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Abstract: In this paper, we put forward and analyze a stochastic eco-epidemiological model with dis-
ease in the prey population, which incorporates fear effect of predators on prey and hunting cooperation
among predators. We find out sufficient criteria for the existence and uniqueness of an ergodic station-
ary distribution of positive solutions to the system by using the stochastic Lyapunov function methods.
Moreover, we also derive sufficient criteria for extinction of the infected prey population and the preda-
tor population. Additionally, we give the specific expression of the probability density function of the
stochastic model near the unique endemic quasi-equilibrium by solving the Fokker-Planck equation. In
the end, the supporting theoretical results are verified by numerical simulation.
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1 Introduction

Recent studies have shown that the dynamic relationship between predators and their prey may play an
important role in both ecology and mathematical ecology due to its universal existence and importance in
population dynamics. For most of the predator-prey models, the impact of predators on the prey population
usually reflects through direct killing. However, some researchers have showed that the fear effect of predator
on the prey may play a vital role in the predator-prey system[1–3] . Wang et al. incorporate the fear effect to
the predator-prey model and show that strong fear can stabilize the predator-prey system by excluding the
existence of periodic solutions and relatively weak fear can induce multiple limit cycles via subcritical Hopf
bifurcations. More details can be seen in [1]. As universally recognized, eco-epidemiology is one of the most
interesting issues in the investigation of mathematical biology, which combines epidemiology with ecology
[4–6]. Chattopadhyay et al. [7] proposed a three species eco-epidemiological model and found the conditions
for local stability, extinction and Hopf-bifurcation. Liu et al. [8] proposed an eco-epidemiological model
with disease in the prey population, incorporates fear effect of predators on prey and hunting cooperation
among predators. They divide the prey population into two classes, one is the susceptible prey, the other is
the infected prey. They also assumed that the predator eats only the infected prey. The eco-epidemiological
model can be written as



dS

dt
=

rS

1 +K1y
− µS − aS2 − βSI

1 +K2y
,

dI

dt
=

βSI

1 +K2y
− δI − (p+ by)Iy,

dy

dt
= c(p+ by)Iy −my,

(1.1)
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where S(t), I(t), y(t) represent the population density of the susceptible prey, the infected prey and the
predator at time t respectively. The parameters r, µ, a, K1, K2, β, δ, p, c and m are positive constants and
b is a nonnegative constant, r, µ denote the intrinsic growth rate and natural death rate of the susceptible
prey, respectively. a stands for the mortality rate of prey population due to intra-specific competition among
the individuals of the susceptible prey population, β represents the disease transmission rate, p stands for
the attack rate of the predator on the prey and b describes the predator cooperation in hunting, c ∈ (0, 1)
represents the conversion efficiency from prey biomass to predator biomass, δ and m represent the death
rates of the infected prey and predator populations, respectively. The term 1

1+K1y
denotes the fear function

which represents the cost of anti-predator defence of prey due to fear induced by predator and K1 reflects
the level of fear that reduces the growth of the prey. The term β

1+K2y
represents the fear of predators

reduces the foraging activity of the prey population and K2 reflects the level of fear which reduces the
disease transmission.

According to the theory of Liu et al. [8], system (1.1) may have the following four nonnegative equilibria.
(i) The trivial equilibrium E0 = (0, 0, 0) which always exists and it is a unstable saddle point.
(ii) The disease-free and predator-free prey equilibrium E1 = ( r−µa , 0, 0) which always exists under the

condition r > µ and it is locally asymptotically stable if Rp < 0 and unstable provided that Rp > 0, where

Rp = cp(β(r−µ)−aδ)
mβ2 .

(iii) The predator-free prey equilibrium E2 = (S̄, Ī, 0) exists if and only if Rp > 0 and it is locally
asymptotically stable if 0 < Rp < 1 and unstable provided that Rp > 1, where

S̄ =
δ

β
, Ī =

β(r − µ)− aδ
β2

.

(iv) The coexistence equilibrium E∗ = (S∗, I∗, y∗) exists if and only if Rp > 1.
Model (1.1) is a deterministic model which assumes that the parameters are deterministic irrespective

environmental fluctuations. However, the ecology and epidemiology systems are always affected by the envi-
ronmental noise. Therefore, the deterministic systems have some limitations to predict the future dynamics
accurately[9–18]. Motivated by those previous works, in this paper, we consider fluctuations in the environ-
ment, which are assumed to manifest themselves as fluctuations in parameters µ, δ and m involved in the
previous deterministic model (1.1), that is

µ→ µ− σ1Ḃ1(t), δ → δ − σ2Ḃ2(t) and m→ m− σ3Ḃ3(t)

respectively, where {B1(t)}t≥0, {B2(t)}t≥0 and {B3(t)}t≥0 are mutually independent standard Brownian
motions defined on a complete probability space (Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the
usual conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets) [19]; σ2

i (i =
1, 2, 3) denotes the intensities of white noise. Incorporating the above perturbations in the deterministic
system (1.1), we get the following stochastic model:

dS =
[

rS
1+K1y

− µS − aS2 − βSI
1+K2y

]
dt+ σ1SdB1(t),

dI =
[

βSI
1+K2y

− δI − (p+ by)Iy
]
dt+ σ2IdB2(t),

dy = [c(p+ by)Iy −my]dt+ σ3ydB3(t).

