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Abstract

This paper presents a general framework to derive the weakly nonlinear stability near a Hopf
bifurcation in a special class of multi-scale reaction-diffusion equations. The main focus is on
how the linearity and nonlinearity of the fast variables in system influence the emergence of
the breathing pulses when the slow variables are linear and the bifurcation parameter is around
the Hopf bifurcation point. By applying the matching principle to the fast and slow changing
quantities and using the singular perturbation theory, we obtain explicit expressions for the
stationary pulses. Then, the normal form theory and the center manifold theory are applied to
give Hopf normal form expressions. Finally, one of these expressions is verified by the numerical
simulation.

Key Words: Pinned solution; Hopf bifurcation; Breathing pulse; Center manifold expansion;
Normal form.

1 Introduction

In this paper, we consider the unfolding of a Hopf bifurcation in a linear reaction-diffusion equation
with strongly localized impurity, which was first introduced by Doelman, van Heijster and Shen
in [12] as: 

∂U1

∂t
=

∂2U1

∂x2
− µU1 +

α

ε2
I(

x

ε2
)G1(U1, U2),

∂U2

∂t
= D

∂2U2

∂x2
− bU1 − µU2 +

β

ε2
I(

x

ε2
)G2(U1, U2),

(1.1)

where (x, t) ∈ R × R+, U1,2(x, t) : R × R+ → R, 0 < ε ≪ 1 is a sufficiently small parameter
measuring the degree of locality, α, β ∈ R are parameters measuring the strength of the impurities,
G1, G2 are sufficiently smooth polynomial functions satisfying G1,2(0, 0) ̸= 0, and I is a Dirac delta-
type impurity. Here, µ is assumed to be positive to ensure the ground state 0 is stable. Actually,
the coefficients of U1 and U2 in (1.1) can be assumed to be µ1 and µ2 separately. However, to
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further simplify the analysis, we assume that µ1 = µ2 = µ > 0. Without missing any essential idea,
we assume exclusively I(ξ) = 1√

π
e−ξ2 all over this paper. The reasons why we study this system

can be summarized into three parts. First, adding strongly localized impurities can turn the linear
system into a locally nonlinear one and in reality the linearity of the models may break down
under strong perturbations. Second, the system we present here avoids the difficulty in analyzing
the spectrum of differential operators with nonconstant coefficients. Instead, the spectral stability
problem is reduced to linear algebra by matching the changing quantities in fast and slow scales
with the methods of GSPT. Third, the spatial heterogeneities eliminate the translational eigenvalue
λ = 0, which makes the center manifold analysis much easier.

As one of the most general pulse destabilisation scenarios [34], the mechanism of the unfolding
of a Hopf bifurcation can be developed by the local analysis of the associated center manifold. With
regard to the dynamic behavior near this bifurcation point, numerical simulations can reveal stable,
temporally oscillating pulses. Such breathing localized pulses are fascinating topics of research in
the fields of lasers [24, 36], optical media [16, 23, 25, 33] and excitatory neural networks [3–5,19,20]
over the past few decades. These oscillating pulses are localized waves that periodically vary in
shape and amplitude. They often occur in the nonlinear dynamic systems. They are also excitatory
localized structures that can respond to external stimuli and change accordingly. Mathematical
analysis of breathing localized pulses are often complicated. The singular perturbation theory and
the center manifold reduction are required in helping analyzing their stability and bifurcations.
Their existence and formation mechanisms are not fully understood and are interesting research
topics in nonlinear dynamics.

Breathing pulses were initially found in one-dimensional reaction-diffusion systems by Koga
and Kuramoto [29], in which a stationary localized pattern destabilized around a Hopf bifurcation
leading to a “breathing motion”. Besides, it was found that multi-spike quasi-equilibrium solutions
could also undergo a Hopf bifurcation, resulting in oscillations in the spike amplitudes on an O(1)
time scale in [7, 37, 38]. With respect to those oscillating fronts in [4, 19], they are denoted by the
terminology “breather”. In the field of optics, “breathing pulse” is used to describe the propagation
behavior of light pulses in optical fibers.

Recent studies [9, 12, 31] have explored the pattern formation processes in models with linear
or nonlinear structures outside the impurities based on [27, 28]. It is worth noting that these sys-
tems can be viewed as the simplifications of some canonical singularly perturbed reaction-diffusion
systems like: Gray-Scott [8, 14, 22], Gierer-Meinhardt [13, 21] and Klausmeier [2, 6] models, due to
the existence of fast and slow scales. For these classical systems, the singularly perturbed struc-
ture induces the spatial scale separation, which gives explicit leading order expressions for the
patterns under consideration. Moreover, with the help of the Hopf eigenfunctions, explicit leading
order expressions for Hopf normal form coefficients can be obtained. As we have seen, [34] studies
the emergence of the breathing pulses in a slowly nonlinear Gierer-Meinhardt system [35], which
initially exhibits typical “subcritical” growth behavior and then a bounded temporally oscillating
pulse. Different from the pattern formation in Gierer-Meinhardt system [13, 21], this additional
nonlinearity has a profound impact on both the stability analysis and dynamic behavior near the
Hopf bifurcation.

The numerical simulation in [12] also reveals such oscillating pulses. The addition of small non-
linearity −ε3U3

1 to linear G1 prevents the profile from blowing up and forms a breathing pinned
1-pulse solution. This sheds some light on performing a center manifold analysis near spectral
configurations of co-dimension one and higher. Hence, the unfolding of a Bogdanov-Takens bi-
furcation [30] or controllable chaotic pulse dynamics [16, 32] can be a natural next step. Besides,
the oscillating pulses around the Hopf bifurcation still need an analytical explanation. Hence, in
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this paper, we focus on the conditions under which such breathing pulses arise for general linear
reaction-diffusion equations with the impact of spatial defects. To accomplish this, we need to cal-
culate the leading order expressions for the target pulses, then apply the Hopf normal form theory
to derive the normal form coefficients and finally determine the pitchfork bifurcation type. We
emphasize that the main differences with [34] is that we avoid the analysis of the direction spanned
by the translational mode in the Hopf center manifold and the computation of the inverse problems
associated with the scale separated structure.

The article is structured as follows. Section 2 introduces the relevant notations, hypotheses and
lemmas, mainly based on [26]. Section 3 is divided into five parts. In subsection 3.1, we briefly
review the basic mechanism of the existence and stability for pinned pulse solution in system (1.1)
and give explicit expressions of pulse solutions and corresponding eigenfunctions. In subsection
3.2, we study the local expansion of the center manifold when G1 and G2 are both linear. The
linearities of G1 and G2 do not generate nonlinear remainder terms involving U1 or U2, which
prevents breathing pulses. In subsections 3.3 and 3.4, due to the difficulty in analyzing the Hopf
bifurcation conditions, we examine several simple situations and discuss the cases where G1 and
G2 are separately nonlinear. Then in subsection 3.5, we calculate a specific example which ever
appeared in [12] and explain the pattern formations that emerged. Finally, in section 4, we conclude
with some remarks and suggestions for future research.

2 Notations, Hypotheses and Lemmas

We briefly introduce some required notations, hypotheses and lemmas in connection with the normal
form theory and the center manifold theory. As a general reference, we would like to mention [26].

Let X , Y, Z be (real or complex) Banach spaces such that Z ↪→ Y ↪→ X , with continuous
embeddings. For a parameter-dependent differential equation in X of the form

du

dt
= Lu+R(u, µ), (2.1)

in which L is a linear operator and R is defined for (u, µ) in a neighborhood of (0,0) in Z × Rm.
Here µ is a parameter to be small.

Definition 2.1. A linear operator L : Z → X is called a bounded linear operator, if L is continuous.
The set of bounded linear operator is denoted by L ∈ L(Z,X ).

Hypothesis 2.1. We assume that L and R in (2.1) have the following properties:

(i) L ∈ L(Z,X );

(ii) for some k ≥ 2, there exist neighborhoods Vu ⊂ Z and Vµ ⊂ Rm of 0 such that R ∈ Ck(Vu ×
Vµ,Y) and R(0, 0) = 0, DuR(0, 0) = 0.

