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Abstract. In this study, we consider non-smooth finite minimax problems.

A new approach for solving minimax problems is developed, employing indi-
cator functions and smoothing functions. First, the formulation of minimax

problems is revised using indicator functions. Then, a new generation smooth-

ing technique is used for the revised formulation. An algorithm is developed
to solve the revised and smoothed problems numerically. The efficiency of

the algorithm is demonstrated on several test problems, and a comparison is

conducted between the numerical results achieved and those of alternative ap-
proaches. Finally, the portfolio planning problem is considered as a real-life

application, and satisfactory results are obtained.

1. Introduction

We consider the following minimization problem

(1.1) min
x∈Rn

f(x),

where

(1.2) f(x) = max
j∈J

fj(x)

and fj : Rn → R, j ∈ J = {1, 2, . . . ,m} are continuously differentiable. The
different versions of the problem (1.1) been considered for many papers [25, 16,
3] and appear in many application areas such as engineering design [32], vehicle
routing [4], resource-allocation [15], portfolio selection [29], the problem of multi-
model regulatory networks under polyhedral uncertainty [30] and etc. [11, 14, 17,
28].

The problem (1.1) is difficult to solve since the objective function defined in (1.2)
may be non-differentiable [12]. Many algorithms have been developed in order to
solve the problem (1.1) such as sub-gradient based methods [20], bundle-methods
[19], homotopy methods [46] and smoothing methods [33, 22, 47].

In particular, we concentrate on smoothing techniques for non-smooth functions.
Smoothing techniques provide an opportunity to use the existing gradient-based
methods in solving finite minimax problems [10]. The smoothing techniques have
been considered for min-max type problems [23, 24] The idea of the smoothing
approaches is based on approximating the original, non-smooth functions by us-
ing smooth functions [9, 21, 34]. The approximation is controlled by adjustable
parameters. There are two important classes of smoothing techniques. The first
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technique is called local smoothing, which is based on smoothing out the origi-
nal function in a suitable neighborhood of the kink points. The second technique,
known as global smoothing, relies on building smooth functions that approximate
the original function across the entire domain.

Developing a smoothing function for the mathematical function f(x) described
in equation (1.2) is a difficult task since it has many kink points. To address these
challenges, alternative formulations have been suggested. Chronologically, we list
some of them. In [7], the function f(x) is restated as follows:

f(x) =f1(x) + max{f2(x)− f1(x) + max{
(1.3)

. . .max{fm−1(x)− fm−2(x) + max{fm(x)− fm−1(x), 0}, 0} . . . , 0}, 0},
and for the first time, one of the global smoothing approaches is proposed for solving
minimax problems. One of the first local smoothing techniques is proposed in [45]
for solving minimax problems by considering the form (1.3). However, the above
formula is useful, but coding it using computer programs is again complicated when
m is large. Alternative penalty form with a smooth approximation is stated in [40]
as

F (x, ε) = β ln

m∑
j=1

exp

(
fj(x)

ε

)
,(1.4)

where ε > 0 is a smoothing parameter. The formula (1.4) is efficiently used with
many gradient-based algorithms [44]. However, when ε is too small (ε → 0), the
numerical stabilization is uncontrolled because of an exponential term. Another
interesting formulation of f(x) is given

F (x, r) = r +

m∑
j=1

max{fj(x)− r, 0}(1.5)

by adding a new variable t and the relation

f(x) = min
r∈R

F (x, r)

is proved by [5, 6, 18]. Moreover, the hyperbolic smoothing technique proposed
by [36, 39] is applied to solve minimax problems in [5, 6] by considering formula
(1.5). In recent years, there has been considerable attention on smoothing methods,
and new generation smoothing techniques are proposed and successfully applied for
many non-smooth problems [35, 38, 42, 43]. However, minimax problems have not
been studied with these new generation smoothing techniques. In this study, we
consider the formula (1.5) and reformulate it in order to make it possible to apply
the new generation smoothing techniques to solve problem (1.1). We modify the
smoothing technique for minimax problems inspired by the paper [42] and introduce
the useful properties of this smoothing technique. We propose a new algorithm to
numerically solve the reformulated and smoothed problem. In order to show the
efficiency of the algorithm, some numerical examples are considered.