(1.2)

Throughout this paper, let Rd be a d-dimensional Euclidean space and

Rd+ = {x = (x1, . . . , xd) ∈ Rd : xi ≥ 0, 1 ≤ i ≤ d} , Rd,◦+ = {x = (x1, . . . , xd) ∈ Rd : xi > 0, 1 ≤ i ≤ d}.

If G is a matrix, its transpose is denoted by GT and a ∨ b = max{a, b} for any a, b ∈ R.
The rest of this paper is structured as follows. In Section 3, we find out sufficient criteria for the

existence and uniqueness of an ergodic stationary distribution of positive solutions to the stochastic system
(1.2). In Section 3, we derive sufficient criteria for extinction of the infected prey population and the predator
population. In Section 4, we discuss the probability density function of the stochastic model near the unique
endemic quasi-equilibrium. In Section 5, the theoretical results are showed by numerical simulation. Finally,
a brief conclusion scope of the investigation is provided to end this paper in Section 6.
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2 Existence of ergodic stationary distribution

In this section, we will find out sufficient criteria for the existence and uniqueness of an ergodic stationary
distribution of positive solutions to the stochastic system (1.2).

Let X(t) be a regular time-homogeneous Markov process in Rd described by the stochastic differential
equation

dX(t) = f(X(t))dt+

k∑
r=1

gr(X(t))dBr(t).

The diffusion matrix of the process X(t) is defined as follows

A(x) = (aij(x)), aij(x) =

k∑
r=1

gir(x)gjr(x).

Lemma 2.1. [20]. The Markov process X(t) has a unique ergodic stationary distribution π(·) if there exists
a bounded open domain D ⊂ Rd with regular boundary Γ, having the following properties:

(A1) In the domain D and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix
A(x) is bounded away from zero.

(A2) If x ∈ Rd \ D, the mean time τ at which a path issuing from x reaches the set D is finite, and
sup
x∈U

Exτ <∞ for every compact subset U ⊂ Rd.

Lemma 2.2. Assume that min{δ,m} > 1
2 (σ2

1 ∨ σ2
2 ∨ σ2

3), then for any initial value (S(0), I(0), y(0)) ∈ R3,◦
+ ,

there is a unique solution (S(t), I(t), y(t)) to system (1.2) on t ≥ 0 and the solution will remain in R3,◦
+ with

probability one, namely, the solution (S(t), I(t), y(t)) ∈ R3,◦
+ for all t ≥ 0 almost surely (a.s).

Proof. The proof is similar to the statement of Theorem 3.1 in Liu and Jiang [21], hence we only
construct a C2-function U : R3,◦

+ → R+ as follows

U(S, I, y) =

(
S + I +

y

c

)θ+2

− lnS − ln I − ln y,

where θ ∈ (0, 2 min{δ,m}
σ2
1∨σ2

2∨σ2
3
− 1) is a sufficiently small number. Now we are in the position to give our main

results of this section.

Theorem 2.1. Assume that RSp :=
cp(β(r−µ−σ

2
1
2 )−a(δ+

σ22
2 ))

(m+
σ23
2 )β2

> 1, m >
σ2
3

2 and min{δ,m} > 2(σ2
1 ∨ σ2

2 ∨ σ2
3),

then the process (S(t), I(t), y(t)) has an invariant probability measure π∗ on R3,◦
+ .

Proof. To prove Theorem 2.1, we should verify conditions (A1) and (A2) in Lemma 2.1. We first need
to show the condition (A1). The diffusion matrix of system (1.2) is given by

A0 =

σ2
1S

2 0 0
0 σ2

2I
2 0

0 0 σ2
3y

2

 .

Apparently, the matrix A0 is positive definite for any compact subset of R3,◦
+ , (A1) is obvious. Now we

show the condition A2. For any adequately small number ε0 ∈ (0, a
K2(r−µ) ), define

RSp (ε0) =
cp(β(1− K2(r−µ)ε0

a )(r − µ− σ2
1

2 )− a(δ +
σ2
2

2 ))

(m+
σ2
3

2 )β2(1− K2(r−µ)ε0
a )

.

Evidently, lim
ε0→0+

RSp (ε0) = RSp . Since the function RSp (ε0) is continuous with respect to ε0 and RSp > 1,

we can select ε0 small enough such that RSp (ε0) > 1. From system (1.2) it follows that

L(− lnS) =− r

1 +K1y
+ µ+ aS +

βI

1 +K2y
+
σ2

1

2

=− r + µ+
σ2

1

2
+ aS + βI +

rK1y

1 +K1y

≤− r + µ+
σ2

1

2
+ aS + βI + rK1y,

(2.1)
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L(S) =
rS

1 +K1y
− µS − aS2 − βSI

1 +K2y

≤(r − µ)S − aS2,

(2.2)

L(− ln y) =− c(p+ by)I +m+
σ2

3

2

≤− cpI +m+
σ2

3

2
,

(2.3)

L(y) =c(p+ by)Iy −my, (2.4)

