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Abstract. The inverse spectral problem of Sturm-Liouville operator with

both of the jump conditions dependent on the spectral parameter is inves-

tigated. Firstly, by theoretical operator formulation the self-adjointness of the
problem is proven and then some of the eigenvalue properties, especially the

asymptotic formulas of eigenvalues and eigenfunctions are given. Finally, the
uniqueness theorems of the corresponding inverse problems are given by Weyl

function theory and inverse spectral data approach.

1. Introduction

Inverse spectral problems are motivated to recovering operators from their spec-
tral characteristics. These problems often appear in mathematics, physics, mechan-
ics, electronics, and some other branches of science and engineering problems, and,
hence, are very important to understanding the real world. A significant progress
has been made in the inverse problem theory for regular self-adjoint Sturm-Liouville
(S-L) operators and nonself-adjoint Sturm-Liouville operators and even third order
differential equations [1–5].

Historically speaking, the inverse problem of Sturm-Liouville operator was initi-
ated by Ambarzumian [6] and Borg [7], after that, there are various generalizations
on the inverse problems of Sturm-Liouville operators. Beside the classical regular
Sturm-Liouville operators [2, 3], recent years there are a lot of inverse problems
for Sturm-Liouville operators with eigenparameter-dependent boundary conditions
and Sturm-Liouville operators with transmission conditions duo to the wide appli-
cations of such problems [8–20]. Fulton et al. have studied the inverse spectral
problem with boundary conditions linearly dependent on the spectral parameter [8].
Binding et al. have discussed boundary conditions depend nonlinearly on the spec-
tral parameter [10]. Hald has studied the discontinuous S-L problem and shown
the direct and inverse spectral theory on the S-L problem with internal discontin-
uous point conditions [11]. The corresponding direct problems of boundary value
problems with transmission conditions and/or eigenparameter-dependent boundary
conditions, we refer to [21–26] and the references therein.
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As an organic combination of the above mentioned two problems, the boundary
value problems with eigenparameter-dependent transmission conditions have drown
scholars’ much attention and have achieved significant progress recently, including
direct and inverse spectral theory [27–37]. In 2005, Akdogan et al. investigat-
ed the discontinuous Sturm-Liouville problems, where the spectral parameter not
only appear in differential equations, but also in boundary conditions and one of
the jump conditions. They got the asymptotic approximation of fundamental solu-
tions and the asymptotic formulae for eigenvalues of such problems [28]. In 2012,
Ozkan et al. considered the inverse spectral problems for Sturm-Liouville opera-
tor with both boundary and one of the jump conditions linearly dependent on the
eigenparameter [29]. In 2014, Guo et al. investigated the inverse spectral prob-
lem of Sturm-Liouville operator with finite number of jump conditions dependent
on the eigenparameter [31]. In 2016, Wei et al. investigated the inverse spectral
problem for Dirac operator with boundary and jump conditions dependent on the
spectral parameter [32]. Through inducting the generalized normal constants they
have proved the uniqueness theorem. In 2018 and 2021, Bartels et al. presented
Sturm-Liouville problems with transfer condition Herglotz dependent on the eigen-
parameter, and showed the Hilbert space formulation of the problem and calculated
out the eigenvalue and eigenfunction asymptotic formula on this problem [33,36].
Zhang et al. studied the finite spectrum of Sturm-Liouville problems with both
jump conditions dependent on the spectral parameter [37].

The Sturm-Liouville problems with jump conditions containing the spectral
parameter have been widely studied, however, for the problems with both jump
conditions containing the spectral parameter attach less attention, which often
appear in heat transfer, electronic signal amplifiers and other issues of sciences,
hence have high research significance. It’s also a good complement to the study of
spectral and inverse spectral problems of boundary value problems for differential
equations.

In this article, we mainly investigate the inverse spectral problem of Sturm-
Liouville operator in which the spectral parameter not only appears in the differ-
ential equation, but also appears in both jump conditions. To show the inverse
spectral theory of this problem, the operator formulation of this problem is con-
structed and then some spectral properties are given, next the asymptotic behavior
of the solutions and eigenvalues is provided, finaly several uniqueness results for
this inverse spectral problem are given by using the Weyl function theory.