Hypothesis 2.2. (Spectral decomposition) Consider the spectrum σ of the linear operator L,
and write σ = σ+ ∪ σ0 ∪ σ−, in which σ+ = {λ ∈ σ; Reλ > 0}, σ0 = {λ ∈ σ; Reλ = 0}, σ− = {λ ∈
σ; Reλ < 0}. We assume that

(i) there exists a positive constant γ > 0 such that inf
λ∈σ+

Reλ > γ, sup
λ∈σ−

Reλ < −γ;

(ii) the set σ0 consists of a finite number of eigenvalues with finite algebraic multiplicities.
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As a consequence of Hypothesis 2.2(ii), we can define the spectral projection P0 ∈ L(X ), cor-
responding to σ0, by the Dunford integral formula P0 = 1

2πi

∫
Γ(λI − L)−1dλ, where Γ is a simple,

oriented counterclockwise, Jordan curve surrounding σ0 and lying entirely in {λ ∈ C : |Reλ| < γ}.
Then we define projection Ph : X → X by Ph = I − P0. The spectral subspaces associated with
these two projections are denoted by E0 = RanP0= KerPh⊂ X , Xh = RanPh= KerP0⊂ X . Also,
we set Zh = PhZ ⊂ Z, Yh = PhY ⊂ Y, and denote by L0 and Lh the restrictions of L to E0 and Zh.
As an immediate consequence, the spectrum of L0 is σ0 and the spectrum of Lh is σh = σ+ ∪ σ−.

Hypothesis 2.3. (Resolvent estimates) Assume that X̃ = X ×Rm, Ỹ = Y ×Rm, Z̃ = Z ×Rm

are Hilbert spaces, and there exist positive constants ω0 > 0, c > 0 and α ∈ [0, 1) such that for all
ω ∈ R, with |ω| ≥ ω0, we have that iω belongs to the resolvent set of L and ||(iωI−L̃h)

−1||L(X ) ≤ c
|ω| ,

where L̃h := Lh +DµPhR(0, 0).

Lemma 2.1. (Parameter-dependent center manifolds) (P.46 of [26]) Assume that Hypothe-
ses 2.1, 2.2 and 2.3 hold. Then there exists a map Ψ ∈ Ck(E0×Rm,Zh), with Ψ(0, 0) = 0, DuΨ(0, 0) =
0, and a neighborhood Ou × Oµ of (0,0) in Z × Rm such that for µ ∈ Oµ, the manifold M0(µ) =
{u0 +Ψ(u0, µ) : u0 ∈ E0} has the following properties:

(i) M0(µ) is locally invariant.

(ii) M0(µ) contains the set of bounded solutions of (2.1) staying in Ou for all t ∈ R.

Specifically, when the unstable spectrum σ+ of L is empty, there is

Lemma 2.2. (Parameter-dependent center manifolds theorem for empty unstable spec-
trum) (P.59 of [26]) Assume that σ+ = ∅, Hypotheses 2.1, 2.2 and 2.3 hold. Then in addition to
the properties in Lemma 2.1 the following holds.
The local center manifold M0(µ) is locally attracting. More precisely, if u(0) ∈ Ou and the solution
u(t;u(0)) of (2.1) satisfies u(t;u(0)) ∈ Ou for all t > 0, then there exists ũ ∈ M0 ∩ Ou and γ′ > 0
such that u(t;u(0)) = u(t; ũ) +O(e−γ′t) as t → ∞.

Next, we give the hypothesis and lemmas about the normal form theorem in Rn:

Hypothesis 2.4. Assume that L and R have the following properties:

(i) L is a linear map in Rn;

(ii) for some k ≥ 2, there exist neighborhoods Vu ⊂ Rn and Vµ ⊂ Rm of 0 such that R ∈
Ck(Vu × Vµ,Rn) and R(0, 0) = 0, DuR(0, 0) = 0.

Lemma 2.3. (Normal form for perturbed vector fields) (P.110 of [26]) Assume that Hypothe-
sis 2.4 holds. Then for any positive integer p, 2 ≤ p ≤ k , there exist neighborhoods O1 and O2 of
0 in Rn and Rm, respectively, such that for any µ ∈ O2, there is a polynomial Φµ : Rn → Rn of
degree p with the following properties:

(i) The coefficients of the monomials of degree q in Φµ are functions of µ of class Ck−p, and
Φ0(0) = 0, DuΦ0(0) = 0;

(ii) For v ∈ O1, the polynomial change of variable u = v +Φµ(v), transforms equation (2.1) into
the “normal form” dv

dt = Lv +Nµ(v) + ρ(v, µ), and the following properties hold:

a. For any µ ∈ O2, Nµ is a polynomial Rn → Rn of degree p and N0(0) = 0, DvN0(0) = 0;
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b. The equality Nµ(e
tL∗

v) = etL
∗
Nµ(v) holds for all (t, v) ∈ R× Rn and µ ∈ O2;

c. The map ρ belongs to Ck(O1 ×O2,Rn), and ρ(v, µ) = o(∥v∥p) for all µ ∈ O2.

Lemma 2.4. (P.11 of [26]) Let f be a complex-valued function of class Ck, k ≥ 1, defined in a
neighborhood O of the origin in {(z, z̄) : z ∈ C}, and which verifies

f(eiωtz, e−iωtz̄) = eiωtf(z, z̄) for any t ∈ R and (z, z̄) ∈ O.

Then there exists an even, complex-valued function g of class Ck−1 defined in a neighborhood of 0
in R such that f(z, z̄) = zg(|z|). Furthermore, if f is a polynomial, then g is an even polynomial,
g(|z|) = ϕ(|z|2) for a polynomial ϕ.

Remark 2.5. Provided that an infinite-dimensional system du
dt = Lu+R(u, µ) satisfies the assump-

tions in center manifold Lemma 2.1, then the reduced system satisfies Hypothesis 2.4, so the normal
form Lemma 2.3 can be employed.

3 Existence of Breathing Pulses

In this section, we study whether breathing pulses arise when G1 and G2 exhibit different linearity.
First, we recall the analysis of existence and stability in [9, 12, 31]. Therein, the explicit leading-
order expressions of the pulse solution and the corresponding eigenfunction are given. Then, we
discuss the dynamic behavior when G1 and G2 are linear or nonlinear separately. In order to avoid
the complexity of the discussion and the stacking of formulas, we make some simplifications. At
last, a concrete example which ever appeared in [12] is raised. The existence of those breathing
pulse can be interpreted theoretically within the framework of our previous analysis.

3.1 The Existence and Stability of the Pinned Pulse

In order to obtain the leading order expression of the pinned pulse solution and its eigenfunction,
which play an important role in analyzing the normal form, we first present the basic mechanism
of the existence and stability.

Consider the system (1.1), owing to the strong spatial localization of impurities, it can be
analyzed in two spatial scales, x versus ξ := x

ε2
. More specifically, the spatial domain is divided into

three parts I−s := (∞,−ε), If := [−ε, ε] and I+s := (ε,∞). In I±s , the system (1.1) can be regarded
as a semi-coupled linear system, whose solution can be uniquely determined due to the exponential
decay at infinity. In If , impurities are dominant, and the impact of −µU1 and −bU1−µU2 are least.
Hence, the leading-order accumulated changes of dU1

dx and dU2
dx can be calculated from the value of

αG1 and βG2. Through equalizing these accumulated changes in these two different scales, we
derive the continuous solution we expect. The following stability analysis is completed in a similar
way because of the same structure of the eigenvalue system and the negative essential spectrum.
Actually, two different approaches to obtain the matching conditions of existence and stability are
given in [9,12,31]. One calculates the fast and slow manifolds separately, while the other gives the
explicit expressions of solutions by method of variation of constant.

To system (1.1), if
2
√
µC1 = αG1

(
C1, C2 +

bC1

(−1 +D)µ

)
,

2

(√
µ

D
C2 +

bC1

(−1 +D)
√
µ

)
=

β

D
G2

(
C1, C2 +

bC1

(−1 +D)µ

) (3.1)
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admits non-degenerate solutions C1 and C2, then (1.1) exists a nontrivial pinned pulse solution
Γp(x) = (Γ1,p(x),Γ2,p(x))

T = (U1,p(x) +O(ε), U2,p(x) +O(ε))T with

U1,p(x) =


C1e

√
µx, x ∈ I−s ,

C1, x ∈ If ,

C1e
−√

µx, x ∈ I+s ,

U2,p(x) =


C2e

√
µ
D
x + bC1

(−1+D)µe
√
µx, x ∈ I−s ,

C2 +
bC1

(−1+D)µ , x ∈ If ,

C2e
−
√

µ
D
x + bC1

(−1+D)µe
−√

µx, x ∈ I+s .

(3.2)

As for the spectral (and nonlinear) stability of the above pinned pulse solution, we linearize (1.1)
around Γp and yield the eigenvalue problem

0 =
d2P1

dx2
− (µ+ λ)P1 +

α

ε2
I(

x

ε2
)

(
∂G1

∂U1
(U1,p, U2,p)P1 +

∂G1

∂U2
(U1,p, U2,p)P2

)
,

0 = D
d2P2

dx2
− bP1 − (µ+ λ)P2 +

β

ε2
I(

x

ε2
)

(
∂G2

∂U1
(U1,p, U2,p)P1 +

∂G2

∂U2
(U1,p, U2,p)P2

)
.