L(y2) =2y[c(p+ by)Iy −my] + σ2
3y

2

=2c(p+ by)Iy2 − (2m− σ2
3)y2

(2.5)

and

L(− ln I) =− βS

1 +K2y
+ δ +

σ2
2

2
+ (p+ by)y

=− βS +
βK2Sy

1 +K2y
+ δ +

σ2
2

2
+ py + by2

≤− βS + βK2Sy + δ +
σ2

2

2
+ py + by2

≤− βS + βK2ε0S
2 + δ +

σ2
2

2
+ py +

(
βK2

4ε0
+ b

)
y2,

(2.6)

where in the inequality of (2.6), we have used the Young inequality

Sy ≤ ε0S2 +
y2

4ε0

and ε0 ∈ (0, a
K2(r−µ) ) is a sufficiently small number. Define

V1(S, I, y) =− ln I +
βK2ε0
a

S −
β(1− K2(r−µ)ε0

a )

a
lnS +

1

m

(
βrK1(1− K2(r−µ)ε0

a )

a
+ p

)
y

−
β2(1− K2(r−µ)ε0

a )

acp
ln y +

βK2

4ε0
+ b

2m− σ2
3

y2,

then from (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6) it follows that

LV1 ≤−
β(1− K2(r−µ)ε0

a )

a

(
r − µ− σ2

1

2

)
+ δ +

σ2
2

2
+
β2(1− K2(r−µ)ε0

a )

a
I

+
c

m

(
βrK1(1− K2(r−µ)ε0

a )

a
+ p

)
(p+ by)Iy −

β2(1− K2(r−µ)ε0
a )

a
I

+
β2(1− K2(r−µ)ε0

a )

acp

(
m+

σ2
3

2

)
+

2c(βK2

4ε0
+ b)

2m− σ2
3

(p+ by)Iy2

=−
β2(1− K2(r−µ)ε0

a )

acp

(
m+

σ2
3

2

)
(RSp (ε0)− 1) +

c

m

(
βrK1(1− K2(r−µ)ε0

a )

a
+ p

)
(p+ by)Iy

+
2c(βK2

4ε0
+ b)

2m− σ2
3

(p+ by)Iy2

=− λ(ε0) +
c

m

(
βrK1(1− K2(r−µ)ε0

a )

a
+ p

)
(p+ by)Iy +

2c(βK2

4ε0
+ b)

2m− σ2
3

(p+ by)Iy2,

(2.7)

where

RSp (ε0) =
cp(β(1− K2(r−µ)ε0

a )(r − µ− σ2
1

2 )− a(δ +
σ2
2

2 ))

(m+
σ2
3

2 )β2(1− K2(r−µ)ε0
a )

,
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λ(ε0) =
β2(1− K2(r−µ)ε0

a )

acp

(
m+

σ2
3

2

)
(RSp (ε0)− 1) > 0.

Next, define

V2(S, I, y) =
1

θ + 5

(
S + I +

y

c

)θ+5

,

where θ is a sufficiently small number satisfying the following condition

min{δ,m} > θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3).

Then

LV2 =

(
S + I +

y

c

)θ+4[
rS

1 +K1y
− µS − aS2 − δI − m

c
y

]
+
θ + 4

2

(
S + I +

y

c

)θ+3(
σ2

1S
2 + σ2

2I
2 +

σ2
3

c2
y2

)
≤
(
S + I +

y

c

)θ+4[
(r + min{δ,m})S − aS2 −min{δ,m}

(
S + I +

y

c

)]
+
θ + 4

2

(
S + I +

y

c

)θ+5

(σ2
1 ∨ σ2

2 ∨ σ2
3)

≤ (r + min{δ,m})2

4a

(
S + I +

y

c

)θ+4

−
(

min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)(
S + I +

y

c

)θ+5

≤− 1

2

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)(
S + I +

y

c

)θ+5

+ C

≤− 1

2

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)(
Sθ+5 + Iθ+5 +

yθ+5

cθ+5

)
+ C,

(2.8)

where

C := sup
(S,I,y)∈R3,◦

+

{
− 1

2

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)(
S + I +

y

c

)θ+5

+
(r + min{δ,m})2

4a

(
S + I +

y

c

)θ+4}
<∞.

Define a Lyapunov function Ṽ : R3,◦
+ → R as follows

Ṽ (S, I, y) = MV1(S, I, y) + V2(S, I, y),

where M > 0 is a sufficiently large constant satisfying

−Mλ(ε0) + gu1 + gu2 ≤ −2

and functions gi (i = 1, 2) will be determined later. Furthermore, note that

lim inf
k→∞,(S,I,y)∈R3,◦

+ \Dk
Ṽ (S, I, y) =∞,

where Dk = ( 1
k , k)× ( 1

k , k)× ( 1
k , k). Thus, Ṽ has a minimal value Ṽ (S0, I0, y0) in R3,◦

+ and we can define a

C2-function V : R3,◦
+ → R+ as follows

V (S, I, y) =Ṽ (S, I, y)− Ṽ (S0, I0, y0)

=MV1(S, I, y) + V2(S, I, y)− Ṽ (S0, I0, y0).
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Thus, from (2.7) and (2.8) it follows that

LV ≤−Mλ(ε0) +
Mc

m

(
βrK1(1− K2(r−µ)ε0

a )

a
+ p

)
(p+ by)Iy +

2Mc(βK2

4ε0
+ b)

2m− σ2
3

(p+ by)Iy2

− 1

2

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)(
Sθ+5 + Iθ+5 +

yθ+5

cθ+5

)
+ C

≤−Mλ(ε0) +
Mc

m

(
βrK1(1− K2(r−µ)ε0

a )

a
+ p

)
(p+ by)Iy +

2Mc(βK2

4ε0
+ b)

2m− σ2
3

(p+ by)Iy2

− 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Sθ+5 − 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Iθ+5

− 1

4cθ+5

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
yθ+5 − 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Iθ+5

− 1

4cθ+5

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
yθ+5 + C

:=H(S, I, y).

