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Abstract. The minimax stochastic programming problem is approximated

in this paper using the sample average approximation with adaptive multiple

importance sampling. We discuss the asymptotics and convergence of its optimal

value. The core is the research and utilization of martingale difference sequences.

The functional central limit theorem for martingale difference sequences is one of

the main tools in studying the asymptotics. Finally, we use this result to discuss

a risk averse optimization problem.
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1 Introduction

Consider a minimax stochastic programming problem:

min
x∈X

max
y∈Y

{
f(x, y) := E[g

(
x, y, θ

)
]
}
, (1.1)

where θ : Ω→ Θ ⊂ Rr is a random variable on (Ω,F , P ) and g : X ×Y×Θ→ R
with X ⊂ Rm and Y ⊂ Rn.

The computation of the expectation is often complex and the true distribution

is difficult to obtain directly. A common method for solving such problems is

sample average approximation (SAA). Under the assumption that the samples

are independent and identically distributed (iid), we approximate the problem

∗E-mail address : zhangwenjinmails@163.com.
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(1.1) by the SAA method, which is specifically expressed as follows

min
x∈X

max
y∈Y

{
1

n

n∑
i=1

g(x, y, θi)

}
, (1.2)

where θ1, ..., θn are iid samples of θ(ω). Asymptotics of the optimal values between

problems (1.1) and (1.2) have been studied by Shapiro, see [14].

In recent years, the SAA method with adaptive multiple importance sampling

(AMIS) has received extensive attention, see [2, 3, 4, 8, 9, 10, 13]. This method

doesn’t require the samples to be iid. The goal of this paper is to study the

asymptotics between the optimal value obtained by this approximation method

and the optimal value of the problem (1.1).

Denote F (x, y, θ) = g(x, y, θ)φ(θ), where φ(θ) represents the probability den-

sity function of θ(ω). Thus, we can rewrite the problem (1.1) in the following

form:

min
x∈X

max
y∈Y

{
f(x, y) =

∫
Θ

F (x, y, θ)dθ

}
. (1.3)

The following settings (i)-(iii) are used throughout this paper.

(i) {θi}∞i=1 is a sequence of random vectors on (Ω,F , P ), where θi : Ω → Rr is

F -measurable.

(ii) {Gi}∞i=1 is the natural filtration sequence corresponding to the above sequence.

That is, the information of θ1, ..., θi is contained in Gi, where G0 = {∅,Ω} and

E[θ1] = E[θ1 | G0].

(iii) For a given Gi−1 with i ∈ N, the conditional distribution of θi has a density

ψi whose support is Θi ⊂ Rr.

For a given Gi−1, we choose an appropriate density ψi and then draw a sample

θi from it. In this way, we get Gi. Repeating the above steps, we obtain the next

sample θi+1. Clearly, θi can depend on the previous samples θ1,...,θi−1. To put it

succinctly, the sampling is dynamic and adaptive.

The SAA with AMIS problem associated with the problem (1.3) is as follows:

min
x∈X

max
y∈Y

{
fn(x, y) :=

1

n

n∑
i=1

F (x, y, θi)

ψi(θi)

}
. (1.4)

It’s worth noting that if F (x, y, θ) = g(x, y, θ)φ(x, y, θ) with a probability density

function φ(x, y, θ), then (1.4) still works, which is pointed out in [6]. Obviously,

f(x, y) = F (x,y,θ)
ψ1(θ)

·ψ1(θ). Thus, without loss of generality, let F : X ×Y×Rr → R
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be a real valued function and X × Y × Θ contain its support, where X ⊂ Rn,

Y ⊂ Rm and Θ ⊂ Rr.

The rest of the paper is organized as follows. We introduce notation and

preliminaries in Section 2. The main result of the paper on asymptotics of the

optimal value for SAA with AMIS is shown in Section 3. In Section 4, we apply

the result to the risk averse optimization problem.

2 Notation and Preliminaries

2.1 Basic Notation

Throughout this paper, we adopt the following notation:

• (Ω,F , P ) represents an abstract probability space.

• E[·] denotes the expectation with respect to the probability measure P .

• ‖ · ‖ stands for the Euclidean norm of a vector.

• := represents the left-hand side equal with the right-hand side by definition.

• D−→ denotes convergence in distribution.

• P−→ denotes convergence in probability.