2. Notation and basic properties

Consider the following boundary value problem (denoted by L) consisting of
the following Sturm-Liouville equation

(2.1) l(y) := −y′′ + q(x)y = λy, x ∈ J = [0, c) ∪ (c, π],

together with boundary conditions (BCs)

l1(y) := y′(0)− hy(0) = 0,(2.2)

l2(y) := y′(π) +Hy(π) = 0,(2.3)

and jump conditions with spectral parameter

(2.4) y(c−) + (λη1 − ξ1)y′(c−) + y′(c+) = 0,
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(2.5) y′(c−)− y(c+) + (λη2 − ξ2)y′(c+) = 0,

where q(x) ∈ L2(J) is real valued, 0 < c < π, h, H, ηk, ξk ∈ R, ηk > 0, k=1, 2.
Here λ is a spectral parameter.

In order to describe the self-adjointness of the operator corresponding to the
problem L, we will introduce an inner product in the Hilbert spaceH := L2(J)⊕ C2

as

(2.6) (F,G) =

∫ c

0

fḡdx+

∫ π

c

fḡdx+ η1f1ḡ1 + η2f2ḡ2,

for

F = (f, f1, f2)T , G = (g, g1, g2)T ∈ H.

To facilitate the description, the following notation need to be listed. Let

M̃1(y) =
1

η1
[ξ1y

′(c−)− y(c−)− y′(c+)], M1(y) = y′(c−),

M̃2(y) =
1

η2
[ξ2y

′(c+) + y(c+)− y′(c−)], M2(y) = y′(c+),

then the eigenparameter-dependent jump conditions (2.4) and (2.5) can be written
as

M̃1(y) = λM1(y), M̃2(y) = λM2(y).

In the Hilbert space H we define a linear operator A: H → H as

(2.7) AF =

 l(f)

M̃1(f)

M̃2(f)

 =

 −f ′′ + qf
1
η1

[ξ1f
′(c−)− f(c−)− f ′(c+)]

1
η2

[ξ2f
′(c+) + f(c+)− f ′(c−)]

 ,

and the domain of the operator A as

D(A) := {F = (f(x), f1, f2)T ∈ H : f, f ′ ∈ AC(J), and have finite limits

f(c±) = lim
x→c±0

f(x), f ′(c±) = lim
x→c±0

f ′(x),

l(f) ∈ L2(J), f1 = M1(f), f2 = M2(f), l1(f) = 0, l2(f) = 0}.

Thus, the problem L can be ruled as the following form

AF = λF,

where F = (f, f1, f2)T ∈ D(A).
Let W (f, g;x) := f(x)g′(x)−f ′(x)g(x) be the Wronskian for any f, g ∈ L2(J),

then the following theorem holds.

Theorem 1. The linear operator A is self-adjoint in the Hilbert space H.

Proof. This theorem can be proved by the following three steps.
(i) D(A) is dense in H. Since this is routine here we omit the details.
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(ii) The operator A is symmetric.

(AF,G)− (F,AG)

=

∫ c

0

[−f ′′ + qf ]ḡdx+

∫ π

c

[−f ′′ + qf ]ḡdx+ η1M̃1(f)M1(ḡ) + η2M̃2(f)M2(ḡ)−∫ c

0

f [−ḡ′′ + qḡ]dx−
∫ π

c

f [−ḡ′′ + qḡ]dx− η1M1(f)M̃1(ḡ)− η2M2(f)M̃2(ḡ)

=W (f, ḡ; c−)−W (f, ḡ; 0) +W (f, ḡ;π)−W (f, ḡ; c+) + η1(M̃1(f)M1(ḡ)−

M1(f)M̃1(ḡ)) + η2(M̃2(f)M2(ḡ)−M2(f)M̃2(ḡ)).

(2.8)

Since F,G ∈ D(A), from (2.2) and (2.3) we get

(2.9) W (f, ḡ; 0) = 0, W (f, ḡ;π) = 0.