In view of the expression of H(S, I, y), we can obtain:
Case 1. If S →∞ or I →∞ or y →∞, then

H(S, I, y) ≤− 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Sθ+5 − 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Iθ+5

− 1

4cθ+5

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
yθ+5 − 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Iθ+5

− 1

4cθ+5

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
yθ+5

+
Mc

m

(
βrK1(1− K2(r−µ)ε0

a )

a
+ p

)
(p+ by)Iy +

2Mc(βK2

4ε0
+ b)

2m− σ2
3

(p+ by)Iy2 + C

≤− 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Sθ+5 − 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Iθ+5

− 1

4cθ+5

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
yθ+5 + J

→−∞,

where

J := sup
(I,y)∈R2,◦

+

{
− 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Iθ+5

− 1

4cθ+5

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
yθ+5

+
Mc

m

(
βrK1(1− K2(r−µ)ε0

a )

a
+ p

)
(p+ by)Iy +

2Mc(βK2

4ε0
+ b)

2m− σ2
3

(p+ by)Iy2 + C

}
<∞.
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Case 2. If I → 0+ or y → 0+, then

H(S, I, y) ≤−Mλ(ε0) +
Mc

m

(
βrK1(1− K2(r−µ)ε0

a )

a
+ p

)
(p+ by)Iy +

2Mc(βK2

4ε0
+ b)

2m− σ2
3

(p+ by)Iy2

− 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Iθ+5 − 1

4cθ+5

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
yθ+5

− 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Iθ+5 − 1

4cθ+5

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
yθ+5

+ C

≤−Mλ(ε0) + gu1 + gu2 +
Mc

m

(
βrK1(1− K2(r−µ)ε0

a )

a
+ p

)
(p+ by)Iy +

2Mc(βK2

4ε0
+ b)

2m− σ2
3

(p+ by)Iy2

− 1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Iθ+5 − 1

4cθ+5

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
yθ+5

→−∞,

where

g1(I) := −1

4

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
Iθ+5 + C,

g2(y) := − 1

4cθ+5

(
min{δ,m} − θ + 4

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

)
yθ+5.

As a result, we can select a sufficiently small number 0 < ε < 1 such that

H(S, I, y) ≤ −1 for any (S, I, y) ∈ R3,◦
+ \Dε, (2.9)

where

Dε =

{
(S, I, y) ∈ R3,◦

+ : 0 < S ≤ 1

ε
, ε ≤ I ≤ 1

ε
, ε ≤ y ≤ 1

ε

}
.

Moreover, there is also a positive constant P such that

H(S, I, y) ≤ P for any (S, I, y) ∈ R3,◦
+ . (2.10)

Therefore, we derive

−E(V (S(0), I(0), y(0))) ≤E(V (S(t), I(t), y(t)))− E(V (S(0), I(0), y(0))) ≤
∫ t

0

E(LV (S(s), I(s), y(s)))ds

≤
∫ t

0

E(H(S(s), I(s), y(s)))ds.

By means of (2.9) and (2.10), we derive

0 ≤ lim inf
t→∞

1

t

∫ t

0

E(H(S(s), I(s), y(s)))ds

= lim inf
t→∞

1

t

∫ t

0

(E(H(S(s), I(s), y(s)))1{(S(s),I(s),y(s))∈Dcε}) + E(H(S(s), I(s), y(s)))1{(S(s),I(s),y(s))∈Dε}))ds

≤ lim inf
t→∞

1

t

∫ t

0

(−P((S(s), I(s), y(s)) ∈ Dc
ε) + PP((S(s), I(s), y(s)) ∈ Dε)ds

=− 1 + (1 + P ) lim inf
t→∞

1

t

∫ t

0

P((S(s), I(s), y(s)) ∈ Dε)ds,

this indicates that

lim inf
t→∞

1

t

∫ t

0

P((S(s), I(s), y(s)) ∈ Dε)ds ≥
1

1 + P
a.s.

7



Consequently

lim inf
t→∞

1

t

∫ t

0

P(s, (S, I, y), Dε)ds ≥
1

1 + P
a.s. for any (S, I, y) ∈ R3,◦

+ , (2.11)

where P(t, (S, I, y), ·) is the transition probability of (S(t), I(t), y(t)). According to the invariance of M =
{S ≥ 0, I > 0, y > 0} under system (1.2), we can consider the Markov process (S(t), I(t), y(t)) on the
state space M. It is easy to show that (S(t), I(t), y(t)) has the Feller property. Therefore, inequality (2.11)
indicates that there exists an invariant probability measure π∗ on M; see [22]. Since I(t)→ 0 and y(t)→ 0
provided that S(0) = 0, limt→∞ P(t, (0, I, y), Q) = 0 for all compact set Q ⊂ M. Hence, we must get
π∗({S = 0, I > 0, y > 0}) = 0 (equivalently π∗(R3,◦

+ ) = 1). Moreover, in view of the invariance of R3,◦
+ , π∗ is

an invariant probability measure of (S(t), I(t), y(t)) on R3,◦
+ . This completes the proof.

3 Extinction

In the research of eco-epidemiological systems, extinction is one of the most important issues. In this
section, we verify sufficient conditions for the extinction of the infected prey population and the predator
population in stochastic system.