• op(·) denotes a probabilistic analogue of the usual order notation o(·). That

is, if the sequences of random variables An and Bn satisfy

lim
n→∞

Prob

(∣∣∣∣AnBn

∣∣∣∣ > ε

)
= 0,

for any ε > 0, then An = op(Bn).

• C(X ,Y) stands for the space of continuous functions ϕ : X × Y → R,

equipped with the sup-norm.

• C represents the set of convex-concave functions on C(X ,Y). That is, if

ϕ ∈ C, then ϕ(·, y) is convex for any y ∈ Y and ϕ(x, ·) is concave for x ∈ X .

• $(·) denotes a modulus of continuity. That is, $(·) is a strictly monotonic

increasing continuous function on R+, lim
x→0+

$(x) = 0 and lim sup
x→0+

x

$(x)
< +∞.

• D(A,B) is the deviation of the set A ⊂ Rι from the set B ⊂ Rι. That is,

D(A,B) = sup
x∈A

inf
x′∈B
‖x− x′‖.

2.2 Two Important Results

In this subsection, we introduce two significant results that serve as the cor-

nerstones for our main result, Theorem 3.2. One of them is the minmax Delta
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theorem. It is well known that the Delta method is a useful tool in the asymptotic

analysis of stochastic problems. To this end, we apply the following theorem in

the next section, which is derived from [14].

Theorem 2.1. (Minimax Delta Theorem)

Let the sets X and Y be nonempty, convex and compact. Assume that, as

n→∞, a sequence of positive numbers ςn and a random sequence Zn in C(X ,Y)

satisfy ςn → ∞, Zn ∈ C w.p.1 and ςn(Zn − l)
D−→ Z , respectively, where Z ∈

C(X ,Y) and l ∈ C. Denote γ := inf
x∈X

sup
y∈Y

Z (x, y) and γn := inf
x∈X

sup
y∈Y

Zn(x, y).

Then

ςn[γn − γ]
D−→ inf

x∈X ∗Z
sup
y∈Y∗Z

Z (x, y),

and

γn = inf
x∈X ∗Z

sup
y∈Y∗Z

Zn(x, y) + op(ς
−1
n ),

where X ∗Z = arg min
x∈X

[
sup
y∈Y

Z (x, y)

]
and Y∗Z = arg max

y∈Y

[
inf
x∈X

Z (x, y)

]
.

The other key result is a functional central limit theorem for martingale d-

ifference sequences. We briefly recall the definition of martingale difference se-

quences first. Assume that {Fi}∞i=0 is a set of sub-σ-fields of F with Fi−1 ⊂ Fi

such that a sequence of random variables {Xi}∞i=1 defined on (Ω,F , P ) is Fi-

measurable and Xi ∈ Fi. {Xi,Fi} is called a martingale difference sequence if

E[Xi | Fi−1] = 0 for every i ∈ N. Now, let us turn to this result, which is detailed

in [17, Section 4].

Corollary 2.1. Let {Xi,Fi}∞i=1 be a martingale difference sequence of the space

C(S), where C(S) is the space of continuous functions on the compact set S with

the sup-norm. Suppose that the following assumptions hold.

(A1) There exists a real nonnegative random sequence Mi on (Ω,F , P ), a func-

tion β : S → R\{0}, and a continuous distance ρ with

∫ 1

0

H
1
2 (S, ρ, r)dr < ∞

such that for any s1, s2 ∈ S and all i ∈ N, w.p.1

|Yi(s1)− Yi(s2)| ≤Mi,

where Yi(s) := |β(s)Xi(s)| and sup
s∈S
|β−1(s)| <∞.
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(A2) 1
n

n∑
i=1

E[M2
i | Fi−1]

P−→ 0.

(A3) For any i ∈ N, there exists a constant b > 0 such that E[M2
i | Fi−1] ≤ b

w.p.1.

(A4) For some s0 ∈ S and all i ∈ N, there exists a constant k > 0 such that

E[X2
i (s0) | Fi−1] ≤ k w.p.1.

(A5) 1
n

n∑
i=1

E[X2
i (s0) | Fi−1]

P−→ c, where c is a positive constant.