It is easy to show that

η1(M̃1(f)M1(ḡ)−M1(f)M̃1(ḡ)) + η2(M̃2(f)M2(ḡ)−M2(f)M̃2(ḡ))

=−W (f, ḡ; c−) +W (f, ḡ; c+).
(2.10)

Substituting into (2.8) we arrive at

(AF,G) = (F,AG),

namely that A is symmetric.
(iii) The symmetric operator A is self-adjoint.
This means we need to show that: for any F = (f, f1, f2)T ∈ D(A) and some

Z ∈ D(A∗), satisfying (AF,Z) = (F, V ), then Z ∈ D(A) and AZ = V , where
Z = (z, z1, z2)T , V = (v, v1, v2)T , that is the following conditions must be satisfied.

(1) z, z′ ∈ AC(J), l(z) ∈ L2(J);
(2) z1 = M1(z) = z′(c−), z2 = M2(z) = z′(c+);

(3) v1 = M̃1(z) = 1
η1

[ξ1z
′(c−)− z(c−)− z′(c+)],

v2 = M̃2(z) = 1
η2

[ξ2z
′(c+) + z(c+)− z′(c−)];

(4) v = l(z);
(5) l1(z) = 0, l2(z) = 0.
Firstly, as q ∈ L(J,R), it follows that C∞0 (J) ⊕ {0} ⊕ {0} ⊂ D(A). For any

F ∈ C∞0 (J)⊕ {0} ⊕ {0} ⊂ D(A), (AF,Z) = (F, V ), then

(2.11)

∫ c

0

l(f)z̄dx+

∫ π

c

l(f)z̄dx =

∫ c

0

fv̄dx+

∫ π

c

fv̄dx,

according to standard Sturm-Liouville theory, we have z ∈ D(A), so (1) is estab-
lished.

Next, because A is symmetric, then (AF,Z) = (F,AZ), it can be obtained
from the above F∫ c

0

l(f)z̄dx+

∫ π

c

l(f)z̄dx =

∫ c

0

fl(z)dx+

∫ π

c

fl(z)dx,

and combining with (2.11), then v̄ = l(z), i.e. v = l(z), this means (4) is true.
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Now according to (4), for any F ∈ D(A), (AF,Z) = (F, V ), then∫ c

0

l(f)z̄dx+

∫ π

c

l(f)z̄dx+ η1M̃1(f)z̄1 + η2M̃2(f)z̄2

=

∫ c

0

fv̄dx+

∫ π

c

fv̄dx+ η1M1(f)v̄1 + η2M2(f)v̄2

=

∫ c

0

fl(z)dx+

∫ π

c

fl(z)dx+ η1M1(f)v̄1 + η2M2(f)v̄2,

i.e. ∫ c

0

(l(f)z̄ − fl(z))dx+

∫ π

c

(l(f)z̄ − fl(z))dx

=η1(M1(f)v̄1 − M̃1(f)z̄1) + η2(M2(f)v̄2 − M̃2(f)z̄2).

Using (2.8), (2.9) to simplify the above we obtain

W (f, z̄, c−)−W (f, z̄, c+)

=η1(M1(f)v̄1 − M̃1(f)z̄1) + η2(M2(f)v̄2 − M̃2(f)z̄2).
(2.12)

According to Naimark’s Patching Lemma, there exists a function F ∈ D(A), such
that

f(c−) = 1, f ′(c−) = 0, f(c+) = 0, f ′(c+) = 0.

For such an F ,

M1(f) = M2(f) = M̃2(f) = 0, M̃1(f) = − 1

η1
,

then from (2.12), we obtain

z1 = M1(z) = z′(c−).

Similarly, we can prove that z2 = M2(z). That is, there exists a function F ∈ D(A),
such that

f(c−) = 0, f ′(c−) = 0, f(c+) = 1, f ′(c+) = 0.

For such an F ,

M1(f) = M2(f) = M̃1(f) = 0, M̃2(f) = − 1

η2
.