3.1 Extinction of the infected prey population

In this subsection, we shall investigate that under what conditions the infected prey population will go
to extinction exponentially with probability one.

Theorem 3.1. Let (S(t), I(t), y(t)) be a solution to system (1.2) with any initial value (S(0), I(0), y(0)) ∈
R3,◦

+ . If r − µ > σ2
1

2 and RSp < 0, then the infected prey population will go to extinction exponentially with
probability one, i.e., lim

t→∞
I(t) = 0 a.s.

Proof. Consider the following one-dimensional stochastic differential equation

dX = X[(r − µ)− aX]dt+ σ1XdB1(t). (3.1)

Let X(t) be the solution to Eq. (3.1) with any initial value X(0) = S(0) > 0. According to Lemma A.1 of
Appendix A in Ji et al. [23], we can derive

lim
t→∞

1

t

∫ t

0

X(s)ds =
r − µ− σ2

1

2

a
a.s. (3.2)

Applying Itô’s formula [19] to ln I leads to that

d(ln I) =

[
βS

1 +K2y
− δ − σ2

2

2
− (p+ by)y

]
dt+ σ2dB2(t)

≤
(
βS − δ − σ2

2

2

)
dt+ σ2dB2(t).

(3.3)

Integrating from 0 to t and then dividing by t on both sides of (3.3), we get

ln I(t)− ln I(0)

t
≤β
t

∫ t

0

S(s)ds− δ − σ2
2

2
+
σ2B2(t)

t

≤β
t

∫ t

0

X(s)ds− δ − σ2
2

2
+
σ2B2(t)

t
.

(3.4)

Taking the superior limit on both sides of (3.4) and combining with (3.2) and noting that lim
t→∞

B2(t)

t
= 0

a.s., we obtain

lim sup
t→∞

ln I(t)

t
≤
β(r − µ− σ2

1

2 )

a
− δ − σ2

2

2
< 0 a.s.,

which indicates that lim
t→∞

I(t) = 0 a.s. and so the infected prey population dies out exponentially with

probability one. This completes the proof.
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Remark 3.1. In Theorem 3.1, we only show the susceptible prey population survives and the infected prey

population dies out. We don’t consider the case r − µ < σ2
1

2 . In fact, when parameters satisfy r − µ < σ2
1

2 ,
then from comparison theorem for one-dimensional stochastic differential equation and

dS ≤ S[(r − µ)− aS]dt+ σ1SdB1(t),

we can see that lim
t→∞

S(t) = 0 a.s., applying the theory of asymptotically autonomous systems to the second

and third equations in system (1.2), we also obtain lim
t→∞

I(t) = 0 and lim
t→∞

y(t) = 0 a.s. In other words, when

r − µ < σ2
1

2 , all the prey population and predator population will go to extinction a.s..

3.2 Extinction of the predator population

In this subsection, we shall investigate that under what conditions the predator population will go to
extinction exponentially with probability one.

Theorem 3.2. Let (S(t), I(t), y(t)) be a solution to system (1.2) with any initial value (S(0), I(0), y(0)) ∈
R3,◦

+ . If r − µ >
σ2
1

2 , K2 = b = 0 and 0 < RSp < 1, then the predator population will go to extinction
exponentially with probability one, i.e., lim

t→∞
y(t) = 0 a.s.

Proof. Consider K2 = b = 0, then system (1.2) can be transformed as
dS =

[
rS

1+K1y
− µS − aS2 − βSI

]
dt+ σ1SdB1(t),

dI =
[
βSI − δI − pIy

]
dt+ σ2IdB2(t),

dy = (pIy −my)dt+ σ3ydB3(t),

(3.5)

and it follows that {
dS ≤

(
rS − µS − aS2 − βSI

)
dt+ σ1SdB1(t),

dI ≤
(
βSI − δI

)
dt+ σ2IdB2(t).

We consider the auxiliary system{
dS̃ =

(
rS̃ − µS̃ − aS̃2 − βS̃Ĩ

)
dt+ σ1S̃dB1(t),

dĨ =
(
βS̃Ĩ − δĨ

)
dt+ σ2ĨdB2(t),

By the comparison theorem, we obtain that

lim sup
t→∞

1

t

∫ t

0

I(s)ds ≤
β(r − µ− σ2

1

2 )− a(δ − σ2
2

2 )

β2
a.s.. (3.6)

For third of Eq. (3.5), applying Itô’s formula to ln y leads to that

d ln y = (cpI −m− σ2
3

2
)dt+ σ3dB3(t). (3.7)

Integrating from 0 to t and then dividing by t on both sides of (3.7), we get

ln y(t)− ln y(0)

t
≤ cp

t

∫ t

0

I(s)ds− (m+
σ2

3

2
) +

σ3B2(t)

t
. (3.8)

Taking the superior limit on both sides of (3.8) and combining with (3.6), together with lim
t→∞

B3(t)

t
= 0 a.s.,

one can get

lim sup
t→∞

ln y(t)

t
≤
cp
(
β(r − µ− σ2

1

2 )− a(δ − σ2
2

2 )
)

β2
− (m+

σ2
3

2
)

=(RSp − 1)(m+
σ2

3

2
) < 0 a.s.,

which indicates that lim
t→∞

y(t) = 0 a.s.
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4 Density function analysis of system (1.2)

In this section, we give the local probability density function of the system (1.2).
First, let x1 = lnS, x2 = lnI, x3 = lny, then applying Itô’s formula, we can transform system (1.2) into

the following form: 
dx1 = [ r

1+K1ex3
− aex1 − βex2

1+K2ex3
− (µ+

σ2
1

2 )]dt+ σ1dB1(t),

dx2 = [ βex1

1+K2ex3
− (p+ bex3)ex3 − (δ +

σ2
2

2 )]dt+ σ2dB2(t),

dx3 = [c(p+ bex3)ex2 − (m+
σ2
3

2 )]dt+ σ3dB3(t).