(A6) There exist a real nonnegative random sequence ςi on (Ω,F , P ) such that

sup
n∈N

1

n

n∑
i=1

E[ς2
i ] <∞ and for any i ∈ N, w.p.1

|Xi(s1)−Xi(s2)| ≤ ςiρ(s1, s2) (2.5)

Then there exists a Gaussian measure µ on C(S) such that

1√
n

n∑
i=1

Xi
D−→ µ as n→∞.

3 Asymptotics of The Optimal Value

Assumption 3.1. For any i ∈ N, w.p.1, Θ ⊂ Θi.

Assumption 3.2. For any (x, y) ∈ X × Y, F (x, y, ·) is an integrable function

and f(x, y) :=

∫
Θ

F (x, y, θ)dθ <∞.

Lemma 3.1. Suppose Assumptions 3.1 and 3.2 hold. Let Υi(x, y) := F (x,y,θi)
ψi(θi)

−

f(x, y) and Sn(x, y) :=
n∑
i=1

Υi(x, y), where n ∈ N. Then, for a given (x, y) ∈

X × Y, {Υi(x, y),Gi} is a martingale difference sequence and {Sn(x, y),Gn} is a

martingale.

This conclusion is obvious. For a pair of fixed (x, y) ∈ X × Y and any i ∈ N,

w.p.1

E[Υi(x, y) | Gi−1] =

∫
Θi

Υi(x, y)ψi(θi)dθi

=

∫
Θi

[F (x, y, θi)− f(x, y)ψi(θi)] dθi
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= 0.

By definition, Lemma 3.1 holds.

The two assumptions above are similar to those in [6]. They are viewed as

basic assumptions when applying the SAA method with AMIS.

Assumption 3.3. There exists a sequence of random measurable functions αi :

Θi → R such that w.p.1

sup
n∈N

1

n

n∑
i=1

E[αi(θi)] <∞,

and w.p.1

lim
n→∞

1

n

n∑
i=1

(
αi(θi)− E[αi(θi)]

)
= 0.

In addition, there exists a modulus of continuity $(·) such that for all x, x′ ∈ X ,

y, y′ ∈ Y and i ∈ N, w.p.1,∣∣∣∣F (x, y, θi)

ψi(θi)
− F (x′, y′, θi)

ψi(θi)

∣∣∣∣ ≤ αi(θi)$
(
‖x− x′‖+ ‖y − y′‖

)
.

Assumption 3.4. For every pair (x, y) ∈ X × Y, w.p.1,

lim
n→∞

1

n
Sn(x, y) = 0.

Assumption 3.5. F (x, y, θ) is a Carathéodory function, i.e., F (x, y, θ) is mea-

surable for any (x, y) ∈ X × Y and continuous for a.e. θ ∈ Θ.

Assumption 3.6. There is an integrable function L(θ), i.e.,

∫
Θ

L(θ)dθ < ∞,

and an open set O ⊂ Rm+n with X × Y ⊂ O such that |F (x, y, θ)| ≤ L(θ) for

every (x, y) ∈ O and a.e. θ ∈ Θ.

Assumption 3.7. The sets X and Y are nonempty and compact, respectively.

Lemma 3.2. Suppose that Assumptions 3.5-3.7 hold. Then the expected value

function f(x, y) is finite valued and continuous on X × Y and the max-function

ϕ(x) := sup
y∈Y

f(x, y) is continuous on X .

Proof. According to Assumption 3.6, for every pair (x, y) ∈ X × Y ,

|f(x, y)| =
∣∣∣∣∫

Θ

F (x, y, θ)dθ

∣∣∣∣ ≤ ∫
Θ

|F (x, y, θ)|dθ ≤
∫

Θ

L(θ)dθ <∞.
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Therefore, f(x, y) is well defined. This shows that Assumption 3.2 is satisfied.

Furthermore, by Assumptions 3.5 and 3.7, applying the Lebesgue dominated

convergence theorem, we obtain

f(x, y) =

∫
Θ

lim
(x′,y′)→(x,y)

F (x, y, θ)dθ = lim
(x′,y′)→(x,y)

∫
Θ

F (x, y, θ)dθ.

This implies that f(x, y) is continuous on X × Y .

By Assumption 3.7, for a given x ∈ X , there exists y ∈ Y such that f(x, y) =

ϕ(x). It is not difficult to deduce that ϕ(x) is continuous on X by the continuity

of f(x, y). The proof is complete.