With σess = (−∞,−µ], consequently, the stability is fully determined by the locations of eigenval-
ues. Hence, if

α

(
∂G1

∂U1

(
C1, C2 +

bC1

(−1 +D)µ

)
C3 +

∂G1

∂U2

(
C1, C2 +

bC1

(−1 +D)µ

)
(C4 +

bC3

(−1 +D)(µ+ λ)
)

)
= 2
√
µ+ λC3,

β

D

(
∂G2

∂U1

(
C1, C2 +

bC1

(−1 +D)µ

)
C3 +

∂G2

∂U2

(
C1, C2 +

bC1

(−1 +D)µ

)
(C4 +

bC3

(−1 +D)(µ+ λ)
)

)
= 2

(√
µ+ λ

D
C4 +

bC3

(−1 +D)
√
µ+ λ

)
(3.3)

admits solutions λ (λ ∈ C/(−∞,−µ]) which are all with negative real parts, then this pinned pulse
solution is stable. We denote this eigenfunction as (P1(x)+O(ε), P2(x)+O(ε))T , whose expression
can be given as

P1(x) =


C3e

√
µ+λx, x ∈ I−s ,

C3, x ∈ If ,

C3e
−
√
µ+λx, x ∈ I+s ,

P2(x) =


C4e

√
µ+λ
D

x
+ bC3

(−1+D)(µ+λ)e
√
µ+λx, x ∈ I−s ,

C4 +
bC3

(−1+D)(µ+λ) , x ∈ If ,

C4e
−
√

µ+λ
D

x
+ bC3

(−1+D)(µ+λ)e
−
√
µ+λx, x ∈ I+s .

(3.4)

3.2 G1 and G2 are Linear

We can cut through our analysis from one of the simplest perspectives, i.e., we assume that G1 and
G2 are linear.

In this case, the existence condition can be verified easily because equations (3.1) are system
of quadratic equations. For the stability condition, i.e., the solutions of equations (3.3), through
analysis, they can be simplified as:

2(µ+ λ)
3
2

αG13

√
D

− G12(µ+ λ)

G13

√
D

+
b

D +
√
D

=
βG22(µ+ λ)

1
2

2D
+

βG22(µ+ λ)

αG13D
− βG12G23(µ+ λ)

1
2

2DG13
, (3.5)
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where Gij represents the jth coefficient of Gi and Gi = Gi1 +Gi2U1 +Gi3U2 with i = 1, 2. Denote
t :=

√
µ+ λ, then Re t > 0 and (3.5) is equal to

2t3 − (αG12 +
βG23√

D
)t2 +

αβ

2
√
D
(G12G23 −G13G22)t+

bαG13√
D + 1

= 0. (3.6)

Denote A := −(αG12 +
βG23√

D
), B := αβ

2
√
D
(G12G23 −G13G22) and E := bαG13√

D+1
, we rewrite equation

(3.6) as
H(t) := 2t3 +At2 +Bt+ E = 0. (3.7)

For B < 0, H(t) has a minimum at t = −A+
√
A2−6B
6 . If, in addition, E > 0 andH(−A+

√
A2−6B
6 ) < 0,

then (3.7) has two real-valued positive solutions. When the value H(−A+
√
A2−6B
6 ) becomes positive,

these two real-valued solutions merge and become complex-valued. As a result, we can tune µ such
that Reλ = 0. Hence, this pinned pulse solution can undergo a Hopf bifurcation, we denote this
bifurcation parameter as µ̂. Next, we discuss the center normal form. We transform the system
(1.1) by Ũ1 = U1 − Γ1,p, Ũ2 = U2 − Γ2,p, µ̃ = µ− µ̂, to

dŨ

dt
= LŨ +R(Ũ , µ̃),

where

Ũ =

(
Ũ1

Ũ2

)
, R(Ũ , µ̃) =

(
−µ̃Ũ1

−µ̃Ũ2

)
,

L =

(
d2

dx2 − µ̂+ α
ε2
I( x

ε2
)∂G1
∂U1

(Γ1,p,Γ2,p)
α
ε2
I( x

ε2
)∂G1
∂U2

(Γ1,p,Γ2,p)

−b+ β
ε2
I( x

ε2
)∂G2
∂U1

(Γ1,p,Γ2,p) D d2

dx2 − µ̂+ β
ε2
I( x

ε2
)∂G2
∂U2

(Γ1,p,Γ2,p)

)
.

Since G1 and G2 are linear, actually, there is

L =

(
d2

dx2 − µ̂+ αG12
ε2

I( x
ε2
) αG13

ε2
I( x

ε2
)

−b+ βG22

ε2
I( x

ε2
) D d2

dx2 − µ̂+ βG23

ε2
I( x

ε2
)

)
.

We give the following proposition:

Proposition 3.1. Assume G1 and G2 are linear, then system (1.1) has precisely one equilibrium
Γp(µ), which is stable when µ > µ̂ and unstable when µ < µ̂. And, there exists no breathing
phenomenon near the pinned pulse solution.

Proof. We set X =
(
L2(R2)

)2
, Y = Z =

(
H2(R2)

)2
, then there is L ∈ L(Z,X ). In the above,

R is linear with respect to Ũ and µ̃ respectively, so it satisfies R(0, 0) = 0, DuR(0, 0) = 0. With
bifurcation parameter µ̂ be given, there are σ+ = σ− = ∅ and σ0 has finite eigenvalues with finite
algebraic multiplicities. Moreover, L is a parabolic operator which satisfies resolvent estimate.
Hence, according to Lemma 2.1, Ψ is linear with µ-dependent coefficients. Therefore, there exists no
periodic orbit. Besides, the derivative of R with respect to Ũ is −µ̃, which decides the in(stability)
of Γp.

Remark 3.2. When D = 1, the expressions for (3.2) and (3.4) fail, the corresponding pulse
solution and eigenfunction become

U2,p(x) =


C2e

√
µx + bC1

4µ e
√
µx
(
−1 + 2

√
µx
)
, x ∈ I−s ,

C2 − bC1
4µ , x ∈ If ,

C2e
−√

µx + bC1
4µ e−

√
µx
(
−1− 2

√
µx
)
, x ∈ I+s ,
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and

P2(x) =


C4e

√
µ+λx + bC3

4(µ+λ)e
√
µ+λx

(
−1 + 2

√
µ+ λx

)
, x ∈ I−s ,

C4 − bC3
4(µ+λ) , x ∈ If ,

C4e
−
√
µ+λx + bC3

4(µ+λ)e
−
√
µ+λx

(
−1− 2

√
µ+ λx

)
, x ∈ I+s .

Here C1, C2 satisfy 
2
√
µC1 = αG1

(
C1, C2 −

bC1

4µ

)
,

2

(
√
µC2 +

bC1

4
√
µ

)
= βG2

(
C1, C2 −

bC1

4µ

)
.

C3, C4 satisfy

2
√

µ+ λC3

= α

(
∂G1

∂U1

(
C1, C2 −

bC1

4µ

)
C3 +

∂G1

∂U2

(
C1, C2 −

bC1

4µ

)
(C4 −

bC3

4(µ+ λ)
)

)
,

2

(√
µ+ λC4 +

bC3

4
√
µ+ λ

)
=

β

D

(
∂G2

∂U1

(
C1, C2 −

bC1

4µ

)
C3 +

∂G2

∂U2

(
C1, C2 −

bC1

4µ

)
(C4 −

bC3

4(µ+ λ)
)

)
,

which yields

2

αG13
(µ+ λ)

3
2 − G12

G13
(µ+ λ) +

b

2
=

βG22

2
(µ+ λ)

1
2 +

βG23

αG13
(µ+ λ)− βG12G23

2G13
(µ+ λ)

1
2 .

It equals to equation (3.5) when D = 1. Hence, we get the same conclusion as in Remark 3.1.

3.3 G1 is Nonlinear and G2 is Linear

Next, we examine the sub-simple situation, i.e., G1 is nonlinear and G2 is linear. We further denote
G1 = G11 +G12U1 +G13U2 +G14U

2
1 +G15U

2
2 +G16U1U2 + .... In order to reveal the essence, we

shift our focus on the coupled case when there is only one nonlinear term, i.e., G1 = G11 +G15U
2
2 .

In order not to bring in cumbersome formulas and complex expressions from G2, we discuss from
three situations.

3.3.1 G2 = G21

First, we assume that G2 is a constant function with G2 = G21, then (1.1) becomes
∂U1

∂t
=

∂2U1

∂x2
− µU1 +

α

ε2
I(

x

ε2
)(G11 +G15U

2
2 ),

∂U2

∂t
= D

∂2U2

∂x2
− bU1 − µU2 +

β

ε2
I(

x

ε2
)(G21).