The next section focuses on providing some preliminary knowledge about smooth-
ing approaches. In Section 3, the formulation of the minimax problem is adapted
for the new generation smoothing technique, and the convergence properties of the
smoothing technique are investigated. In Section 4, we present the minimization
algorithm in order to find an approximate solution for the problem (1.1). In Section
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5, we apply the algorithms to the important test problems and a portfolio planning
problem in order to evaluate the numerical performance of the proposed algorithm.
The final section presents concluding remarks.

2. Preliminaries

Throughout the paper, ‖x‖ =
(∑n

k=1 x
2
k

) 1
2 is used to denote the Euclidean norm

in Rn. The L1[a, b]−norm is defined as

‖f‖L1[a,b] =

∫ b

a

|f(t)|dt,

where f is an integrable function. Moreover, x∗k denotes the k−th local minimizer
of f and x∗ denotes the global minimizer.

The sub-differential of the function f at the point x0 is defined as ∂f(x0) =
conv {∇fj(x0) : j ∈ {j ∈ N : fj(x0) = f(x0)}} where conv is a convex hull of a set.
A point x0 ∈ Rn is called a stationary point of f if 0 ∈ ∂f(x0).

Definition 1. [10] Let h be a continuous function defined on Rn to R. The function

h̃ : Rn × R+ → R is called a smoothing function of h(x), if h̃(·, ε) is continuously
differentiable in Rn for any fixed β, and for any x ∈ Rn,

lim
y→x,ε→0

h̃(y, ε) = h(x).

3. A New Formulation of Minimax Problems and Smoothing Approach

In this section we revise the formula of minimax problems give in (1.5) and we
apply the smoothing technique to this new formulation.

By considering the technique in [41], let us re-define the function (1.5) as follows:

(3.1) F (x) = r +

m∑
j=1

(fj(x)− r)χAj
(x),

where χAj
(x) function is the indicator function of the set Aj defined by

χAj
(x) =

{
0, x 6∈ Aj ,
1, x ∈ Aj ,

where Aj = {x ∈ Rn : fj(x)− r ≥ 0} for j = 1, 2, . . . ,m. It is easy to see that
the function F (x) may have non-smooth structure. Indeed, the non-smoothness of
F (x) is originated from the existence of the χAj

(x) since fj(x) are continuously
differentiable for j = 1, . . . ,m. The idea for eliminating this lack is that if the
indicator functions χBji(x) is smoothed, then the function F (x) becomes smooth.
First, we define the smoothing function for indicator functions.

Definition 2. Let h be a semi-continuous function (upper or lower) defined on R
to R. The function g̃ : R×R+ → R is called a smoothing function of g(t), if h̃(·, ε)
is continuously differentiable in Rn for any fixed ε, and for any t ∈ R,

lim
z→t,β→0

g̃(z, ε) = h(t).

For tj = fj(x)− r, we re-define the indicator functions as

χAj (t) =

{
0, tj < 0,
1, tj ≥ 0.
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In the following we give the smoothing function of indicator function as

(3.2) χ̃Aj
(t, ε) =

 0, t ≤ −ε,
Q(t, ε), −ε ≤ t ≤ ε,
1, t ≥ ε,

where Q(tj , ε) = 3
16ε5 t

5
j− 10

16ε3 t
3
j+ 15

16ε tj+
1
2 and ε > 0. The function Q(tj , ε) is called

smooth transition function. It is designed in order to supply twice continuously
differentiability between the pieces of the indicator function. Therefore, χAj

(tj , ε)
is second-order continuously differentiable. We have

(3.3) χ̃′Aj
(j, ε) =

 0, tj ≤ −ε,
Q′(tj , ε), −ε ≤ tj ≤ ε,
0, tj ≥ ε,

where Q′(tj , ε) = 15
16ε5 t

4
j − 30

16ε3 t
2
j + 15

16ε and

(3.4) χ̃′′Aj
(tj , ε) =

 0, tj ≤ −ε,
Q′′(tj , ε), −ε ≤ tj ≤ ε,
0, tj ≥ ε,

where Q′′(tj , ε) = 15
4ε5 t

3
j − 15

4ε3 tj .
At the following lemmas, we investigate the relation between χAj

(t) and its
smoothing function χ̃Aj

(t, ε).