(4.1)

Define E3 = (S∗1 , I
∗
1 , y
∗
1) = (ex

∗
1 , ex

∗
2 , ex

∗
3 ), which satisfy

r
1+K1y∗1

− aS∗1 −
βI∗1

1+K2y∗1
− (µ+

σ2
1

2 ) = 0,
βS∗

1

1+K2y∗1
− (p+ by∗1)y∗1 − (δ +

σ2
2

2 ) = 0,

c(p+ by∗1)I∗1 − (m+
σ2
3

2 ) = 0.

Let (z1, z2, z3) = (x1 − x∗1, x2 − x∗2, x3 − x∗3), then the linearized system of system (4.1) is as follows:
dz1 = (−a11z1 − a12z2 − a13z3)dt+ σ1dB1(t),

dz2 = (a21z1 − a23z3)dt+ σ2dB2(t),

dz3 = (a32z2 + a33z3)dt+ σ3dB3(t),

(4.2)

where

a11 =aex
∗
1 , a12 =

βex
∗
2

1 +K2ex
∗
3
, a13 =

rK1e
x∗
3

(1 +K1ex
∗
3 )2
− βK2e

x∗
2+x∗

3

(1 +K2ex
∗
3 )2

, a21 =
βex

∗
1

1 +K2ex
∗
3
,

a23 =
βK2e

x∗
1+x∗

3

(1 +K2ex
∗
3 )2

+ (p+ 2bex
∗
3 )ex

∗
3 , a32 = c(p+ bex

∗
3 )ex

∗
2 , a33 = cbex

∗
2+x∗

3 .

Lemma 4.1. [24] For the algebra equation Λ2
1+Ã1Θ1+Θ1Ã

T
1 = 0, where Λ1 = diag(1, 0, 0), Θ1 is symmetric

matrix, and the standard matrix

Ã1 =

−N1 −N2 −N3

1 0 0
0 1 0

 ,

if N1 > 0, N2 > 0, N3 > 0 and N1N2 −N3 > 0, then the matrix Θ1 is positive definite.

In the following, we give the explicit local density function near the quasi-stable equilibrium point E3.

Theorem 4.1. Let Z = (z1, z2, z3)T be a solution to (4.2) with any initial value(z1(0), z2(0), z3(0)) ∈ R3
+.

If RSp > 1,a11a12 + a12a33 6= a13a32, then there exists a unique density function Φ(Z) near the quasi-stable
equilibrium point E3, which can be expressed in the following form:

Φ(Z) = (2π)−
3
2 |Σ|− 1

2 e−
1
2 (z1,z2,z3)Σ−1(z1,z2,z3)T ,

where Σ is positive definite and it will be determined later.

Proof. System (4.2) can be rewritten into the matrix form dZ = AZdt+ΘdB(t), where Z = (z1, z2, z3)T ,
Θ = diag(σ1, σ2, σ3), B(t) = (B1(t), B2(t), B3(t))T and bij(i, j = 1, 2, 3) are defined by

A =

−a11 −a12 a13

a21 0 −a23

0 a32 a33

 .

The characteristic polynomial of matrix A is

ϕA(λ) = λ3 + f1λ
2 + f2λ+ f3.
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where

f1 =a11 − a33,

f2 =a12a21 − a11a33 + a23a32,

f3 =a11a23a32 + a21(a13a32 − a12a33),

By [25], the density function Φ(Z) of the quasi-stationary distribution of system (4.2) near the origin
point Z∗ = (0, 0, 0) can be approached by the following three-dimensional Fokker-Planck equation

−
3∑
i=1

σ2
i

2

∂2

∂z2
i

Φ +
∂

∂z1
[(−a11z1 − a12z2 − a13z3)Φ] +

∂

∂z2
[(a21z1 − a23z3)Φ] +

∂

∂z3
[(a32z2 + a33z3)Φ] = 0,

which can be approximated by a Gaussian distribution Φ(Z) = c0e
− 1

2 (Z−Z∗)Q(Z−Z∗)T , c0 is a constant and
Q is a real symmetric matrix satisfies QΘ2Q+ATQ+QA = 0.

If Q is positive definite and Q−1 = Σ, then Θ2 + AΣ + ΣAT = 0. According to the finite independent
superposition principle, then Θ2

i +AΣi + ΣiA
T = 0, i = 1, 2, 3, where

Θ1 = diag(σ1, 0, 0),Θ2 = diag(0, σ2, 0),Θ3 = diag(0, 0, σ3),

Σ = Σ1 + Σ2 + Σ3,Θ
2 = Θ2

1 + Θ2
2 + Θ2

3.