The next theorem proves that the optimal value and optimal solutions of the

problem (1.4) converge to the optimal value and optimal solutions of the problem

(1.3), respectively. The underlying idea is to establish uniform convergence from

fn to f . To this end, we apply Theorem 3(b) in [1]. This is also exploited in [6],

but our target problem is different. For ease of presentation, let ϑ and ϑn denote

the optimal values of (1.3) and (1.4), respectively. Let Tx and Tx,n represent the

sets of optimal solutions of (1.3) and (1.4), respectively.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.3-3.7 hold. Then lim
n→∞

ϑn = ϑ

and lim
n→∞

D(Tx,n, Tx) = 0 w.p.1.

Proof. In fact, ϑ = inf
x∈X

ϕ(x). It follows from Lemma 3.2 that Tx is nonempty and

contained in X . Let the sample average max-function with AMIS be ϕn(x) :=

sup
y∈Y

fn(x, y). Obviously, ϕn(x) is continuous on X . Then, ϑn = inf
x∈X

ϕn(x) and

Tx,n is nonempty and contained in X .

According to Assumptions 3.1, 3.3 and 3.4, we have that fn(x, y) converges

to f(x, y) uniformly on X × Y w.p.1, see [1, Theorem 3(b)] and [6, Theorem 1].

By Lemma 3.2, f(x, y) is finite valued and continuous on X × Y . Consequently,

applying Theorem 5.3 in [16], we complete the proof.

Assumption 3.8. The sets X and Y are convex, respectively.

The dual problem of (1.3) is as follows:

max
y∈Y

min
x∈X

f(x, y). (3.6)

Let Ty denote the set of optimal solutions of (3.6). If f(x, y) ∈ C and Assumptions

3.7 and 3.8 hold, then there is no duality gap between (1.3) and (3.6). That is,

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y), (3.7)
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and Tx × Ty forms the set of saddle points.

Assumption 3.9. F (·, ·, θ) is convex-concave on X ×Y, i.e., F (·, y, θ) is convex

on X for any y ∈ Y and F (x, ·, θ) is concave on Y for any x ∈ X .

Now, we come to state the main theorem in this paper.

Theorem 3.2. Let Assumptions 3.1-3.2 and 3.7-3.9 hold. Suppose that the fol-

lowing statements hold.

(B1) For some (x0, y0) ∈ X × Y, there exist constants c̃ > f 2(x0, y0) and k̃ >

f 2(x0, y0) such that

1

n

n∑
i=1

E

[(
F (x0, y0, θi)

ψi(θi)

)2
∣∣∣∣∣Gi−1

]
P−→ c̃,

and w.p.1

E

[(
F (x0, y0, θi)

ψi(θi)

)2
∣∣∣∣∣Gi−1

]
≤ k̃.

(B2) There exists an integrable function α : Rr → R+ whose support is contained

in Θ such that for any (x1, y1), (x2, y2) ∈ X × Y, w.p.1

|F (x1, y1, θ)− F (x2, y2, θ)| ≤ α(θ)(‖x1 − x2‖+ ‖y1 − y2‖) (3.8)

with sup
n∈N

1

n

n∑
i=1

E

[(
α(θ)

ψi(θ)

)2
]
<∞.

(B3) There exists a sequence of random measurable functions Ai : Θi → R+ such

that for any i ∈ N, w.p.1

|F (x, y, θ)− f(x, y)ψi(θ)| ≤ Ai(θ),

1

n

n∑
i=1

E

[(
Ai(θi)
ψi(θi)

)2
∣∣∣∣∣Gi−1

]
P−→ 0,

and w.p.1

E

[(
Ai(θi)
ψi(θi)

)2
∣∣∣∣∣Gi−1

]
≤ b̃ ,

where b̃ is a positive constant.
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Then

ϑn = inf
x∈Tx

sup
y∈Ty

fn(x, y) + op(
1√
n
). (3.9)

In particular, if Tx = {x̂} and Ty = {ŷ} are singletons, then

√
n(ϑn − ϑ)

D−→ N (0, σ2(x̂, ŷ)), as n→∞, (3.10)

where N (0, σ2(x̂, ŷ)) denotes the normal distribution with mean 0 and variance

σ2(x̂, ŷ) = c̃− f 2(x0, y0).