Lemma 1. Assume that χAj
(tj) is an indicator function of the set Aj ⊂ Rn and

χ̃Aj
(tj , ε) is a smoothing function of χAj

(tj). Then, we have

|χ̃Aj
(tj , ε)− χAj

(tj)| ≤
1

2
,

for any ε > 0.

Proof. Since we have χ̃Aj
(tj , ε) = χAj

(tj) for tj ≤ −ε and tj ≥ ε, we discuss the
cases −ε ≤ tj ≤ 0 and 0 ≤ tj ≤ ε. For −ε ≤ tj ≤ 0, we obtain∣∣χ̃Aj (tj , ε)− χAj (tj)

∣∣ = |Q(tj , ε)| ≤
1

2
,

and for 0 ≤ tj ≤ ε ∣∣χ̃Aj
(tj , ε)− χAj

(tj)
∣∣ = |Q(tj , ε)− 1| ≤ 1

2
.

Therefore, the proof is completed. �

Lemma 2. Assume that χAj
(tj) is an indicator function of the set Aj ⊂ Rn and

χ̃Aj
(tj , ε) is the smoothing function. Then, we have

‖χ̃Aj (tj , ε)− χAj (tj)‖L1(R) ≤
ε

2
,

for any ε > 0.
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Proof. Since we have χ̃Aj
(tj , ε) = χAj

(tj) for tj ≤ −ε and tj ≥ ε, we deal with the
case −ε ≤ tj ≤ ε. For −ε ≤ tj ≤ ε,∥∥χ̃Aj

(tj , ε)− χA(tj)
∥∥
L1(R) =

∫ ε

−ε

∣∣χ̃Aj
(tj , ε)− χAj

(tj)
∣∣ dt

=

∫ 0

−ε
|Q(tj , ε)| dt+

∫ ε

0

|Q(tj , ε)− 1| dt

=
5ε

32
+

5ε

32

<
ε

2
.

Therefore, the proof is completed. �

Based on the new formulation and smoothing technique we define the smoothing
function of the objective function F (x) as

(3.5) F̃ (x, ε) = r +

m∑
j=1

tjχAj
(tj , ε),

where tj = fj(x)− r and the problem given in (1.1) is re-defined as

(3.6) min
x∈Rn

F̃ (x, ε) ,

for ε > 0. First, we introduce the case m = 2 and obtain the following results.

Theorem 1. Let x ∈ Rn, ε > 0

|F (x)− F̃ (x, ε)| ≤ ε.

Proof. Since χ̃A1(t1, ε) = χA1(t1) for t1 ≤ −ε and t1 ≥ ε and χ̃A2(t2, ε) = χA2(t2)
for t2 ≤ −ε and t2 ≥ ε, we concern with the case −ε ≤ t1, t2 ≤ ε for ε > 0. Let us
consider the case t1 ∈ [−ε, ε] and t2 6∈ [−ε, ε]

|F (x)− F̃ (x, ε)| = |r + t1χA1
(t1) + t2χA2

(t2)− (r + t1χ̃A1
(t1, ε) + t2χ̃A2

(t2, ε)) |
= |t1χA1

(t1)− t1χ̃A1
(t1, ε)|

≤ ε

2
.

Similar result is obtained for the case t1 6∈ [−ε, ε] and t2 ∈ [−ε, ε]. Now, we consider
the case −ε ≤ t1, t2 ≤ ε. By considering the Lemma 1, we obtain

|F (x)− F̃ (x, ε)| = |r + t1χA1(t1) + t2χA2(t2)− (r + t1χ̃A1(t1, ε) + t2χ̃A2(t2, ε)) |
= |t1 (χA1(t1)− χ̃A1(t1, ε)) + t2 (χA2(t2)− t2χ̃A2(t2, ε)) |
≤ |t1||χA1(t1)− χ̃A1(t1, ε)|+ |t2||χA2(t2)− χ̃A2(t2, ε)|

≤ ε

2
+
ε

2
= ε.