(3.8)

As before, system (3.8) admits the stationary pinned pulse solution like (3.2) if
2
√
µC1 = α

(
G11 +G15(C2 +

bC1

(−1 +D)µ
)2
)
,

βG21

D
= 2

(√
µ

D
C2 +

bC1

(−1 +D)
√
µ

) (3.9)
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admits non-degenerate solutions C1 and C2, i.e., ∆ = 4µ+ 4αG15b
(1+

√
D)µ

(
βG21√

D
− αbG11

µ(1+
√
D)

)
> 0. Here,

we assume that D ̸= 1. Unless otherwise stated, we adhere to this assumption in the following.
Then, under this assumption of existence, we consider solutions of the eigenvalue equation

0 =
d2P1

dx2
− (µ+ λ)P1 +

α

ε2
I(

x

ε2
)(2G15Γ2,p(x)P2),

0 = D
d2P2

dx2
− bP1 − (µ+ λ)P2,

(3.10)

i.e., the solutions of
2
√

µ+ λC3 = 2αG15

(
C2 +

bC1

(−1 +D)µ

)(
C4 +

bC3

(−1 +D)(µ+ λ)

)
,

0 = 2

(√
µ+ λ

D
C4 +

bC3

(−1 +D)
√
µ+ λ

)
.

(3.11)

We solve it to get

µ+ λ =

∣∣∣∣(C2 +
bC1

(−1 +D)µ

)
−αbG15

1 +
√
D

∣∣∣∣ 23 ,
µ+ λ =

∣∣∣∣(C2 +
bC1

(−1 +D)µ

)
−αbG15

1 +
√
D

∣∣∣∣ 23 (−1

2
+

√
3

2
i),

µ+ λ =

∣∣∣∣(C2 +
bC1

(−1 +D)µ

)
−αbG15

1 +
√
D

∣∣∣∣ 23 (−1

2
−

√
3

2
i),

where
∣∣∣(C2 +

bC1
(−1+D)µ

)
−αbG15

1+
√
D

∣∣∣ 23 is positive and real. This outcome implies that Hopf bifurcation

is impossible in this case regardless of µ values.

Proposition 3.3. There exists no Hopf bifurcation in system (3.8).

3.3.2 G2 = G22U1

Next, we consider the case that G2 is simple linear in U1, i.e.,
∂U1

∂t
=

∂2U1

∂x2
− µU1 +

α

ε2
I(

x

ε2
)(G11 +G15U

2
2 ),

∂U2

∂t
= D

∂2U2

∂x2
− bU1 − µU2 +

β

ε2
I(

x

ε2
)(G22U1).

(3.12)

Provided that

(A1) ∆ = 4µ− 4α2G15G11

(
βG22

2
√
µD

− b

µ(1 +
√
D)

)2

> 0,

then system (3.12) exists a unique pinned pulse solution.
Under this assumption, the eigenvalues can be calculated by

(µ+ λ)
3
2 = αG15

(
C2 +

bC1

(−1 +D)µ

)(
βG22

2
√
D
(µ+ λ)

1
2 − b

1 +
√
D

)
. (3.13)
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Similarly, denote B1 := −αβG15G22

2
√
D

(
C2 +

bC1
(−1+D)µ

)
, E1 := αbG15

1+
√
D

(
C2 +

bC1
(−1+D)µ

)
, we rewrite

(3.13) as
H1(t) := t3 +B1t+ E1 = 0.

If E1 > 0, B1 < 0 and H1(
√

−B1
3 ) < 0, then there exist two real-valued positive solutions. These

two real-valued solutions merge and become complex-valued when H1(
√

−B1
3 ) > 0. Hence, if

(A2)
αbG15

1 +
√
D

(
C2 +

bC1

(−1 +D)µ

)
> 0;

(A3) αβG15G22

(
C2 +

bC1

(−1 +D)µ

)
> 0;

(A4)

(
αβG15G22

3

(
C2 +

bC1

(−1 +D)µ

)) 3
2

+
αbG15

1 +
√
D

(
C2 +

bC1

(−1 +D)µ

)
− αβG15G22

(
C2 +

bC1

(−1 +D)µ

)(
αβG15G22

3

(
C2 +

bC1

(−1 +D)µ

)) 1
2

> 0,

then there exists a pair of conjugate imaginary roots. According to the Shengjin formula [17] of
the cubic equation, this pair of conjugate imaginary solutions can be calculated to be

t1,2 =
1

6

(
3

√
3

2

(
9C1 +

√
81C2

1 + 12B3
1

)
+ 3

√
3

2

(
9C1 −

√
81C2

1 + 12B3
1

))

±
√
3

6

(
3

√
3

2

(
9C1 +

√
81C2

1 + 12B3
1

)
− 3

√
3

2

(
9C1 −

√
81C2

1 + 12B3
1

))
i.

Denote

nr : =
1

6

(
3

√
3

2

(
9C1 +

√
81C2

1 + 12B3
1

)
+ 3

√
3

2

(
9C1 −

√
81C2

1 + 12B3
1

))
,

ni : =

√
3

6

(
3

√
3

2

(
9C1 +

√
81C2

1 + 12B3
1

)
− 3

√
3

2

(
9C1 −

√
81C2

1 + 12B3
1

))
,

then setting µ = n2
r − n2

i can give λ = ±2nrnii. This equals to the condition

(A5) 9µ = 2
3

√√√√√3

2

−9αbG15

(
C2 +

bC1
(−1+D)µ

)
1 +

√
D

+
√
∆

 3

√√√√√3

2

−9αbG15

(
C2 +

bC1
(−1+D)µ

)
1 +

√
D

−
√
∆



− 1

2

3

√√√√√−27αbG15

(
C2 +

bC1
(−1+D)µ

)
2 + 2

√
D

+
3

2

√
∆

2

− 1

2

3

√√√√√−27αbG15

(
C2 +

bC1
(−1+D)µ

)
2 + 2

√
D

− 3

2

√
∆

2

admits positive roots µ, where

∆ = 81

((
C2 +

bC1

(−1 +D)µ

)
αbG15

1 +
√
D

)2

− 12

((
C2 +

bC1

(−1 +D)µ

)
αβG22G15

2
√
D

)3

.

As a result, there is
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Theorem 3.4. Assume that (A1), (A2), (A3), (A4) and (A5) hold, then there exists a Hopf
bifurcation for system (3.12), where we denote this bifurcation parameter value by µ̂.

Based on this, we proceed to study the existence of breathing pulses. First, we transform the
system (3.12) and get

dŨ

dt
= LŨ +R(Ũ , µ̃), (3.14)

where

Ũ =

(
Ũ1

Ũ2

)
, R(Ũ , µ̃) =

(
−µ̃Ũ1 +

αG15
ε2

I( x
ε2
)Ũ2

2

−µ̃Ũ2

)
, L =

(
d2

dx2 − µ̂ 2αG15
ε2

I( x
ε2
)Γ2,p

−b+ βG22

ε2
I( x

ε2
) D d2

dx2 − µ̂

)
.

(3.15)

We still use the function space X =
(
L2(R2)

)2
, Y = Z =

(
H2(R2)

)2
, and L : Z = Y → X . Since

the operator L is real, and the fact that its point spectrum is given as λ = ±2nrnii, we know
the associated two-dimensional spectral subspace E0 is spanned by the eigenfunctions P, P̄ . And
P = (P1, P2)

T satisfies
0 =

∂2P1

∂x2
− (n2

r − n2
i + 2nrnii)P1 +

α

ε2
I(

x

ε2
)(2G15Γ

2
2,pP2),

0 = D
∂2P2

∂x2
− bP1 − (n2

r − n2
i + 2nrnii)P2 +

β

ε2
I(

x

ε2
)(G22P1).

According to the parameter-dependent center manifolds Lemma 2.1, we have

Ũ = U0 +Ψ(U0, µ̃), U0 ∈ E0, Ψ(U0, µ̃) ∈ Zh = Yh.

Then, by applying the normal form Lemma 2.3, we find U0 = V0 + Φµ̃(V0), V0 ∈ O1 ⊂ E0, which
transforms equation (3.14) into the normal form

dV0

dt
= LV0 +Nµ̃V0 + ρ(V0, µ̃),

We therefore have

Ũ = V0 + Ψ̃(V0, µ̃), Ψ̃(V0, µ̃) = Φµ̃(V0) + Ψ(V0 +Φµ̃(V0), µ̃). (3.16)

Since V0(t) ∈ E0, it is convenient to write V0(t) = A(t)P + A(t)P , A(t) ∈ C, then equation (3.16)
can be transformed into an “amplitude equation” dA

dt = i2nrniA + Nµ̃(A, Ā) + ρ(A, Ā, µ̃), which
can be simplified further by Lemma 2.4 to be

dA

dt
= i2nrniA+AQ(|A|2, µ̃) + ρ(A, Ā, µ̃). (3.17)

Here, Q(|A|2, µ̃) = aµ̃+ b|A|2 +O((|µ̃|+ |A|2)2). Hence, equation (3.17) equals to

dA

dt
= i2nrniA+ aµ̃A+ b|A|2A+O(|A|(|µ̃|+ |A|2)2).