So from (2.12), we get z2 = M2(z) = z′(c+). Thus (2) is true.
(3) and (5) can be proved similarly, here we omit the details.
Hence, the linear operator A is self-adjoint in the Hilbert space H. �

As the eigenvalues of problem L coincide with the eigenvalues of the operator
A, and the eigenfunctions of problem L are the first components of the eigenvectors
of the operator A, we can directly deduce that

Corollary 1. All eigenvalues of the problem L are real.

Corollary 2. Two eigenfunctions ϕ(x, λ1), ϕ(x, λ2) corresponding to different
eigenvalues λ1, λ2, are orthogonal, i.e.∫ c

0

ϕ(x, λ1)ϕ(x, λ2)dx+

∫ π

c

ϕ(x, λ1)ϕ(x, λ2)dx

+ η1ϕ
′(c−, λ1)ϕ′(c−, λ2) + η2ϕ

′(c+, λ1)ϕ′(c+, λ2) = 0.
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Now define two fundamental solutions ϕ(x, λ), χ(x, λ) of equation (2.1) on w-
hole [0, c)∪(c, π] satisfying the jump conditions (2.4), (2.5) and the following initial
conditions, respectively(

ϕ(0, λ)
ϕ′(0, λ)

)
=

(
1
h

)
,

(
χ(π, λ)
χ′(π, λ)

)
=

(
1
−H

)
.

Since these solutions ϕ(x, λ) and χ(x, λ) satisfy the jump conditions (2.4), (2.5),
the following relations(

ϕ(c+, λ)
ϕ′(c+, λ)

)
=

(
(1− aλbλ)ϕ′(c−, λ)− bλϕ(c−, λ)
−aλϕ′(c−, λ)− ϕ(c−, λ)

)
,

(
χ(c−, λ)
χ′(c−, λ)

)
=

(
−aλχ(c+, λ) + (aλbλ − 1)χ′(c+, λ)
χ(c+, λ)− bλχ′(c+, λ)

)
,

hold, where aλ = λη1 − ξ1, bλ = λη2 − ξ2.
For each x, these solutions satisfy the relation l1(ϕ) = l2(χ) = 0. Then the

characteristic function can be introduced as

(2.13) ∆(λ) = 〈ϕ(x, λ), χ(x, λ)〉 = ϕ(x, λ)χ′(x, λ)− ϕ′(x, λ)χ(x, λ),

according to the Liouville formula, the Wronskian 〈ϕ(x, λ), χ(x, λ)〉 is an entire
function in λ and the zeros namely {λn}n≥0 of ∆(λ) coincide with the eigenvalues
of the problem L. Substituting x = π into (2.13) we get

(2.14) ∆(λ) = −(ϕ′(π) +Hϕ(π)).

The normal constants αn of the problem L are as follows

(2.15) αn =

∫ c

0

ϕ2(x, λn)dx+

∫ π

c

ϕ2(x, λn)dx+ η1ϕ
′2(c−, λn) + η2ϕ

′2(c+, λn).

Lemma 1. [3] If the functions ϕ(x, λn) and χ(x, λn) are the eigenfunctions of
the problem L, then there exists a sequence {βn} such that

(2.16) χ(x, λn) = βnϕ(x, λn), βn 6= 0.

Theorem 2. Let {λn} be the zeros of the function ∆(λ), then

(2.17) ∆̇(λn) = βnαn,

where ∆̇(λ) = d∆
dλ , αn, βn are defined by (2.15) and (2.16), respectively.

Proof. Let us write the following equations,

(2.18) −χ′′(x, λ) + q(x)χ(x, λ) = λχ(x, λ),

(2.19) −ϕ′′(x, λn) + q(x)ϕ(x, λn) = λnϕ(x, λn).