Thus, the proof is completed. �

Theorem 2. Let ε > 0 and x ∈ Rn

‖F̃ (x, ε)− F (x)‖L1 ≤ 2ε2.
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Proof. We start the proof similar to the Lemma 1. Since χ̃A1
(t1, ε) = χA1

(t1) for
t1 ≤ −ε and t1 ≥ ε and χ̃A2(t2, ε) = χA2(t2) for t2 ≤ −ε and t2 ≥ ε, we concern
with the case −ε ≤ t1, t2 ≤ ε for ε > 0. Let us consider the case t1 ∈ [−ε, ε] and
t2 6∈ [−ε, ε]

‖F̃ (x, ε)− F (x)‖L1 =

∫ ε

−ε
|r + t1χA1

(t1) + t2χA2
(t2)−

(r + t1χ̃A1
(t1, ε) + t2χ̃A2

(t2, ε))| dt

=

∫ ε

−ε
|t1χA1

(t1)− t1χ̃A1
(t1, ε)| dt

=

∫ ε

−ε
|t1| |χA1(t1)− χ̃A1(t1, ε)| dt.

Since |t1| ≤ ε and from Lemma 2, we have

‖F̃ (x, ε)− F (x)‖L1 ≤ ε2.
Similar result is obtained for the case t1 6∈ [−ε, ε] and t2 ∈ [−ε, ε]. Now, we

consider the case −ε ≤ t1, t2 ≤ ε. By considering the Lemma 2, we obtain

‖F̃ (x, ε)− F (x)‖L1 =

∫ ε

−ε
|r + t1χA1

(t1) + t2χA2
(t2)−

(r + t1χ̃A1
(t1, ε) + t2χ̃A2

(t2, ε))| dt

=

∫ ε

−ε
|t1 (χA1

(t1)− χ̃A1
(t1, ε)) + t2 (χA2

(t2)− t2χ̃A2
(t2, ε)) |dt

≤
∫ ε

−ε
|t1||χA1

(t1)− χ̃A1
(t1, ε)|dt+

∫ ε

−ε
|t2||χA2

(t2)− χ̃A2
(t2, ε)|dt

≤ ε2 + ε2 = 2ε2.

Thus, the proof is completed. �

The Theorems 1 and 2 are verify theoretically that the proposed approach is
a smoothing approach. In order to visualize the smoothing process we give the
following example:

Example 1. Let the function f is defined as

f(x) = max{f1(x), f2(x)},
where f1(x) = 1

5x
2 and f2(x) = x. It can be observed from the definition of the

function f is continuous but non-differentiable and ∂f(0) = [0, 1]. According to the
concept of the sub-differential, the point x0 = 0 is the stationary point. The graph
of the function f can be imagined by considering the max function of f1 and f2 at
Fig. 1 (blue and solid). By applying the above smoothing technique the smoothing

function F̃ (x, ε) of f is obtained as

F̃ (x, ε) = r + (f1(x)− r)χ̃A1
(t1, ε) + (f2(x)− r)χ̃A2

(t2, ε),

where A1 = {x ∈ R : f1(x)− r ≥ 0}, A2 = {x ∈ R : f2(x)− r ≥ 0} for x ∈ R. By
choosing r = 0, the graph of the function F (x, ε) is illustrated in Fig. 1 (a) (red
and dotted). In fact, we obtain an outer approximation to original function by
the help of the above smoothing approach. We can deduce that for any function
f(x) = max{f1(x), f2(x)}, the inequality f(x) = F (x) ≥ F̃ (x, ε) holds.
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Figure 1. (a) The blue graph is the graph of f(x), the red and

dotted one is the graph of F̃ (x, 0.5) and the green and dotted

one is the graph of F̃ (x, 1), and (b) The blue graph is the

graph of f(x), the red one is the graph of F̃ (x, 0.2), the green
one is the graph of exponential smoothing with ε = 0.2 and
the yellow one is the graph of hyperbolic smoothing function
with ε = 0.2.