We neglect the higher order terms ρ, which has no impact on our final analysis. Then, by introducing
polar coordinates A = reiϕ, we obtain

dr

dt
+ ir

dϕ

dt
= i2nrnir + rQ(r2, µ̃),
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whose real and imaginary parts satisfy

dr

dt
= arµ̃r + brr

3 +O(r(|µ̃|+ r2)2),

dϕ

dt
= 2nrni + aiµ̃+ bir

2 +O((|µ̃|+ r2)2),

(3.18)

in which the real coefficients ar and br represent the real parts of a and b, whereas ai and bi
represent the imaginary parts of a and b. The key property of system (3.18) is that the radial
equation for r decouples, which corresponds to a pitchfork bifurcation occurs at µ̃ = 0. If the
bifurcation here is supercritical, then there exists an oscillating solution near Γp, which is called a
breathing pulse. Therefore, figuring out the values of coefficients a and b should be the next step.
For this, differentiate (3.16) with respect to t and replace dU

dt and dV0
dt respectively. There is

DV0Ψ̃(V0, µ̃)LV0 − LΨ̃(V0, µ̃) +Nµ̃V0 = Q(V0, µ̃), (3.19)

where
Q(V0, µ̃) = Πp

(
R(V0 + Ψ̃(V0, µ̃), µ̃)−DV0Ψ̃(V0, µ̃)Nµ̃V0

)
.

Here Πp represents the linear map that associates to a map of class Cp the polynomial of degree p
in its Taylor expansion. We then write the Taylor expansions of R and Ψ̃ as follows:

R(Ũ , µ̃) =
∑

1≤q+l≤p

Rql(Ũ
(q), µ̃(l)) + o((∥Ũ∥+ ∥µ̃∥)p),

Ψ̃(V0, µ̃) =
∑

1≤q+l≤p

Ψ̃ql(V
(q)
0 , µ̃(l)) + o((∥V0∥+ ∥µ̃∥)p),

with
Rql(Ũ

(q), µ̃(l)) = Ũ qµ̃lRql, Ψ̃ql(V
(q)
0 , µ̃(l)) = µ̃l

∑
q1+q2=q

Aq1Āq2Ψq1q2l.

By identifying in (3.19) the terms of order O(µ), O(A2), and O(AĀ), we obtain

−LΨ001 = R01,

(i4nrnii− L)Ψ200 = R20(P, P ),

−LΨ110 = 2R20(P, P̄ ).

Since σpt = {±2nrnii}, the operators L and (i4nrnii − L) on the left sides are invertible, so that
Ψ001, Ψ200 and Ψ110 can be uniquely determined. Similarly, we identify the terms of order O(µA)
and O(A2Ā) to find

(L− i2nrni)Ψ101 = aP −R11(P )− 2R20(P,Ψ001), (3.20)

(L− i2nrni)Ψ210 = bP − 2R20(P,Ψ110)− 2R20(P̄ ,Ψ200)− 3R30(P, P, P̄ ). (3.21)

We already known that i2nrni is a simple isolated eigenvalue of L, the range of (L− i2nrni) is of
codimension 1, therefore we can solve the above two equations if and only if the right-hand sides
satisfy one solvability condition. According to the Fredholm alternative theorem (P.28 of [28]), it
demands that the right-hand sides of (3.20) and (3.21) are orthogonal to the kernel of the adjoint
operator (L∗ + i2nrni). It is easily to find that the kernel of the adjoint operator (L∗ + i2nrni)

12



is one-dimensional just as the kernel of (L − i2nrni). Moreover, L∗ is real. So we introduce the
eigenfunction P ∗ by L∗P ∗ = −i2nrniP

∗, which gives

a =
⟨R11(P ) + 2R20(P,Ψ001), P

∗⟩
⟨P, P ∗⟩

,

b =
⟨2R20(P,Ψ110) + 2R20(P̄ ,Ψ200) + 3R30(P, P, P̄ ), P ∗⟩

⟨P, P ∗⟩
.

According to (3.15), R01 = 0, R11 = −1, R20(U, V ) =

(
αG15
ε2

I( x
ε2
)U2V2

0

)
, R30 = 0, then

a =
⟨−P, P ∗⟩
⟨P, P ∗⟩

= −1,

b =

∫
R
(
4|P2|2(αG15

ε2
)2I( x

ε2
)P2(−L)−1

11 I(
x
ε2
) + 2(αG15

ε2
)2I( x

ε2
)P2(2iωH − L)−1

11 I(
x
ε2
)P 2

2

)
P ∗
1 dx

⟨P, P ∗⟩
,

where subscript 11 represents the location in this operator matrix and P ∗ satisfies (L∗+i2nrni)P
∗ =

0. By using the same method, P ∗ can be solved as:

P ∗
1 (x) =


C5e

√
µ̂−i2nrnix + bC6e

√
µ̂−i2nrni

D
x

(−1+ 1
D
)(µ̂−i2nrni)

, x ∈ I−s ,

C5 +
bC6

(−1+ 1
D
)(µ̂−i2nrni)

, x ∈ If ,

C5e
−
√
µ̂−i2nrnix + bC6e

−
√

µ̂−i2nrni
D

x

(−1+ 1
D
)(µ̂−i2nrni)

, x ∈ I+s ,

P ∗
2 (x) =


C6e

√
µ̂−i2nrni

D
x, x ∈ I−s ,

C6, x ∈ If ,

C6e
−
√

µ̂−i2nrni
D

x, x ∈ I+s .

Here, C5 and C6 are likewise required to satisfy existence constraints of the solution. Then we
divide the calculation of b into six parts as b = I1+I2+I3

L1+L2+L3
, where

I1 =

∫ −ε

−∞

(
4|P2|2(

αG15

ε2
)2I(

x

ε2
)P2(−L)−1

11 I(
x

ε2
) + 2(

αG15

ε2
)2I(

x

ε2
)P2(i4nrni − L)−1

11 I(
x

ε2
)P 2

2

)
P ∗
1 dx;

I2 =

∫ +ε

−ε

(
4|P2|2(

αG15

ε2
)2I(

x

ε2
)P2(−L)−1

11 I(
x

ε2
) + 2(

αG15

ε2
)2I(

x

ε2
)P2(i4nrni − L)−1

11 I(
x

ε2
)P 2

2

)
P ∗
1 dx;

I3 =

∫ +∞

+ε

(
4|P2|2(

αG15

ε2
)2I(

x

ε2
)P2(−L)−1

11 I(
x

ε2
) + 2(

αG15

ε2
)2I(

x

ε2
)P2(i4nrni − L)−1

11 I(
x

ε2
)P 2

2

)
P ∗
1 dx;

L1 =

∫ −ε

−∞
P1(x)P ∗

1 (x) + P2(x)P ∗
2 (x)dx,

L2 =

∫ +ε

−ε
P1(x)P ∗

1 (x) + P2(x)P ∗
2 (x)dx,

L3 =

∫ +∞

+ε
P1(x)P ∗

1 (x) + P2(x)P ∗
2 (x)dx.

For I1, the operator (−L)−1
11 and (2iωH − L)−1

11 are bounded, the function P and P ∗ are bounded,
I( x

ε2
) is exponentially small. Hence, I1 = 0 to leading order. Likewise, we also have I3 = 0 to

leading order. For I2, something different happens. I( x
ε2
) is not exponentially small. However, to

leading order, P2 = C4 +
bC3

(−1+D)(µ̂+i2nrni)
and P ∗

1 = C5 +
bC6

(−1+ 1
D
)(µ̂−i2nrni)

, which facilitates our

calculation. For L2, P and P ∗ are constants, so we have L2 = 0 to leading order. For L1 and L3,
since the integration interval is symmetric and the integration function is an even function, we get
L1 = L3 to leading order. In summary, b = I2

2L1
.
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Theorem 3.5. Assume that the real part of b is not equal to 0, then for the system (3.12) a
supercritical (resp. subcritical) Hopf bifurcation occurs at µ = µ̂ when br < 0 (resp., br > 0). More
precisely, for µ sufficiently close to µ̂:

(i) If br > 0 (resp., br < 0), the differential equation has precisely one equilibrium U(µ) for µ < µ̂
(resp., µ > µ̂). This equilibrium is stable when br < 0 and unstable when br > 0;

(ii) If br > 0 (resp., br < 0), the differential equation possesses for µ > µ̂ (resp., µ < µ̂) an

equilibrium U(µ) and a unique periodic orbit U∗(µ) = O(|µ − µ̂|
1
2 ) which surrounds this

equilibrium. The periodic orbit is stable when br < 0 and unstable when br > 0. Moreover,
there exists a stable oscillating solution Γosc near Γp, which is given by

Γosc = Γp +

√∣∣∣∣µ− µ̂

br

∣∣∣∣ei2nrnitPµ̂ + c.c.+O(|µ|).