Proof. For any (x, y) ∈ X × Y , {Υi(x, y),Gi} is a martingale difference sequence

by Lemma 3.1. Thus, we show that Υi satisfies the conditions in Corollary 2.1 at

first.

It is not difficult to see that f(x, y) is well defined and finite valued. Let

α̃ :=

∫
Θ

α(θ)dθ. Obviously, 0 < α̃ <∞. Integrating over (3.8), we have

|f(x1, y1)− f(x2, y2)| ≤ α̃(‖x1 − x2‖+ ‖y1 − y2‖) (3.11)

for any (x1, y1), (x2, y2) ∈ X × Y . Therefore, f(x, y) is Lipschitz continuous on

X ×Y . Similarly, by integration, it follows from Assumptions 3.7-3.9 that f(x, y)

is convex-concave. Then, we have f ∈ C and F (·, ·, θ) ∈ C for any given θ ∈ Θ.

By definition,

Υi(x, y) =


F (x,y,θi)
ψi(θi)

− f(x, y), θi ∈ Θ,

− f(x, y), θi ∈ Θi\Θ.

Therefore, Υi ∈ C and fn ∈ C. To simplify notation, let

Hn(x, y) := fn(x, y)− f(x, y) =
1

n

n∑
i=1

Υi(x, y).

Then, Hn ∈ C. From the previous analysis, we know that (3.7) holds. Further,

Tx × Ty is nonempty and forms the set of saddle points.

Let Mi = Ai(θi)
ψi(θi)

. It follows from (B3) that

||Υi(x1, y1)| − |Υi(x2, y2)|| ≤Mi, (3.12)

w.p.1 for any (x1, y1), (x2, y2) ∈ X × Y . Moreover, (A1)-(A3) are verified.

On the other hand, for (x0, y0) ∈ X × Y and all i ∈ N, w.p.1

E[Υ2
i (x0, y0) | Gi−1]
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=

∫
Θi

Υ2
i (x0, y0)ψi(θi)dθi

=

∫
Θi

[
F (x0, y0, θi)

ψi(θi)
− f(x0, y0)

]2

ψi(θi)dθi

=

∫
Θi

[
F 2(x0, y0, θi)

ψi(θi)
− 2f(x0, y0)F (x0, y0, θi) + f 2(x0, y0)ψi(θi)

]
dθi

= E

[(
F (x0, y0, θi)

ψi(θi)

)2
∣∣∣∣∣Gi−1

]
− f 2(x0, y0).

Together with (B1), it is not hard to verify that E[Υ2
i (x0, y0) | Fi−1] satisfies

(A4) and (A5).

According to (3.8) and (3.11), we have

|Υi(x1, y1)−Υi(x2, y2)|

=

∣∣∣∣F (x1, y1, θi)

ψi(θi)
− f(x1, y1)− F (x2, y2, θi)

ψi(θi)
+ f(x2, y2)

∣∣∣∣
≤

∣∣∣∣F (x1, y1, θi)

ψi(θi)
− F (x2, y2, θi)

ψi(θi)

∣∣∣∣+ |f(x1, y1)− f(x2, y2)|

≤
(
α(θi)

ψi(θi)
+ α̃

)
(‖x1 − x2‖+ ‖y1 − y2‖) w.p.1.

Let ςi = α(θi)
ψi(θi)

+ α̃. Obviously, ςi > 0. Hence (2.5) is satisfied. Moreover, we get

sup
n∈N

1

n

n∑
i=1

E
[
ς2
i

]
≤ sup

n∈N

2

n

n∑
i=1

E

[(
α(θ)

ψi(θ)

)2
]

+ 2α̃2 <∞.

Therefore, (A6) is verified.

From the above discussion, Υi satisfies the conditions in Corollary 2.1. Then,

applying Corollary 2.1, there exists a Gaussian measure Y on C(X ,Y) such that

for any (x, y) ∈ X × Y ,

1√
n

n∑
i=1

Υi(x, y) =
√
nHn(x, y)

D−→ Y (x, y) as n→∞.