According to Fig. 1 (a), choosing smaller ε values produces better approxima-
tions to the original function. In Fig. 1 (b), we illustrate the graph of smoothing
functions that we mentioned in the introduction in a single framework in order to
compare them visually. When the same value of ε = 0.2 is chosen for all smoothing
approaches, the best approximation is achieved by our smoothing approach.

Let us continue giving the results about the degree of approximation of the the
smoothing approach. Now, we present the convergence results for any finite value
of m.

Theorem 3. Let x ∈ Rn, ε > 0∣∣∣F (x)− F̃ (x, ε)
∣∣∣ ≤ m

2
ε.

Proof. For any x ∈ Rn, we have

∣∣∣F (x)− F̃ (x, ε)
∣∣∣ =

∣∣∣∣∣∣r +

m∑
j=1

tjχAj (tj)−

r +

m∑
j=1

tjχ̃Aj (tj , ε)

∣∣∣∣∣∣ .
By considering the similar way of the proof of Theorem 1, we obtain∣∣∣F (x)− F̃ (x, ε)

∣∣∣ ≤ m∑
j=1

|tj |
∣∣χAj

(tj)− χ̃Aj
(tj , ε)

∣∣
≤ mε

2
.

Thus, the proof is completed. �
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Theorem 4. Let x ∈ Rn, ε > 0

‖F̃ (x, ε)− F (x)‖L1 ≤ mε2.

Proof. The proof is obtained by following similar ways as Theorems 2 and 3. �

Theorem 5. Suppose that the point x∗ is an optimal solution for the problem (1.1)
and x is an optimal solution for the problem (3.5). Then,

|F (x∗)− F̃ (x, ε)| ≤ ε.

Proof. Since F (x̄) ≥ F (x∗) ≥ F̃ (x̄, ε) we have

|F (x∗)− F̃ (x̄, ε)| ≤ |F (x̄)− F̃ (x̄, ε)|.

By the help of Theorem 1 and 3, we obtain

|F (x̄)− F̃ (x̄, ε)| ≤ ε.

It completes the proof. �

Theorem 6. Let {εj} → 0 and xk be a solution of (3.5). Assume that x is an
accumulation point of

{
xk
}

. Then x is an optimal solution for (1.1).

Proof. By considering the Theorem 5, the proof is obtained. �

4. Algorithm and Minimization Procedure

In this section the new algorithm inspiring from [6] is given to solve minimax
problem defined in (1.1). We propose to use smoothed version of the problem (3.6)
instead of the problem given in (1.1).

Algorithm I

Step 1 Choose a starting point x0 and set r0 = f(x0). Determine ε0 > 0, 0 < q < 1
and τ = 10−4 let k = 0 and go to Step 2.

Step 2 Consider xk as an initial point to solve the problem (3.5) by using smooth
optimization solver. Let xk+1 be the solution.

Step 3 If ‖∇F̃ (xk, εk)‖ ≤ τ then stop and xk+1 is the optimal solution otherwise;
determine εk+1 = qεk, rk+1 = f(xk+1) and k = k + 1, then go to Step 2.

Wee need the following assumption for convergence of the Algorithm I.

Assumption 1. For a point x0 consider the level set L(x0) =
{
x ∈ Rn : f(x) ≤ f(x0)

}
is bounded.

The convergence of Algorithm I is stated by the following theorem:

Theorem 7. Let Assumption 1 hold. Suppose the set

argmin
x∈Rn

F̃ (x, ε) 6= ∅,

for ε ∈ (0, ε0]. Let xk be generated by Algorithm I. If {xk} has an accumulation
point, then the accumulation point of {xk} is the solution for (1.1).
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Proof. Let us define the set L(x0) =
{
x ∈ Rn : f(x) ≤ f(x0)

}
for starting point x0.