Proof. The weakly nonlinear stability of the pinned pulse solution Γp near a Hopf bifurcation is
determined by

dr

dt
= −µ̃r + brr

3 +O(r(|µ̃|+ r2)2),

dϕ

dt
= 2nrni +O(|µ̃|+ r2),

where O-terms originate from the nonlinearity of R. The trivial equilibrium r = 0 of the first radial
equation is stable when µ̃ > 0 and unstable when µ̃ < 0. Moreover, the radial equation has a
nontrivial leading order equilibrium if and only if r2 = µ̃

br
exists a positive solution r∗ = O(|µ̃|

1
2 ).

r∗ has opposite stability to r = 0, i.e., r∗ is stable if µ̃ < 0, while r∗ is unstable when µ̃ > 0.
Moreover, according to (3.16), U = A(t)P+A(t)P+Ψ̃(A(t)P+A(t)P , µ̃), which yields the expansion
expression for Γosc as

Γosc =

√∣∣∣∣ µ̃br
∣∣∣∣eiωH tP + c.c.+O(|µ̃|).

Back to the original system, i.e, reversing the transformation


Ũ1 = U1 − Γ1,p

Ũ2 = U2 − Γ2,p

µ̃ = µ− µ̂

, we come to the

conclusion.

Remark 3.6. Similar to Remark 3.2, when D = 1, the expressions need to be modified. Not only
this, P ∗

1 needs to be rewritten as

P ∗
1 (x) =


C5e

√
µ̂−i2nrnix + bC6

4(µ̂−i2nrni)
e
√
µ̂−i2nrnix(−1 + 2

√
µ̂− i2nrnix), x ∈ I−s ,

C5 − bC6
4(µ̂−i2nrni)

, x ∈ If ,

C5e
−
√
µ̂−i2nrnix + bC6

4(µ̂−i2nrni)
e−

√
µ̂−i2nrnix(−1− 2

√
µ̂− i2nrnix), x ∈ I+s ,

(3.22)

which leads to the change of all calculations.
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3.3.3 G2 = G23U2

When G2 is simple linear in U2, i.e., G2 = G23U2, the system admits the pinned pulse solution,
provided that

(A6) ∆ = 4µ− 4α2G11G15

(
2b

(−1 +D)
√
µ

√
D −D

2
√
µD − βG23

)2

> 0.

Analogous to (3.13), we can obtain a univariate cubic equation about
√
µ+ λ. In order to ensure

the existence of Hopf bifurcation, we impose the following assumptions:

(A7) ∆ > 0;

(A8) βG23 −
3

√
−(βG23)3 + 3

√
D(−B +

√
∆)− 3

√
−(βG23)3 + 3

√
D(−B −

√
∆) ≤ 0;

(A9) 36Dµ = −1

2
3

√(
−(βG23)3 + 3

√
D(−B +

√
∆)
)2

− 1

2
3

√(
−(βG23)3 + 3

√
D(−B −

√
∆)
)2

+ (βG23)
2 + βG23

(
3

√
−(βG23)3 + 3

√
D(−B +

√
∆) +

3

√
−(βG23)3 + 3

√
D(−B −

√
∆)

)
+ 2

3

√
−(βG23)3 + 3

√
D(−B +

√
∆)

3

√
−(βG23)3 + 3

√
D(−B −

√
∆) admits positive roots µ with

∆ =

(
−2αb

√
DG15(C2 +

bC1
(−1+D)µ)

1 +
√
D

)(
324D

(
−2αb

√
DG15(C2 +

bC1
(−1+D)µ)

1 +
√
D

)
+ 12(βG23)

3

)
.

Theorem 3.7. Assume that (A6), (A7), (A8) and (A9) hold, then the system considered here
exists Hopf bifurcation when µ = µ̂.

Now, there are

R(Ũ , µ̃) =

(
−µ̃Ũ1 +

αG15
ε2

I( x
ε2
)Ũ2

2

−µ̃Ũ2

)
, L =

(
d2

dx2 − µ̂ 2αG15
ε2

I( x
ε2
)Γ2,p

−b D d2

dx2 − µ̂+ βG23

ε2
I( x

ε2
)

)
.

Hence, a still equals to -1 and the calculation of b can be simplified to the same expression b = I2
2L1

.

Theorem 3.8. Assume that the real part of b is not equal to 0, then we get the same conclusions
as Theorem 3.5 with µ̂ satisfies Theorem 3.7.

Besides, σ+ = ∅ gives the following remark according to Lemma 2.2:

Remark 3.9. The local center manifold M0(µ) = V0 + Ψ̃(V0, µ) considered in this subsection is
locally attracting.

Remark 3.10. Proposition 3.3, Theorem 3.5 and 3.8 deal with three simple situations, which
involve only one nonlinear term and the simplest linear terms. For other nonlinear G1 and linear
G2, we can also ascertain the conditions for the occurrence of breathing pulses by using the same
analytical approach.

3.4 G2 is Nonlinear and G1 is Linear

Then, we consider the case when G2 is nonlinear and G1 is linear. Since we are interested in
mutually coupled systems, we may wish G1 = G11 + G13U2 and G2 = G21 + G22U1 + G23U2 +
G24U

2
1 +G25U

2
2 +G26U1U2 + .... Similarly, we study three simple situations.
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3.4.1 G2 = G24U
2
1

First, we assume G2 is a function about U2
1 , i.e., G2 = G24U

2
1 . Then the pinned pulse solution can

be uniquely determined by the existence of non-degenerate solutions, i.e., the assumption

(A10)

√
D

µ

(
2µ+

αG13b

(
√
D + 1)

√
µ

)2

> 2α2βG11G13G24

holds. Moreover, we propose hypothesises:

(A11) 27D
√
Db2 > 2αG13(βG24C1)

3(1 +
√
D)2;

(A12) αbG13 > 0;

(A13) 72Dµ = − 3

√(
−3

√
D

(
18αDbG13

1 +
√
D

+
√
∆

))2

− 3

√(
−3

√
D

(
18αDbG13

1 +
√
D

−
√
∆

))2

+ 4 3

√
−3

√
D

(
18αDbG13

1 +
√
D

+
√
∆

)
3

√
−3

√
D

(
18αDbG13

1 +
√
D

−
√
∆

)
admits positive roots µ,

where ∆ =

(
18αDbG13

1 +
√
D

)2

− 24
√
D (αβG13G24C1)

3 .

Therefore, there is

Theorem 3.11. Assume that (A10), (A11), (A12) and (A13) hold, then the system considered
above exists parameter µ̂ such that Hopf bifurcation takes place.

Here,

R(Ũ , µ̃) =

(
−µ̃Ũ1

−µ̃Ũ2 +
βG24

ε2
I( x

ε2
)Ũ2

1

)
, L =

(
d2

dx2 − µ̂ αG13
ε2

I( x
ε2
)

−b+ 2βG24

ε2
I( x

ε2
)Γ1,p D d2

dx2 − µ̂

)
.

Hence, we derive

a = −1,

b =

∫
R

(
4|P1|2(βG24

ε2
)2I( x

ε2
)P1(−L)−1

22 I(
x
ε2
) + 2(βG24

ε2
)2I( x

ε2
)P1(i4nrni − L)−1

22 I(
x
ε2
)P 2

1

)
P ∗
2 dx

⟨P, P ∗⟩
.

Now, the operator (−L)−1
22 and (i4nrni − L)−1

22 are bounded, and we can obtain b = I2
2L1

by the
similar analysis as before.

Theorem 3.12. Assume that the real part of above b is not equal to 0, then for the system above,
we get the same conclusions as in Theorem 3.5.