By the properties of martingale difference sequences, we have that Y (x, y) follows

a normal distribution with mean 0 and variance σ2(x, y) = lim
n→∞

1

n

n∑
i=1

E[Υ2
i (x, y)],

see Remark 3.1.
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Obviously,
√
n → ∞ and

√
n(fn − f)

D−→ Y as n → ∞, respectively. Thus,

using Theorem 2.1, we have

ϑn = inf
x∈Tx

sup
y∈Ty

fn(x, y) + op(
1√
n
)

and
√
n(ϑn − ϑ)

D−→ inf
x∈Tx

sup
y∈Ty

Y (x, y), as n→∞. (3.13)

Hence, (3.9) is proved.

Finally, if Tx = {x̂} and Ty = {ŷ} are singletons, we have inf
x∈Tx

sup
y∈Ty

Y (x̂, ŷ) =

N (0, σ2(x̂, ŷ)). Hence (3.10) follows from (3.13). Thus, the proof is complete.

Remark 3.1. For any (x, y) ∈ X ×Y, by the definition of martingale difference

sequences, we have E[Υi(x, y) | Gi−1] = 0. Then, we obtain

E

[
1√
n

n∑
i=1

Υi(x, y)

]
=

1√
n

n∑
i=1

E[Υi(x, y)]

=
1√
n

n∑
i=1

E [E[Υi(x, y) | Gi−1]]

= 0.

Moreover, for any i, j ∈ N and i > j, we get

E[Υi(x, y)Υj(x, y)] = E [E[Υi(x, y)Υj(x, y) | Gj]]
= E [Υj(x, y)E[Υi(x, y) | Gj]] .

Since E[Υi(x, y) | Gj] = E[E[Υi(x, y) | Gi−1] | Gj] = 0, we get

E[Υi(x, y)Υj(x, y)] = 0.

Therefore,

Var[Υj(x, y)] = E[Υ2
j(x, y)], ∀j ∈ N,

and

Var[Υi(x, y) + Υj(x, y)] = E[Υ2
i (x, y)] + E[Υ2

j(x, y)], ∀i, j ∈ N and i 6= j.

Thus,

Var

[
1√
n

n∑
i=1

Υi(x)

]
=

1

n

n∑
i=1

Var[Υi(x)] =
1

n

n∑
i=1

E[Υ2
i (x)].
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By Corollary 2.1 in [17], we have

σ2(x, y) = lim
n→∞

1

n

n∑
i=1

E[Υ2
i (x, y)]

=
(
c̃− f 2(x0, y0)

)(β(x0, y0)

β(x, y)

)2

.

where β is a nonzero real-valued function on X × Y. According to (3.12), we

get β(x, y) = 1 for any (x, y) ∈ X × Y. Hence σ2(x, y) = c̃ − f 2(x0, y0) > 0.

Notice that Y is a Gaussian measure on C(X ,Y). Obviously, E[Y (x, y)] = 0 and

Var[Y (x, y)] = σ2(x, y). Then, Y (x, y) ∼ N (0, σ2(x, y)).

4 An Application to The Risk Averse Optimization

In recent years, the risk averse optimization has been extensively studied,

see [5, 7, 11, 12, 14, 15]. A comprehensive review can be found in reference

[16, Chapter 6]. The specific problem we focus on here is stated as follows:

min
x∈X

ργ(G(x, θ)), (4.14)

where G : X × Θ → R with X ⊂ Rm, θ : Ω → Θ ⊂ Rr is a random vector on

(Ω,F , P ), and ργ(·) is the absolute semideviation risk measure with the weight

constant γ ∈ [0, 1], that is, ργ(Z) := E{Z + γ[Z − E(Z)]+}.
Essentially, such problems are minimax problems, see [11, 16] for details. To

be specific, the equivalent of (4.14) is

min
(x,t)∈X×R

max
λ∈[0,1]

E
{
h
(
t, λ,G(x, θ)

)}
, (4.15)

where h
(
t, λ,G(x, θ)

)
:= G(x, θ) + γλ[G(x, θ)− t]+ + γ(1− λ)[t−G(x, θ)]+.