Let (2.18), (2.19) multiplied by ϕ(x, λn) and χ(x, λ), respectively, and subtracting
them, then the equality

(2.20)
d

dx
〈ϕ(x, λn), χ(x, λ)〉 = (λn − λ)ϕ(x, λn)χ(x, λ)
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is obtained. Integrating over the interval J

(λn − λ)(

∫ c

0

χ(x, λ)ϕ(x, λn)dx+

∫ π

c

χ(x, λ)ϕ(x, λn)dx)

=−∆(λ)− (λn − λ)η1ϕ(c+, λn)χ(c+, λ)

+ (λn − λ)η1(λη2 − ξ2)ϕ(c+, λn)χ′(c+, λ)

+ (λn − λ)η1(λnη2 − ξ2)ϕ′(c+, λn)χ(c+, λ)

− (λn − λ)(η1(λnη2 − ξ2)(λη2 − ξ2) + η2)ϕ′(c+, λn)χ′(c+, λ).

Dividing both sides of the above equality by λn − λ, and let λ→ λn, then we have

−∆̇(λn) =−
∫ c

0

χ(x, λn)ϕ(x, λn)dx−
∫ π

c

χ(x, λn)ϕ(x, λn)dx

− η1ϕ(c+, λn)χ(c+, λn)

+ [η1(λnη2 − ξ2)]ϕ(c+, λn)χ′(c+, λn)

+ [η1(λnη2 − ξ2)]ϕ′(c+, λn)χ(c+, λn)

− [η1(λnη2 − ξ2)2 + η2]ϕ′(c+, λn)χ′(c+, λn).

Using (2.16)

∆̇(λn) = βn[

∫ c

0

ϕ2(x, λn)dx+

∫ π

c

ϕ2(x, λn)dx+ η1ϕ
2(c+, λn)

− 2η1(λnη2 − ξ2)ϕ(c+, λn)ϕ′(c+, λn) + ((λnη2 − ξ2)2η1)ϕ′2(c+, λn)

+ η2ϕ
′2(c+, λn)]

= βn[

∫ c

0

ϕ2(x, λn)dx+

∫ π

c

ϕ2(x, λn)dx+ η1ϕ
′2(c−, λn) + η2ϕ

′2(c+, λn)]

= βnαn.

Thus the equality (2.17) holds. �

Theorem 2 means that the zeros of ∆(λ), thus the eigenvalues of problem L
are simple.

3. Asymptotic approximation of fundamental solutions and eigenvalues

In this section, we will obtain the asymptotic approximation of fundamental
solutions and eigenvalues of the problem L.

Lemma 2. Let s =
√
λ = σ + iτ . Then the following asymptotics hold.

ϕ(x, λ) =

{
cos sx+ O( 1

sexp(|τ |x)), x ∈ [0, c),

s6η1η2[ sin sx
2s −

sin s(x−2c)
2s ] + O(s4exp(|τ |x)), x ∈ (c, π],

(3.1)

χ(x, λ) =

{
s6η1η2[ sin s(π−x)

2s − sin s(2c−x−π)
2s ] + O(s4exp(|τ |x)), x ∈ [0, c),

cos s(π − x) + O( 1
sexp(|τ |x)), x ∈ (c, π].

(3.2)

Proof. From method of variation of parameters, it can be calculated out that
when x ∈ [0, c)

(3.3) ϕ(x, λ) = c1 cos(sx) + c2
sin(sx)

s
+

∫ x

0

sin[s(x− t)]
s

q(t)ϕ(t, λ)dt.
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Since

ϕ(0, λ) = 1, ϕ′(0, λ) = h,

substituting into (3.3), we get

ϕ(x, λ) = cos sx+ h
sin sx

s
+

∫ x

0

sin s(x− t)
s

q(t)ϕ(t, λ)dt.

Using method of variation of parameters again, for x ∈ (c, π] we can calculate out

(3.4) ϕ(x, λ) = c3 cos s(x− c) + c4
sin s(x− c)

s
+

∫ x

c

sin s(x− t)
s

q(t)ϕ(t, λ)dt,

(3.5) ϕ′(x, λ) = −sc3 sin s(x− c) + c4 cos s(x− c) +

∫ x

c

cos s(x− t)q(t)ϕ(t, λ)dt.