3.4.2 G2 = G25U
2
2

Then, we assume G2 is a function about U2
2 , i.e., G2 = G25U

2
2 . For this system, its pinned pulse

solution must satisfy

(A14)

(
4
√
µG11

α
+

4
√
DG13µ

αβG25
+

2b(G13)
2(D −

√
D)

β
√
µ(−1 +D)G25

)2

>
16µ

α2

(
(G11)

2 +
2
√
DµG11G13

βG25

)
.
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Also, we propose hypothesises:

(A15) 27D

(
b(D −

√
D)

−1 +D

)2

>
8b(D −

√
D)

αG13(−1 +D)

(
βG25

(
C2 +

bC1

(−1 +D)µ

))3

;

(A16) 2βG25

(
C2 +

bC1

(−1 +D)µ

)
≤

αG13

 3

√
−
(
2βG25

αG13
(C2 +

bC1

(−1 +D)µ
)

)3

+
3
√
D

αG13

(
18bD

αG13(
√
D + 1)

+
√
∆

)

+ 3

√
−
(
2βG25

αG13
(C2 +

bC1

(−1 +D)µ
)

)3

+
3
√
D

αG13

(
18bD

αG13(
√
D + 1)

−
√
∆

) ,

where ∆ =

(
18bD

αG13(
√
D + 1)

)2

− 96b
√
D√

D + 1

(
βG25

αG13
(C2 +

bC1

(−1 +D)µ
)

)3

;

(A17)
α2(G13)

2

36D
µ = −1

2
3

√√√√(−(2βG25

αG13
(C2 +

bC1

(−1 +D)µ
)

)3

+
3
√
D

αG13

(
18bD

αG13(
√
D + 1)

+
√
∆

))2

− 1

2
3

√√√√(−(2βG25

αG13
(C2 +

bC1

(−1 +D)µ
)

)3

+
3
√
D

αG13

(
18bD

αG13(
√
D + 1)

−
√
∆

))2

+

√
−
(
2βG25

αG13
(C2 +

bC1

(−1 +D)µ
)

)3

+
3
√
D

αG13

(
18bD

αG13(
√
D + 1)

+
√
∆

)

·

√
−
(
2βG25

αG13
(C2 +

bC1

(−1 +D)µ
)

)3

+
3
√
D

αG13

(
18bD

αG13(
√
D + 1)

−
√
∆

)
·
(
2 + 2

(
βG25

αG13
(C2 +

bC1

(−1 +D)µ
)

))
+ 4

(
βG25

αG13
(C2 +

bC1

(−1 +D)µ
)

)2

admits positive roots µ.

Hence, we derive

Theorem 3.13. Assume that (A14), (A15), (A16) and (A17) hold, then the Hopf bifurcation takes
place with the bifurcation parameter µ = µ̂.

In this case, there are

R(Ũ , µ̃) =

(
−µ̃Ũ1

−µ̃Ũ2 +
βG25

ε2
I( x

ε2
)Ũ2

2

)
, L =

(
d2

dx2 − µ̂ αG13
ε2

I( x
ε2
)

−b D d2

dx2 − µ̂+ 2βG25

ε2
I( x

ε2
)Γ2,p

)
,

which give

a = −1,

b =

∫
R

(
4|P2|2(βG24

ε2
)2I( x

ε2
)P2(−L)−1

22 I(
x
ε2
) + 2(βG24

ε2
)2I( x

ε2
)P2(i4nrni − L)−1

22 I(
x
ε2
)P 2

2

)
P ∗
2 dx

⟨P, P ∗⟩
.

Theorem 3.14. Assume that the real part of above b is not equal to 0, then for this case, we get
the same conclusions as Theorem 3.5.
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3.4.3 G2 = G26U1U2

Finally, we consider the case when G2 = G26U1U2, whose pulse solution can be given if
2
√
µC1 = α

(
G11 +G13

(
C2 +

bC1

(−1 +D)µ

))
,

2

(√
µ

D
C2 +

b
√
µ

(−1 +D)µ
C1

)
=

βG26C1

D

(
C2 +

bC1

(−1 +D)µ

) (3.23)

admits non-degenerate solutions C1 and C2. Correspondingly, the existence condition of eigenvalue
function is that

2
√
µ+ λC3 = α

(
G13

(
C4 +

bC3

(−1 +D)(µ+ λ)

))
,

βG26C3

D

(
C2 +

bC1

(−1 +D)µ

)
+

βG26C1

D

(
C4 +

bC3

(−1 +D)(µ+ λ)

)
= 2

√
µ+ λ

D
C4 +

2bC3

(−1 +D)
√
µ+ λ
(3.24)

admits non-degenerate solutions. Assuming that the existence assumptions about (3.23) and (3.24)
hold, then there exists a parameter µ̂ such that this system undergoes a Hopf bifurcation. We omit
the exact expression here due to its verbosity.

Note that in this case

R(Ũ , µ̃) =

(
−µ̃Ũ1

−µ̃Ũ2 +
βG26

ε2
I( x

ε2
)Ũ1Ũ2

)
, L =

(
d2

dx2 − µ̂ αG13
ε2

I( x
ε2
)

−b+ βG26

ε2
I( x

ε2
)Γ2,p D d2

dx2 − µ̂+ βG26

ε2
I( x

ε2
)Γ1,p

)
,

i.e.,

R01 = 0, R11 = −1, R20(U, V ) =

(
0

βG26

2ε2
I( x

ε2
)(U1V2 + V1U2)

)
, R30 = 0.

In this case, we can still calculate a and b. However, the calculation of b requires many lengthy
equalities so we will not delve into more detail here.

Remark 3.15. Theorem 3.12 and 3.14 study the situations where G2 exhibits the simplest nonlin-
earity. When G2 involves more nonlinear terms, we can still analyze in a similar way.

Also, σ+ = ∅ gives the same remark:

Remark 3.16. The local center manifold M0(µ) = V0 + Ψ̃(V0, µ) considered in this subsection is
locally attracting.

Remark 3.17. In the subsection 3.3 and 3.4, we use the assumption that the real part of b is
nonzero, which can be removed if we consider the higher order terms like O(A|A|4) etc.

3.5 A concrete example

To illustrate the above Remark 3.10, we present a specific example, which was previously proposed
in [12] to analyze the Hopf bifurcation. The system we are considering is

∂U1

∂t
=

∂2U1

∂x2
− µU1 +

2

ε2
I(

x

ε2
)(U2 + 1 + νU3

1 ),

∂U2

∂t
= 4

∂2U2

∂x2
−

√
3

3
U1 − µU2 +

2

ε2
I(

x

ε2
)(U1 + 2).

(3.25)
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For this system, if polynomial equations
√
µC̃1 = C̃2 +

C̃1

3
√
3µ

+ 1 + νC̃1
3
,

C̃1 + 2 = 4

(√
µ

2
C̃2 +

C̃1

3
√
3µ

) (3.26)

admit non-degenerate solutions C̃1 and C̃2. Its pinned one-pulse solution, to leading order, can be
given as

Ũ1,p(x) =


C̃1e

√
µx, x ∈ I−s ,

C̃1, x ∈ If ,

C̃1e
−√

µx, x ∈ I+s ,

Ũ2,p(x) =


C̃2e

√
µx

2 + C̃1

3
√
3µ
e
√
µx, x ∈ I−s ,

C̃2 +
C̃1

3
√
3µ
, x ∈ If ,

C̃2e
−√

µx

2 + C̃1

3
√
3µ
e−

√
µx, x ∈ I+s .

By calculation, equations (3.26) equal to

ν
√
µC̃1

3
+

3
√
3µ− 2− 6

√
3µµ

6
√
3µ

C̃1 + 1 +
√
µ = 0. (3.27)

If we consider the small nonlinearity as perturbations to the linear G1, we may as well assume

ν ≪ 1. Then (3.27) can be solved as: C̃1 = −6
√
3µ−6

√
3µ

−6
√
3µµ+3

√
3µ−2

, C̃2 =
6
√
3µµ+3

√
3µ−4

√
µ−2

6
√
3µ2−3

√
3µ+2

√
µ

, to leading

order. The eigenvalue problem about this pinned 1-pulse solution Γ̃p(x) = (Γ̃1,p, Γ̃2,p)
T = (Ũ1,p(x)+

O(ε), Ũ2,p(x) +O(ε))T is
0 =

d2p1
dx2

− (µ+ λ)p1 +
2

ε2
I(

x

ε2
)(p2 + 3νΓ̃2

1,pp1),

0 = 4
d2p2
dx2

−
√
3

3
p1 − (µ+ λ)p2 +

2

ε2
I(

x

ε2
)(p1),

(3.28)

and its eigenfunction

P̃1(x) =


C̃3e

√
µ+λx, x ∈ I−s ,

C̃3, x ∈ If ,

C̃3e
−
√
µ+λx, x ∈ I+s ,

P̃2(x) =


C̃4e

√
µ+λx
2 + C̃3

3
√
3(µ+λ)

e
√
µ+λx, x ∈ I−s ,

C̃4 +
C̃3

3
√
3(µ+λ)

, x ∈ If ,

C̃4e
−
√
µ+λx
2 + C̃3

3
√
3(µ+λ)

e−
√
µ+λx, x ∈ I+s ,

must satisfy 
√
µ+ λC̃3 = C̃4 +

C̃3

3
√
3(µ+ λ)

+ 3νC̃1
2
C̃3,

C̃3 = 4

(√
µ+ λC̃4

2
+

C̃3

3
√
3
√
µ+ λ

)
.