Let X be nonempty, convex and compact. Assume that G(·, θ) is convex for

a.e. θ ∈ Θ and E[G(x, θ)] <∞ for every x ∈ X . Under such assumptions, (4.15)

is a convex-concave minimax problem. Furthermore, if we assume that X ? is the

set of optimal solutions for the problem (4.14), then the set of optimal solutions

for the problem (4.15) is T = {(x∗, t∗) : x∗ ∈ X ?, t∗ = E[G(x∗, θ)]}. Accordingly,

the set of optimal solutions for its dual problem is Td = [ν∗, ν∗∗], where ν∗ =

Prob
(
G(x∗, θ) < E[G(x∗, θ)]

)
and ν∗∗ = Prob

(
G(x∗, θ) ≤ E[G(x∗, θ)]

)
with x∗ ∈

X ?. Then, T × Td forms the set of the saddle points. The analysis of this part is

detailed in [11, 14].
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If we use φ(θ) to represent the probability density function of θ, it is not

difficult to see that F (x, t, λ, θ) = h
(
t, λ,G(x, θ)

)
· φ(θ) satisfies Assumption 3.9,

that is, F (·, ·, λ, θ) is convex on X ×R for any λ ∈ [0, 1] and F (x, t, ·, θ) is concave

on [0, 1] for any (x, t) ∈ X × R. The information above implies that Assumptions

3.2 and 3.7-3.9 hold.

Let θi, Gi, ψi and Θi be defined as in the introduction, where i ∈ N. Let

Assumption 3.1 hold. The SAA with AMIS problem associated with problem

(4.15) is as follows:

min
(x,t)∈X×R

max
λ∈[0,1]

{
1

n

n∑
i=1

F (x, t, λ, θi)

ψi(θi)

}
. (4.16)

Proposition 4.1. Let X be nonempty, convex and compact. Suppose that G(·, θ)
is convex for a.e. θ ∈ Θ and E[G(x, θ)] < ∞ for every x ∈ X . Let Assumption

3.1 and the following conditions (B′1)-(B′3) be satisfied.

(B′1) For some (x0, t0, λ0) ∈ X ×R×[0, 1], there exist constants ĉ > f 2(x0, t0, λ0)

and k̂ > f 2(x0, t0, λ0) such that

1

n

n∑
i=1

E

[(
F (x0, t0, λ0, θi)

ψi(θi)

)2
∣∣∣∣∣Gi−1

]
P−→ ĉ,

and w.p.1

E

[(
F (x0, t0, λ0, θi)

ψi(θi)

)2
∣∣∣∣∣Gi−1

]
≤ k̂,

where f(x0, t0, λ0) = E
{
h
(
t0, λ0, G(x0, θ)

)}
.

(B′2) There exists an integrable function α : Rr → R+ whose support is contained

in Θ such that for any (x1, t1, λ1), (x2, t2, λ2) ∈ X × R× [0, 1], w.p.1

|F (x1, t1, λ1, θ)− F (x2, t2, λ2, θ)| ≤ α(θ)(‖(x1, t1)− (x2, t2)‖+ ‖λ1 − λ2‖),

with sup
n∈N

1

n

n∑
i=1

E

[(
α(θ)

ψi(θ)

)2
]
<∞.

(B′3) There exists a sequence of random measurable functions Ai : Θi → R+

such that for any i ∈ N, w.p.1

|F (x, t, λ, θ)− E
{
h
(
t, λ,G(x, θ)

)}
ψi(θ)| ≤ Ai(θ),

1

n

n∑
i=1

E

[(
Ai(θi)
ψi(θi)

)2
∣∣∣∣∣Gi−1

]
P−→ 0,
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and w.p.1

E

[(
Ai(θi)
ψi(θi)

)2
∣∣∣∣∣Gi−1

]
≤ b̂,

where b̂ is a positive constant.

Then

ϑ̂n = inf
(x,t)∈T

sup
λ∈Td

{
1

n

n∑
i=1

F (x, t, λ, θi)

ψi(θi)

}
+ op(

1√
n
).

In particular, suppose that X ? = {x̃} is a singleton and ν∗ = ν∗∗, that is,

Prob
(
G(x∗, θ) = E[G(x∗, θ)]

)
= 0. Then

√
n(ϑ̂n − ϑ̂)

D−→ N (0, ĉ− f 2(x0, t0, λ0)), as n→∞,

where ϑ̂ and ϑ̂n denote the optimal values of (4.15) and (4.16), respectively.

Proof. It is easy to verify the proposition. By the above analysis, Assumptions

3.2 and 3.7-3.9 are satisfied. According to conditions (B′1)-(B′3), it is straight-

forward to apply Theorem 3.2. Thus, the proof is complete.
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