Since L(x0) is bounded, the sequence {xk} has at least one accumulation point.
Let x be an accumulation point of {xk}. We first show that x ∈ L(x0). Since

F̃ (x0, ε) ≥ F̃ (xk, ε),

and according to Theorem 4, we have f(x0) ≥ f(xk) and xk ∈ L(x0). Since L(x0)
is bounded we obtain x ∈ L(x0). By the Theorem 6, x is the solution for (1.1). �

5. Numerical Examples

This section is devoted to present the numerical results of Algorithm I with the
smoothing approach on finite minimax problems. Moreover, the obtained results are
compared with Algorithm I with exponential smoothing used in [26] and Algorithm
I with hyperbolic smoothing used in [6, 39]. We consider the BFGS method as a
local search for Algorithm I. We apply the Algorithm I by using MATLAB on PC
with configuration of Intel Core i3, 8GB RAM. At this algorithm, the parameters
are selected as ε = 10−1 and q = 10−1. It is accepted that the problem is solved, if
the accuracy 10−4 with respect to function value is obtained.

5.1. Test problems. We first consider the well known test problems given in [27,
13] and the obtained results are compared with competing algorithm declared at
above. The explicit formula of test problems are presented as follows:

Problem 1. [27] min f(x) = max
1≤j≤2

fj(x) where f : R2 → R and

f1(x) = x21 + (x2 − 1)2 + x2 − 1,

f2(x) = −x21 − (x2 − 1)2 + x2 + 1,

the global minimum value of the objective function f is f∗ = 0.

Problem 2. [27] min f(x) = max
1≤j≤3

fj(x) where f : R2 → R and

f1(x) = x21 + x42,

f2(x) = (2− x1)2 + (2− x2)2,

f3(x) = 2 exp(x2 − x1),

the global minimum value of the objective function f is f∗ = 1.9522245.

Problem 3. [27] min f(x) = max
1≤j≤3

fj(x) where f : R2 → R and

f1(x) = 5x1 + x2,

f2(x) = −5x1 + x2,

f3(x) = x21 + x22 + 4x2,

the global minimum value of the objective function f is f∗ = −3.
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Problem 4. [27] min f(x) = max
1≤j≤6

fj(x) where f : R3 → R and

f1(x) = x21 + x22 + x23 − 1,

f2(x) = x21 + x22 + (x3 − 2)2,

f3(x) = x1 + x2 + x3 − 1,

f4(x) = x1 + x2 − x3 + 1,

f5(x) = 2x31 + 6x22 + 2(5x3 − x1 + 1)2,

f6(x) = x21 − 9x3,

the global minimum value of the objective function f is f∗ = 3.5997.

Problem 5. [27] min f(x) = max
1≤j≤4

fj(x) where f : R4 → R and

f1(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = f1(x) + 10
(
x21 + x22 + x23 + x24 + x1 − x2 + x3 − x4 − 8

)
,

f3(x) = f1(x) + 10
(
x21 + 2x22 + x23 + 2x24 − x1 − x4 − 10

)
,

f4(x) = f1(x) + 10
(
2x21 + 2x22 + x23 + 2x1 − x2 − x4 − 5

)
,

the global minimum value of the objective function f is f∗ = −44.

Problem 6. [27] min f(x) = max
1≤j≤5

fj(x) where f : R7 → R and

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + 10x65

+7x26 + x47 − 4x6x7 − 10x6 + 8x7,

f2(x) = f1(x) + 10
(
2x21 + 3x42 + x3 + 4x24 + 5x5 − 127

)
,

f3(x) = f1(x) + 10
(
7x1 + 3x2 + 10x23 + x4 − x5 − 282

)
,

f4(x) = f1(x) + 10
(
23x1 + x22 + 6x26 − 8x7 − 196

)
,

f5(x) = f1(x) + 10
(
4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7

)
,

the global minimum value of the objective function f is f∗ = 680.63006.