Since
ϕ(c+, λ) = (1− aλbλ)ϕ′(c−, λ)− bλϕ(c−, λ),
ϕ′(c+, λ) = −aλϕ′(c−, λ)− ϕ(c−, λ),

substituting into (3.4) and (3.5), we get

c3 = (1− aλbλ)ϕ′(c−, λ)− bλϕ(c−, λ),
c4 = −aλϕ′(c−, λ)− ϕ(c−, λ).

So, if x ∈ (c, π] the equation for ϕ(x, λ) is

ϕ(x, λ) =[(1− aλbλ)ϕ′(c−, λ)− bλϕ(c−, λ)] cos s(x− c)− [aλϕ
′(c−, λ)

+ ϕ(c−, λ)]
sin s(x− c)

s
+

∫ x

c

sin s(x− t)
s

q(t)ϕ(t, λ)dt

=
s2 − s2(s2η1 − ξ1)(s2η2 − ξ2) + (s2η2 − ξ2)h

2s
(sin s(x− 2c)− sin(sx))

− 1 + h(s2η1 − ξ1)

2s
(sin s(x− 2c) + sin(sx))

+
s2(s2η1 − ξ1)− h

2s2
(cos s(x− 2c)− cos(sx))

+
h− (s2η1 − ξ1)(s2η2 − ξ2)h− s2η2 + ξ2

2
(cos s(x− 2c) + cos(sx))

+
1− (s2η1 − ξ1)(s2η2 − ξ2)

2

∫ c

0

[cos s(x− t) + cos s(x− 2c+ t)]q(t)ϕ(t, λ)dt

+
1

2s2

∫ c

0

[cos s(x− t)− cos s(x− 2c+ t)]q(t)ϕ(t, λ)dt

− s2η2 − ξ2
2s

∫ c

0

[sin s(x− t)− sin s(x− 2c+ t)]q(t)ϕ(t, λ)dt

− s2η1 − ξ1
2s

∫ c

0

[sin s(x− t) + sin s(x− 2c+ t)]q(t)ϕ(t, λ)dt

+

∫ x

c

sin s(x− t)
s

q(t)ϕ(t, λ)dt.

Similarly, the equation for χ(x, λ) can be drawn
When s → ∞, then the asymptotic representations (3.1) and (3.2) are estab-

lished. �
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According to (2.14) and (3.1), the characteristic function ∆(λ) as s→∞ is

(3.6) ∆(λ) =
s6

2
η1η2(cos s(π − 2c)− cos sπ) + O(s5(exp(|τ |π)).

Let ∆(λ) = ∆1(λ) + ∆2(λ), where

∆1(λ) =
s6

2
η1η2(cos s(π − 2c)− cos sπ) = −s6η1η2 sin s(π − c) sin sc,

∆2(λ) = O(s5exp(|τ |π)).

We now can establish the asymptotic approximation formulas for the eigenval-
ues and characteristic function by similar arguments as those in [31].

Lemma 3. Let λn be the eigenvalues of the problem L, λ = s2. Let {rk}∞k=0 be
the zeros (counting with multiplicities if any) of the entire function

∆1(λ) = −s6η1η2 sin s(π − c) sin sc.

If rn′ is the closest point to λn, then as n→∞

(3.7) sn =
√
rn′ + O(n−

1
2 ).

In addition, if there exists a positive number C0 such that {rk}∞k=0 satisfy

(3.8) |
√
rk −

√
rk′ | > C0, as rk 6= rk′ ,

then (3.7) holds for n = n′.

Lemma 4. Fix δ > 0. Let Gδ = {s : |s−√rn| ≥ δ, n ≥ 0}, then for sufficient
large s∗ > 0 there exists a constant Cδ such that

(3.9) |∆(λ)| > Cδ|s6|exp(|τ |π), s ∈ Gδ, |s| > s∗.

4. Inverse problems

In this section, we mainly consider the reconstruction of the problem L, from the
Weyl function, from the spectral data {λn, αn}, and from two spectra {λn}∪{µn}.

Denote

(4.1) M(λ) =
χ(0, λ)

∆(λ)
.

