊗ tril(ones(30, 30)),

B11 = I20 ⊗H11 + 0.020E4 ⊗ triu(ones(30, 30)) + 0.018E3 ⊗ tril(ones(30, 30)),

B12 = I20 ⊗H12 + 0.032E4 ⊗ triu(ones(30, 30)) + 0.011E1 ⊗ tril(ones(30, 30)),

B21 = I20 ⊗H21 + 0.017E3 ⊗ triu(ones(30, 30)) + 0.025E2 ⊗ tril(ones(30, 30)),

B22 = I20 ⊗H22 + 0.026E3 ⊗ triu(ones(30, 30)) + 0.035E1 ⊗ tril(ones(30, 30)),

B31 = I20 ⊗H31 + 0.032E2 ⊗ triu(ones(30, 30)) + 0.025E4 ⊗ tril(ones(30, 30)),
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B32 = I20 ⊗H32 + 0.012E3 ⊗ triu(ones(30, 30)) + 0.033E1 ⊗ tril(ones(30, 30)),

E11 = T11 ⊗ I20 + 0.012E1 ⊗ triu(ones(30, 30)) + 0.025E2 ⊗ tril(ones(30, 30)),

E12 = T12 ⊗ I20 + 0.032E3 ⊗ triu(ones(30, 30)) + 0.012E4 ⊗ tril(ones(30, 30)),

E21 = T21 ⊗ I20 + 0.022E3 ⊗ triu(ones(30, 30)) + 0.045E1 ⊗ tril(ones(30, 30)),

E22 = T22 ⊗ I20 + 0.023E4 ⊗ triu(ones(30, 30)) + 0.015E2 ⊗ tril(ones(30, 30)),

E31 = T31 ⊗ I20 + 0.019E2 ⊗ triu(ones(30, 30)) + 0.021E4 ⊗ tril(ones(30, 30)),

E32 = T32 ⊗ I20 + 0.021E1 ⊗ triu(ones(30, 30)) + 0.018E3 ⊗ tril(ones(30, 30)),

F11 = W11 ⊗ I20 + 0.023E2 ⊗ triu(ones(30, 30)) + 0.015E1 ⊗ tril(ones(30, 30)),

F12 = W12 ⊗ I20 + 0.012E4 ⊗ triu(ones(30, 30)) + 0.012E3 ⊗ tril(ones(30, 30)),

F21 = W21 ⊗ I20 + 0.017E1 ⊗ triu(ones(30, 30)) + 0.015E3 ⊗ tril(ones(30, 30)),

F22 = W22 ⊗ I20 + 0.013E2 ⊗ triu(ones(30, 30)) + 0.015E4 ⊗ tril(ones(30, 30)),

F31 = W31 ⊗ I20 + 0.029E4 ⊗ triu(ones(30, 30)) + 0.011E2 ⊗ tril(ones(30, 30)),

F32 = W32 ⊗ I20 + 0.011E3 ⊗ triu(ones(30, 30)) + 0.028E1 ⊗ tril(ones(30, 30)),

C1 = I20 ⊗ V1 + V1 ⊗ I20, C2 = I20 ⊗ V2 + V2 ⊗ I20, C3 = I20 ⊗ V3 + V3 ⊗ I20,

with

G11 =

 3.2796 0 0
0.9058 0 0.5469
0.1270 0.0975 3.3732

 , G12 =

 2.6844 0.0357 0.6787
0.9595 2.3810 0.7577
0.9595 0 0

 , G21 =

 0 0.0206 0.1140
0.0478 0 0.3962
0.5940 0.8986 −1.0405

 ,
G22 =

 0.1339 −0.5163 −0.1176
−0.1176 1.0520 −0.1478
−0.6505 −0.6618 0.2441

 , G31 =

 −8 0.0838 0.3524
0.7482 −8.4872 0.8258
0.4 0.9133 −7.9728

 , G32 =

 0 0.8001 0
0 3.5764 0

0.2599 0.8 3.6588

 ,
H11 =

 1 0 0
0 1 0
0 0 1

 , H12 =

 1 0 0
0 1 0
0 0 1

 , H21 =

 1 0 0
0 1 0
0 0 1

 , H22 =

 1 0 0
0 1 0
0 0 1

 , H31 =

 1 0 0
0 1 0
0 0 1

 ,
H32 =

 1 0 0
0 0.9 0
0 0 1

 , T11 =

 5 0 0
0 5 0
0 0 5

 , T12 =

 1 0 0
0 1 0
0 0 1

 , T21 =

 15 0 0
0 15 0
0 0 15

 , T22 =

 1 0 0
0 1 0
0 0 1

 ,
T31 =

 8 0 0
0 8 0
0 4 8

 , T32 =

 1 0 0
0 1 0
0 0 1

 ,W11 =

 0 0.03 0
0 4.6934 0

0.9502 0 1.8495

 ,W12 =

 −4.7 0 0.7513
0.4984 −2.0892 0.2551
0.9597 0.2238 −2.6312

 ,
W21 =

 −1.5165 0.3500 0.6160
0.2435 −1.5892 0
0.9293 0.2511 −1.7162

 ,W22 =

 0 0.7792 0.5688
0.0540 −1.2131 0.4694
0.53 0.1299 0

 ,W31 =

 −3.1652 −0.4357 −0.4302
−0.1707 −1.5373 −0.1848
−0.2277 −0.9234 −3.0385

 ,
W32 =

 0.28 0.31 0.0855
0.11 0 0.2625

0.2967 0 1.8946

 , V1 =

 10.6009 0.9114 2.9006
50.9111 19.5182 16.3448
48.8167 6.5514 7.1615

 , V2 =

 3.0733 −8.6223 0.4267
−0.7762 −3.2363 −13.3910
−19.4331 4.4601 10.7858

 ,
V3 =

 −0.7251 −7.3488 3.0989
−1.7189 −19.4865 −31.2162
−46.5468 5.0599 5.4487

 , E1 =

[
0 1
0 0

]
, E2 =

[
0 0
1 0

]
, E3 =

[
0 0
1 0

]
, E4 =

[
0 0
0 1

]
.