Problem 7. [13] min f(x) = max
1≤j<m

fj(x) where f : R2 → R,

fj(x) = x21 + 2x1t
2
j + exp(x1 + x2)− exp(tj),

and tj = j
(q−1) , j = 0, 1, . . . ,m − 1. The global minimum value of objective

function f is f∗ = −1.

Problem 8. [13] min f(x) = max
1≤i,j<m

fi,j(x) where f : R4 → R,

fi,j(x) =
(ti − xi)2

x23
+

(rj − x2)2

x24
− 4,

and ti = i√
m−1 , tj = j√

m−1 , i, j = 0, 1, . . . ,m − 1. The global minimum value

of the objective function f is f∗ = −4.

The numerical results are reported in Table 1. In the table, the number dimen-
sion “n”, the number of functions “m” for each of the problems is presented. We
illustrate the results on total iteration numbers “iter”, total function evaluations
“feval”, function values “f.val” and the CPU time in seconds “Time” obtained by
using Algorithm I with our formulation and smoothing approach (ISA) in the left
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Table 1. The numerical results comparison with smoothing

ISA ESA HSA
Problem No. n m iter feval f.val Time iter f.eval f.val Time iter f.eval f.val Time

1 2 2 10 93 −0.0000 0.0131 65 338 0.0000 0.0947 38 210 0.0000 0.0656
2 2 3 2 21 1.9522 0.0233 57 262 1.9582 0.0550 61 252 1.9523 0.0644
3 2 3 17 252 −3.0000 0.0382 17 153 −2.9940 0.0601 18 144 −3 0.0423
4 3 6 33 256 3.5997 0.0563 99 578 3.6030 0.0685 97 1220 3.5998 0.2136
5 4 4 36 640 −44.0000 0.0864 115 705 −43.832 0.1069 114 945 −43.99 0.1270
6 7 5 98 1832 680.3800 0.1230 236 2174 678.9000 0.1941 106 2528 693.02 0.3226
7 2 5 47 156 −1.0000 0.0263 42 193 −0.9999 0.0354 52 186 −0.9999 0.0362
7 2 10 57 195 −1.0000 0.0424 11 99 −1.0000 0.0471 56 222 −0.9999 0.0632
7 2 50 51 186 −1.0000 0.1062 16 105 −1.0000 0.0672 79 321 −1 0.2010
7 2 100 43 144 −1.0000 0.4833 35 186 −0.9888 0.6020 64 246 −0.9999 0.2951
7 2 500 36 156 −1.0000 0.8912 45 201 −0.9876 0.9571 61 216 −0.9999 0.9096
7 2 1000 50 228 −1.0000 7.2473 61 267 −0.9982 1.1384 58 231 −0.9999 1.7948
8 4 5 22 115 −4.0000 0.0342 24 175 −3.9868 0.0594 33 210 −4 0.0483
8 4 10 70 120 −4.0000 0.0101 18 145 −3.9650 0.0495 16 110 −3.9999 0.0427
8 4 50 13 184 −4.0000 0.2096 6 105 −3.9679 0.0629 36 255 −4 0.1703
8 4 100 54 432 −4.0000 0.7779 26 195 −3.9731 0.6396 31 210 −3.9999 0.2575
8 4 500 69 647 −4.0000 1.9314 44 385 −3.9660 1.8309 28 200 −4 1.9911
8 4 1000 96 859 −4.0000 5.7579 21 155 −3.8949 4.7227 17 145 −4 3.6680

side of the Table 1. Additionally, we present the results at the same categories
as our method for exponential smoothing (in [26]) with Algorithm I (ESA) and
hyperbolic smoothing (in [6]) with Algorithm I (HSA) approaches at the rest of the
Table 1. The same starting points are considered for both of the algorithms and
these points are randomly chosen.