Let S(x, λ) be the solution of (2.1), satisfying the following initial conditions
and jump conditions (2.4) and (2.5)

S(0, λ) = 0, S′(0, λ) = 1.

Because of W [ϕ, S;x] = 1, we have

χ(x, λ) = ∆(λ)S(x, λ) + χ(0, λ)ϕ(x, λ),

or

(4.2)
χ(x, λ)

∆(λ)
= S(x, λ) +M(λ)ϕ(x, λ).

Denote

(4.3) Φ(x, λ) =
χ(x, λ)

∆(λ)
.

Thus Φ(x, λ) is the solution of (2.1) that satisfies the conditions l1(Φ) =
1, l2(Φ) = 0 and the jump condition (2.4) and (2.5), where ∆(λ) is defined in
(2.13).
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The functions Φ(x, λ) and M(λ) are called the Weyl solution and the Weyl
function for the boundary value problem L.

Next, the uniqueness theorem for problem L will be given by the Weyl function.
For studying the inverse problem we agree that together with L consider a boundary
value problem L̃ of the same form but with different coefficients q̃(x), h̃, H̃, η̃i, ξ̃i,
i = 1, 2.

Theorem 3. If M(λ) = M̃(λ), then L = L̃, i.e. q(x) = q̃(x), a.e. and

h = h̃, H = H̃, ηi = η̃i, ξi = ξ̃i, i = 1, 2.

Proof. Let us define the matrix P (x, λ) = [pj,k(x, λ)]j,k=1,2 by the formula

P (x, λ)

(
ϕ̃(x, λ) Φ̃(x, λ)

ϕ̃′(x, λ) Φ̃′(x, λ)

)
=

(
ϕ(x, λ) Φ(x, λ)
ϕ′(x, λ) Φ′(x, λ)

)
,

then we can calculate that{
pj,1(x, λ) = Φ(j−1)(x, λ)ϕ̃′(x, λ)− ϕ(j−1)(x, λ)Φ̃′(x, λ),

pj,2(x, λ) = ϕ(j−1)(x, λ)Φ̃(x, λ)− Φ(j−1)(x, λ)ϕ̃(x, λ),
(4.4)

and {
ϕ(x, λ) = p11(x, λ)ϕ̃(x, λ) + p12(x, λ)ϕ̃′(x, λ),

Φ(x, λ) = p11(x, λ)Φ̃(x, λ) + p12(x, λ)Φ̃′(x, λ).
(4.5)

From (4.2)-(4.4) it can be obtained that

p11(x, λ) = 1 +
1

∆(λ)
(χ(x, λ)(ϕ̃′(x, λ)− ϕ′(x, λ))− ϕ(x, λ)(χ̃′(x, λ)− χ′(x, λ))),

p12(x, λ) =
1

∆(λ)
(ϕ(x, λ)χ̃(x, λ)− ϕ̃(x, λ)χ(x, λ)).

By virtue of (3.1), (3.2) and (3.9), for sufficiently large s∗, there exists a constant
Cδ > 0 such that

(4.6) |p11(x, λ)− 1| ≤ Cδ
|s|
, |p12(x, λ)| ≤ Cδ

|s|
, s ∈ Gδ, |s| ≥ s∗.

According to (4.2) and (4.4), the following equations can be obtained

p11(x, λ) = S(x, λ)ϕ̃′(x, λ)− ϕ(x, λ)S̃′(x, λ) + (M(λ)− M̃(λ))ϕ(x, λ)ϕ̃′(x, λ),

p12(x, λ) = ϕ(x, λ)S̃(x, λ)− S(x, λ)ϕ̃(x, λ) + (M̃(λ)−M(λ))ϕ(x, λ)ϕ̃(x, λ).

Thus, if M(λ) = M̃(λ), then for each fixed x, the functions p11(x, λ) and p12(x, λ)
are entire in λ. Combined with (4.6), and according to Liouville’s theorem, we can
get

(4.7) p11(x, λ) = 1, p12(x, λ) = 0.