For this example, we adopt
Yj(0) = 10−6 × I60, j = 1, 2, 3,

as the initial matrices for all tested algorithms, and all iterations are terminated once

RES =

√
r (l + 1)

r (0)
< δ,

with δ being a positive constant and

r (l) =

3∑
j=1

∥∥∥∥∥Cj −
2∑
s=1

Aj,sYj (l)Bj,s −
2∑
v=1

Ej,vYj+1 (l)Fj,v

∥∥∥∥∥
2

,

or the number of iteration steps l reaches the prescribed maximal number of iteration steps lmax = 10000. And the
latter case is marked by “Fail” and “–” in tables.
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Figure 4: Comparisons for the convergence curves of three GI-like algorithms for Example 6.3 with δ = 10−11 and δ = 10−12.

Figure 5: Comparisons for the convergence curves of the JGI and MJGI algorithms for Example 6.3.
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Table 3: IT, CPU and RES of three tested algorithms for Example 6.3 with five values of δ

Algorithm δ

10−11 10−12 10−13 10−14 10−15

GI IT 1980 2191 2402 2615 Fail

µ = 2.43e− 3 CPU 3.9936 4.7360 4.9651 5.1907 –

RES 9.9423e-12 9.8927e-13 9.8948e-14 9.9586e-15 –

JGI IT 494 540 588 633 701

µ = 3.81e− 3 CPU 1.1895 1.2923 1.3002 1.4048 1.5182

RES 9.9490e-12 9.5835e-13 9.6901e-14 9.9507e-15 9.9620e-16

MJGI IT 442 482 525 566 620

µ = 4.22e− 3 CPU 1.0044 1.1603 1.1428 1.2306 1.3378

RES 9.5747e-12 9.9003e-13 9.7730e-14 9.7858e-15 9.9989e-16

As for Examples 6.1–6.2, the parameters of the GI, JGI and MJGI algorithms are adopted to be the experimen-
tally found optimal ones which minimize their IT. In Table 3, we compare the numerical results of the three tested
algorithms for Example 6.3 with five different values of δ. From the results in Table 3, it is observed that all tested
algorithms are convergent for all cases except that the GI algorithm fails to converge for δ = 10−15. And when
the calculation error decreases, the IT and CPU time of the tested algorithms increase. In addition, the proposed
MJGI algorithm has better numerical performance than the other ones due to the fact that the IT and CPU time
of the former one are always less than those of the GI and JGI ones. And the advantage of the MJGI algorithm
becomes more pronounced as the value of δ becomes smaller, because the numerical performance gap between the
MJGI algorithm and GI, JGI algorithms is increasingly larger with the decreases of δ. Also, the IT and CPU time
of the MJGI algorithm are nearly one fourth of those of the GI one. Last but not least, the changing scope of the
IT for the proposed MJGI algorithm is bigger than those of the GI and JGI ones, which indicates that the stability
of the MJGI algorithm is the highest among all tested algorithms. All in all, the technique utilized in the MJGI
algorithm can improve the convergence speeds of the GI and JGI ones, and the MJGI algorithm outperforms the
other ones from the point of view of computing efficiency.

To better validate the advantage of the MJGI algorithm, we present the graphs of RES(log10) against IT of
the three tested algorithms in Figure 4 for δ = 10−11 and δ = 10−12. As shown in Figure 4, all algorithms are
convergent while the MJGI algorithm has faster convergence rate than the GI and JGI ones as the IT of the MJGI
algorithm is the least among the tested algorithms. This is consistent with the results in Table 3. To further
verify the superiority of the proposed MJGI algorithm to the JGI one, we plot the IT curves of the MJGI and JGI
algorithms with respect to four different values of δ in Figure 5. From Figure 5, we observe that the MJGI algorithm
performs better than the JGI one in view of IT, and the advantage of the MJGI algorithm is more obvious when
the value of δ becomes smaller.

7. Conclusions

In this work, we first correct some errors in the convergence proofs of the JGI and the AJGI algorithms in [39],
and establish new and correct convergence conditions of these two algorithms. Then by applying a new update
technique to the JGI algorithm, we develop a new algorithm called the EJGI algorithm for the DTPS matrix
equations, which is different from the AJGI one and has advantage over the AJGI one. In addition, we combine
the idea of the Jacobi method with the update strategy, and construct the MJGI algorithm for the GDTPS matrix
equations, which requires less computations than the GI one. Besides, compared with the JGI algorithm, the MJGI
algorithm can use the latest results to compute the next results, which leads to a faster convergence rate. In
addition, by making use of the properties of the vector stretching operator, matrix norm and Kronecker product of
two matrices, we establish the convergence theorems of the the EJGI and the MJGI algorithms. Finally, numerical
experiments are performed to show the effectiveness and the superiorities of the new algorithms.
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However, the convergent intervals of the parameters µ, ω in the EJGI and the MJGI algorithms and their optimal
values have not been derived at present. We will investigate these problems in our future work, which are meaningful
to implement the EJGI and the MJGI algorithms effectively in practical applications.
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