It can be seen from the Table 1 that ISA presents better results than ESA and
HSA at the rate of 50% considering all test problems in terms of total number of
iterations. In terms of total function evaluations, ISA presents better results than
the ESA and HSA at the rate of 56% considering all test problems. Moreover, by
using ISA and HSA (except Problem 6) the correct solutions are obtained for all
test problems but by using ESA the solutions are not close to desired results except
Problem 5. Moreover, if anyone compares ISA with the ESA and HSA in terms of
CPU time, it is seen that ISA is faster than than ESA and HSA at the rate of 72%
considering all test problems. On the other hand, it is not easy to use the ESA
because of the exponential term. When the smoothing parameter ε → 0+ again

the exponential function exp(
fj(x)
ε ) reaches huge values. Therefore the function

“fminunc” gives error and can not continue. The HSA is easy to control and it is
possible to obtain the results with desired precision but it is slower than ISA. It
can be concluded that ISA is very easy to use and it has no drawbacks as the ESA.

5.2. Application of Algorithm I in portfolio planning problem. In this sec-
tion, a minimax portfolio planning model is considered. The problem first defined
by [31] and it is reformulated by Cai et al. in [8] and Teo et al. in [37]. The final of



12 NURULLAH YILMAZ

this problem given in [29]. The problem is mathematically formulated as follows:

min f(x) =
1

12

12∑
t=1

yt(5.1)

s.t.

Ax ≤ y,
0.0207x1 + 0.0316x2 + 0.0323x3 + 0.0337x4 + 0.0376x5 ≥ 0.03,

5∑
j=1

xj = 1,

0 ≤ xj ≤ 0.75 j = 1, 2, . . . , 5,

yi ≥ 0 i = 1, 2, . . . , 12,

where A is a 12× 5 matrix given as

(5.2) A =



0.0333 0.0004 0.0083 0.0043 0.0114
0.0243 0.0234 0.0203 0.0283 0.0294
0.0507 0.0676 0.0123 0.0707 0.0766
0.0387 0.0204 0.0087 0.0163 0.0134
0.0223 0.0154 0.0173 0.0313 0.0114
0.0263 0.0024 0.0003 0.0767 0.0006
0.0334 0.0314 0.0013 0.0283 0.0174
0.0153 0.0164 0.0113 0.0003 0.0126
0.0597 0.0066 0.0747 0.0013 0.0144
0.0637 0.0084 0.0113 0.0223 0.0176
0.0253 0.0044 0.0043 0.0233 0.0074
0.0313 0.0486 0.0037 0.0087 0.0024


x = (x1, x2, . . . , x5)T is decision variable y = (y1, y2, . . . , yn)T . For more details
of the problem, we refer to [29]. We consider the equivalent formulation of the
problem (5.2), defined as

min f(x) =
1

12

12∑
t=1

max
j
A(t, j)xj(5.3)

s.t.

0.0207x1 + 0.0316x2 + 0.0323x3 + 0.0337x4 + 0.0376x5 ≥ 0.03,

5∑
j=1

xj = 1,

0 ≤ xj ≤ 0.75 j = 1, 2, . . . , 5,

yi ≥ 0 i = 1, 2, . . . , 12,

By considering Algorithm I, the numerical solution of the problem is obtained as
x∗ = (0.0000, 0.0000, 0.7500, 0.0000, 0.2500)T with the corresponding function value
f(x∗) = 0.015 which verifies the solution given in [29].
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6. Conclusion

In this study, new generation smoothing techniques are successfully applied to
the finite minimax problems. The formulation of minimax problems is revised
based on the indicator functions. The error estimates are presented, and the rela-
tions between the original and smoothed problems are investigated in detail. This
reformulation and suggested smoothing technique not only simplify the formulation
of minimax problems but also provide a smooth approximation for such non-smooth
problems.

A new algorithm for solving reformulated and smoothed finite minimax problems
is presented, and the efficiency of our algorithm on some numerical examples is
illustrated. According to the comparison of the results with the other methods, it
is shown that our approach is competitive with well-known prestigious approaches.

For future studies, indicator functions can be used to derive effective formula-
tions of minimax problems. The concept of employing new generation smoothing
techniques utilizing indicator functions can also be extended to address various
non-smooth problems, including complementarity, exact penalty, l1 signal recon-
struction, and so on. On the other hand, the methodology proposed in this article
can be considered to solve the minimax part of the problem of the optimization of
desirability functions under model uncertainty [1, 2, 30].
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