Case 1. For system (4.2), we consider Θ2
1 +AΣ1 + Σ1A

T = 0. Let

J1 =

a21a32 a23a32 a2
33 − a23a32

0 a32 a33

0 0 1

 ,

then we obtain that

B = J1AJ
−1
1 =

−f1 −f2 −f3

1 0 0
0 1 0

 ,

it can be expressed as Λ2
1 +BΣ0 + Σ0B

T = 0, where Λ1 = diag(1, 0, 0),

Σ0 =
1

ρ2
1

J1Σ1J
T
1 =

 t11 0 −t22

0 t22 0
−t22 0 t33


and t22 = 1

f1f2−f3 t11 = f2t22, t33 = f1
f3
t22 with ρ1 = a21a32σ1.

Based on [8], we conclude that the positive equilibrium E∗ of system (1.2) is local asymptotically stable
when Rsp > 1. Therefore, according to Routh-Hurwitz criterion [19], we obtain that f1 > 0, f2 > 0, f3 >

0, f1f2 − f3 > 0. Applying Lemma 4.1, Σ0 is a positive definite, thus Σ1 = ρ2
1J
−1
1 Σ0(JT1 )−1 is also positive

definite.
Case 2. For system (4.2), we consider Θ2

2 +AΣ2 + Σ2A
T = 0. Let

P1 =

0 1 0
0 0 1
1 0 0

 ,

we obtain that

A1 = P1AP
−1
1 =

 0 −a23 a21

a32 a33 0
−a12 −a13 −a11

 .
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Let

P2 =

1 0 0
0 1 0
0 a12

a32
1

 ,

we also obtain that

A2 = P2A1P
−1
2 =

 0 −a23 − a12a21
a32

a21

a32 a33 0
0 ω −a11

 ,

where ω = a11a12+a12a33−a13a32
a32

.
Let

J2 =

ωa32 ω(a33 − a11) a2
11

0 ω −a11

0 0 1

 ,

then J2A2J
−1
2 = B, it can be expressed as Λ2

1 +BΣ0 + Σ0B
T = 0, where Λ1 = diag(1, 0, 0) and

Σ0 =
1

ρ2
2

J2P2P1Σ2P
T
1 P

T
2 J

T
2 =

t11 0 t13

0 t22 0
t13 0 t33


with ρ2 = ωa32σ2.

The next steps are similar to those in Case 1, we can obtain that

Σ2 = ρ2
2P
−1
1 P−1

2 J−1
2 Σ0(JT2 )−1(PT2 )−1(PT1 )−1

is also a positive definite.
Case 3. For system (4.2), we consider Θ2

3 +AΣ3 + Σ3A
T = 0. Let

P3 =

0 0 1
1 0 0
0 1 0

 ,

then

A3 = P3AP
−1
3 =

 a33 0 a32

−a13 −a11 −a12

−a23 a21 0

 .

Case 3.1 If a13 6= 0, let

P4 =

1 0 0
0 1 0
0 −a23a13

1

 ,

then

A4 = P4A3P
−1
4 =

 a33
a23a32
a13

a32

−a13 −a11 − a12a23
a13

−a12

0 ω̄ a12a23
a13

 ,

where ω̄ = a21 +
a12a

2
23

a213
+ a11a23

a13
.

Let

J3 =

−ω̄a13 −ω̄a11 −a12a21 − a11a12a23
a13

0 ω̄ a12a23
a13

0 0 1

 ,
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then J3A4J
−1
3 = B, it can be expressed as Λ2

1 +BΣ0 + Σ0B
T = 0, where Λ1 = diag(1, 0, 0) and

Σ0 =
1

ρ2
3

J3P4P3Σ3P
T
3 P

T
4 J

T
3 =

t11 0 t13

0 t22 0
t13 0 t33


with ρ3 = −ω̄a13σ3.

The next steps are similar to those in Case 1, we can obtain that

Σ3 = ρ2
3P
−1
3 P−1

4 J−1
3 Σ0(JT3 )−1(PT4 )−1(PT3 )−1

is also a positive definite.
Case 3.2 If a13 = 0, let

P5 =

1 0 0
0 0 1
0 1 0

 ,

then

A′4 = P5A3P
−1
5 =

 a33 a32 0
−a23 0 a21

0 −a12 −a11

 .

Let

J4 =

a12a23 a11a12 a2
11 − a12a21

0 −a12 −a11

0 0 1

 ,

then we obtain that

B0 = J4A
′
4J
−1
4 =

−h1 −h2 −h3

1 0 0
0 1 0

 ,

where

h1 =a11 − a33,

h2 =a12a21 − a11a33 + a23a32,

h3 =a11a23a32 − a21a12a33,

it can be expressed as Λ2
1 +B0Σ0 + Σ0B

T
0 = 0, where Λ1 = diag(1, 0, 0),

Σ̄0 =
1

ρ′23
J4P5P3Σ3P

T
3 P

T
5 J

T
4 =

v11 0 v13

0 v22 0
v13 0 v33


and v22 = 1

h1h2−h3
, v13 = −h22, v11 = h2v22, v33 = h1

h3
v22 with ρ′3 = a12a23σ3. Similarly, we have that

h1 > 0, h2 > 0, h3 > 0, h1h2 − h3 > 0 according to Routh-Hurwitz criterion [19]. Applying Lemma 4.1, Σ̄0

is a positive definite, hence we can obtain that

Σ3 = ρ′23 P
−1
3 P−1

5 J−1
4 Σ̄0(JT4 )−1(PT5 )−1(PT3 )−1

is also a positive definite.
To sum up, we conclude that the symmetric matrix Σ = Σ1 + Σ2 + Σ3 is positive definite. Thus, there

is a local and asymptotic density function Φ(Z) near the quasi-endemic equilibrium point E3.
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5 Examples and computer simulations

Numerical simulation is performed in this part in order to illustrate above conclusions. We mainly pay
attention to verify the following three results:

(1) Theorem 2.1 is satisfied when RSp > 1, m >
σ2
3

2 and min{δ,m} > 2(σ2
1 ∨σ2

2 ∨σ2
3), then the system has

a stationary distribution;

(2) Theorem 3.1 is satisfied when r − µ > σ2
1

2 and RSp < 0, then both the infected prey population and
the predator population will die out.