(3.29)

To leading order, the equation (3.29) is equivalent to (
√
µ+ λ)3 −

√
µ+λ
2 + 1

3
√
3
= 0. Its solutions

are

t1,2 =
(1± i

√
3)(12(−

√
3
2 +

√
3))

1
3

2 · 3
2
3

+
(1∓ i

√
3)

2 · 2
2
3 (3(−

√
3
2 +

√
3))

1
3

,

t3 = −(
1

2
(−
√

3

2
+
√
3))

1
3 · 1

3
2
3

− 1

2
2
3 (3(−

√
3
2 +

√
3))

1
3

.
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Therefore, when µ̂ = 1
12(4−

3
√
3 + 2

√
2− 3

√
3− 2

√
2), Hopf bifurcation takes place and σpt = σ0 :=

{±iωH} = {±
√
3

12 (
3
√

3 + 2
√
2− 3

√
3− 2

√
2)i}. We denote the eigenfunction at the Hopf bifurcation

as (P̂1, P̂2)
T . Then, in order to unfold this bifurcation, we transform system (3.25) to

d

(
Ũ1

Ũ2

)
dt

=

(
d2

dx2 − µ̂+ 2
ε2
I( x

ε2
)(3νΓ̃2

1,p)
2
ε2
I( x

ε2
)

−
√
3
3 + 2

ε2
I( x

ε2
) 4 d2

dx2 − µ̂

)(
Ũ1

Ũ2

)
+

(
−µ̃Ũ1 +

2
ε2
I( x

ε2
)(νŨ3

1 + 3νŨ2
1 Γ̃1,p)

−µ̃Ũ2

)
,

(3.30)

where R01 = 0, R11 = −1, R20(U, V ) =
( 6ν

ε2
I( x

ε2
)Γ̃1,pU1V1

0

)
, R30(U, V,W ) =

( 2ν
ε2

I( x
ε2

)U1V1W1

0

)
. There-

fore, to leading order, we have
−LΨ001 = 0,

(2iωH − L)Ψ200 =

(6ν
ε2
I( x

ε2
)Ũ1,pP̂

2
1

0

)
,

−LΨ110 =

(12ν
ε2

I( x
ε2
)Ũ1,pP̂1P̂ 1

0

)
.

Owing to the fact that 2iωH and 0 do not belong to σ(L), we can derive the leading order expressions
for Ψ200 and Ψ110 as

Ψ200,1(x) =


C̃7e

√
µ̂+2iωHx, x ∈ I−s ,

C̃7, x ∈ If ,

C̃7e
−
√
µ̂+2iωHx, x ∈ I+s ,

Ψ200,2(x) =


C̃8e

√
µ̂x
2 +

√
3C̃7e

√
µ̂+2iωHx

3(3µ̂+8iωH) , x ∈ I−s ,

C̃8 +
√
3C̃7

3(3µ̂+8iωH) , x ∈ If ,

C̃8e
−
√
µ̂x

2 +
√
3C̃7e

−
√

µ̂+2iωHx

3(3µ̂+8iωH) , x ∈ I+s ,

Ψ110,1(x) =


C̃9e

√
µ̂x, x ∈ I−s ,

C̃9, x ∈ If ,

C̃9e
−
√
µ̂x, x ∈ I+s ,

Ψ110,2(x) =


C̃10e

√
µ̂x
2 +

√
3C̃7
9µ̂ e

√
µ̂x, x ∈ I−s ,

C̃10 +
√
3C̃7
9µ̂ , x ∈ If ,

C̃10e
−
√
µ̂x

2 +
√
3C̃7
9µ̂ e−

√
µ̂x, x ∈ I+s ,

with C̃7 and C̃8 satisfy
2
√
µ̂+ 2iωHC̃7 = 6νC̃2

1 C̃7 + 2

(
+

√
3C̃7

3(3µ̂+ 8iωH)

)
+ 6νC̃1|C̃3|2,

1

2
C̃7 = 2

(√
µ̂C̃8

2
+

√
3C̃7

√
µ̂+ 2iωH

3(3µ̂+ 8iωH)

)
,

(3.31)

C̃9 and C̃10 satisfy 
2
√

µ̂C̃9 = 6νC̃2
1 C̃9 + 2

(
C̃10 +

√
3C̃9

9µ̂

)
+ 12νC̃1|C̃3|2,

1

2
C̃9 = 2

(√
µ̂C̃10

2
+

√
3C̃9

9
√
µ̂

)
.

(3.32)
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Therefore, we can derive the expression of b as b =
Î2,1+Î2,2+Î2,3

2L̂
, where

Î2,1 =

∫ ε

−ε

12ν

ε2
I(

x

ε2
)C̃1C̃3C̃9

(
C̃5 −

4
√
3C̃6

9(µ̂− iωH)

)
dx,

Î2,2 =

∫ ε

−ε

12ν

ε2
I(

x

ε2
)C̃1C̃3C̃7

(
C̃5 −

4
√
3C̃6

9(µ̂− iωH)

)
dx,

Î2,3 =

∫ ε

−ε

12ν

ε2
I(

x

ε2
)C̃2

3 C̃3

(
C̃5 −

4
√
3C̃6

9(µ̂− iωH)

)
dx,

L̂ = 2

∫ −ε

−∞

e
√
µ̂+iωHxC̃5e

√
µ̂+iωHx − 4

√
3C̃6e

√
µ̂+iωHx

2

9(µ̂− iωH)

+

((√
µ̂+ iωH − 1

3
√
3(µ̂+ iωH)

)
e

√
µ̂+iωHx

2 +
1

3
√
3(µ̂+ iωH)

e
√
µ̂+iωHx

)
C̃6e

√
µ̂+iωHx

2

)
dx.

When µ = 0.1 < µ̂, ν = −0.001, ε = 0.1, by numerical calculation, a = 1, b ≈ −1.49318 + 3.7192i.
By Theorem 3.5, system (3.25) admits a stable periodic solution, whose numerical simulation is
shown in Figure 1a. This result is consistent with the numerical simulation in Figure 5(b) [12]. If
we change ν to 0.001, then there are a = 1, b ≈ 1.49318 − 3.7192i, which leads to an unstable
equilibrium like Figure 1b. If we set bifurcation parameter µ to be 0.2, i.e., µ > µ̂, then we have
Figure 1c when ν = 0.001 and Figure 1d when ν = −0.001.

(a) br > 0, µ < µ̂ (b) br > 0, µ < µ̂ (c) br > 0, µ > µ̂ (d) br < 0, µ > µ̂

Figure 1: numerical simulation of stationary solutions around Hopf bifurcation

4 Discussion

This paper presents a research inspired by numerical simulations in a linear reaction–diffusion
system with strong spatially localized impurities [12] and the technical approach of Hopf normal
form advocated in [34]. It demonstrates that introducing a small nonlinearity to the fast variables
can stabilize the stationary pulses that would otherwise blow up, and create new stable oscillating
pulses when the stationary pulses undergo a Hopf bifurcation, which is exhibited above and numer-
ically verified in subsection 3.5. This confirms once again that the Hopf bifurcation could be the
birthplace of breathing pulses [18]. Besides, subsections 3.3 and 3.4 present a series of simple non-
linear cases in which the breathing pulses may emerge around the Hopf bifurcation when specific
conditions are satisfied.
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Furthermore, the center manifold associated with the Hopf bifurcation can be expanded not only
up to third order as we already emphasized in Remark 3.17. Thus, our next step is to implement
the fifth order expansion around the generalized Bautin point. Correspondingly, the non-zero
assumption for br will be replaced, and the normal form will be changed to

dA

dt
= iωHA+ (a0µ̂+ a1µ̂

2)A+ (b0 + b1µ̂)A|A|2 + cA|A|4 + o(|µ̂|3, |A|5).

It involves more calculations and more inverse problems, while the descriptions for the dynami-
cally modulated pulse amplitudes are available, whose amplitude may be quasiperiodically or even
chaotically modulated [35].

Moreover, a detailed unfolding of a Bogdanov–Takens bifurcation [1,30] or a Dumortier–Roussarie
–Sotomayor bifurcation [15] of a localized pinned pulse solution is expected to be continued based
on our paper and the analysis in [34]. In this case, the multiple eigenvalue λ = 0 must be analyzed
separately. In turn, these results may serve as a first analytical step towards understanding the
pattern formations [11]. As stated earlier, oscillating fronts also play an important role in under-
standing these phenomena analytically, as shown in [10]. However, whether explicit expressions for
pinned fronts (and, more importantly, their eigenfunctions) can be given is an important prerequi-
site. According to [9] and [31], it can be solved easily and the normal form expansion parameters
can therefore be evaluated. In particular, the analysis procedure is also valid for multi-pulses in [9],
which are composed of piecewise periodic solutions with explicit expressions. Especially, the even-
ness of the eigenfunctions can bring great convenience in calculating the normal form expansions.
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