Substituting (4.7) into (4.5), then for each x ∈ J and λ ∈ C it has

(4.8) ϕ(x, λ) = ϕ̃(x, λ), Φ(x, λ) = Φ̃(x, λ).

Thus if M(λ) = M̃(λ) holds, then we can conclude q(x) = q̃(x), a.e. and h =

h̃, H = H̃, ηi = η̃i, ξi = ξ̃i, i = 1, 2. So consequently, L = L̃. �

The following lemma can be established similarly as those in [3,31].
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Lemma 5. The function M(λ) is defined by (4.1), then the following expression
can be established

(4.9) M(λ) =

∞∑
n=0

1

αn(λ− λn)
.

Theorem 4. If λn = λ̃n and αn = α̃n, n ∈ N0, then q(x) = q̃(x) a.e., h =

h̃, H = H̃, ηi = η̃i, ξi = ξ̃i, i = 1, 2. Thus L = L̃.

Proof. From lemma 5, if λn = λ̃n and αn = α̃n, then M(λ) = M̃(λ). Ac-
cording to Theorem 3, this theorem can be proved. �

Lastly, through the two spectra {λn} ∪ {µn}, let us prove the uniqueness theo-
rem. Let {µn}∞n=0 be the spectra of the problem L1 consisting of the equation (2.1)
with the boundary conditions y(0) = 0, y′(π) + Hy(π) = 0 and jump conditions
(2.4) and (2.5). It is obvious that µn are the zeros of ∆0(λ) = χ(0, λ).

Lemma 6. The spectra {λn}n≥0 of L uniquely determine the characteristic
function ∆(λ) as the formula

(4.10) ∆(λ) = −C0

3∏
n=0

(λn − λ)

∞∏
n=4

λn − λ
λ0
n

,

where C0 = −c(π − c)η1η2, λn are the zeros of ∆(λ), λ0
n are the zeros of ∆1(λ).

Proof. Since ∆(λ) and ∆1(λ) are all entire in λ of order 1
2 , without of gener-

ality assume that λn > 0, so according to Hadamard’s factroization theorem, ∆(λ)
and ∆1(λ) can only represented by following equations

(4.11) ∆(λ) = C

∞∏
n=0

(1− λ

λn
), ∆1(λ) = C0λ

4
∞∏
n=4

(1− λ

λ0
n

).

where C0 = −c(π − c)η1η2. Then

(4.12)
∆(λ)

∆1(λ)
=

C

C0

3∏
n=0

(
1

λ
− 1

λn
)

∞∏
n=4

(
λ0
n

λn
)

∞∏
n=4

(1 +
λn − λ0

n

λ0
n − λ

).

According to (3.6) and from [3], it has

(4.13) lim
λ→−∞

∆(λ)

∆1(λ)
= 1, lim

λ→−∞

∞∏
n=4

(1 +
λn − λ0

n

λ0
n − λ

) = 1,

and

lim
λ→−∞

3∏
n=0

(
1

λ
− 1

λn
) = −

3∏
n=0

1

λn
.

Hence, from (4.12), it can be obtained that

(4.14) C = −C0

3∏
n=0

λn

∞∏
n=4

λn
λ0
n

,

substituting (4.14) into (4.11), one can calculate out

∆(λ) = −C0

3∏
n=0

(λn − λ)

∞∏
n=4

λn − λ
λ0
n

.

�
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Theorem 5. If λn = λ̃n, µn = µ̃n, n ≥ 0, then q(x) = q̃(x) a.e., H = H̃, ηi =

η̃i, ξi = ξ̃i, i = 1, 2. Thus L = L̃.

Proof. From Lemma 6, we know that each λ uniquely determines its charac-
teristic function ∆(λ), similarly µn also uniquely determines ∆0(λ). Therefore, one

has ∆(λ) = ∆̃(λ), ∆0(λ) = ∆̃0(λ), i.e. χ(0, λ) = χ̃(0, λ) when λn = λ̃n, µn = µ̃n.

Consequently M(λ) = M̃(λ), according to Theorem 3, the proof is completed. �
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