(2)Theorem 3.2 is satisfied when r − µ > σ2
1

2 , K2 = b = 0 and 0 < RSp < 1, then the predator population
will die out.

Therefore, using the Milsteins high-order method [26], the numerical scheme for system (1.2) is given by:
Sk+1 = Sk + [ rSk

1+K1yk
− µSk − aS2

k −
βSkIk

1+K2yk
]∆t+ σ1ζ1,k

√
∆tSk +

σ2
1

2 (ζ2
1,k∆t−∆t)Sk,

Ik+1 = Ik + [ βSkIk
1+K2yk

− δIk − (p+ byk)Ikyk]∆t+ σ2ζ2,k
√

∆tIk +
σ2
2

2 (ζ2
2,k∆t−∆t)Ik,

yk+1 = yk + [c(p+ byk)Ikyk −myk]∆t+ σ3ζ3,k
√

∆tyk +
σ2
3

2 (ζ2
3,k∆t−∆t)yk,

(5.1)

where the time interval is represented by ∆t > 0, ζ1,k, ζ2,k, ζ3,k are Gaussian random variables and follow
the standard normal distribution.

Example 5.1. (Stationary distribution) We select the parameters and initial values of system (1.2) as
follows: c = 0.4, p = 0.3, r = 0.7, a = 0.1, δ = 0.1, b = 0.01, µ = 0.1,m = 0.1, β = 0.5,K1 = 0.05,K2 =
0.1; , σ1 = σ2 = σ3 = 0.05, (S(0), I(0), y(0)) = (2, 0.8, 2).

After computing, we obtain that RSp = 1.3713 > 1, and E∗3 = (S∗1 , I
∗
1 , y
∗
1) = (2.0801, 0.7836, 2.3035).

Moreover, we know

Σ =

 0.0317 −0.0186 −0.0139
−0.0186 0.0568 0.0133
−0.0139 0.0133 0.0171

 .

Figure 1: The figure on the left shows the solution of stochastic system and deterministic system when
RSp > 1 , the figure on the right shows its histograms and the probability density function of the solution.

According to Theorem 2.1 , the solution (S(t), I(t), y(t)) of system (1.2) has a stationary distribution,
which has the ergodic property. The left side of Figure 1 is the solution of stochastic system and deterministic
system, the right side are histograms and the probability density function of the solution.

Example 5.2. (Extinction of the infected prey population) We select the parameters and initial values
of system (1.2) as follows: c = 0.4, p = 0.3, r = 0.25, a = 0.35, δ = 0.25, b = 0.01, µ = 0.1,m = 0.1, β =
0.5,K1 = 0.05,K2 = 0.1, σ1 = σ2 = σ3 = 0.05, (S(0), I(0), y(0)) = (2, 0.8, 2), which satisfies RSp = −0.0643 <
0. Obviously, the infected prey population and the infected prey population of system (1.2) will extinct
exponentially in a long term, which is supported by Figure 2.

14



Figure 2: The figure shows the solution of stochastic system and deterministic system when r− µ > σ2
1

2 and
RSp < 0.

Example 5.3. (Extinction of the predator population) We select the parameters and initial values of system
(1.2) as follows: c = 0.4, p = 0.3, r = 0.5, a = 0.35, δ = 0.25, b = 0, µ = 0.1,m = 0.1, β = 0.5,K1 =
0.05,K2 = 0, σ1 = σ2 = σ3 = 0.05, (S(0), I(0), y(0)) = (2, 0.8, 2).

After computing, we obtain that RSp = 0.5283 which satisfies RSp ∈ (0, 1). Obviously, the infected prey
population of system (1.2) will extinct exponentially in a long term, which is supported by Figure 3.

Figure 3: The figure shows the solution of stochastic system and deterministic system when r− µ > σ2
1

2 and
0 < RSp < 1.

6 Conclusion

In the current paper, we have analyzed the stochastic dynamics of a stochastic eco-epidemiological
model with disease in the prey population, which incorporates fear effect of predators on prey and hunting
cooperation among predators. More precisely, on the one hand, we found out sufficient criteria for the
existence and uniqueness of an ergodic stationary distribution of positive solutions to the stochastic system
(1.2) by establishing a series of suitable Lyapunov functions. On the other hand, we obtained sufficient
criteria for extinction of the infected prey population. In addition, it would be interesting to introduce the
white noise into other intrinsic parameters of the associated system incorporating a fear function. Also, it
needs to be mentioned that we only consider the influence of fear on the birth rate of prey population, but
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it can also affect the strength of intra-specific competition among the prey population. These problems are
extremely meaningful and more works can be done in this direction in the near future.
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