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Abstract

The solutions of traditional fractional differential equations neither satisfy
group property nor generate dynamical systems, so hyperbolicity of these e-
quations is difficult to study. Benefitting from the new proposed conformable
fractional derivative, we investigate dichotomy of conformable fractional e-
quations, including conformable exponential dichotomy and stability, rough-
ness and nonuniform dichotomy.
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1 Introduction

The well-known dichotomy concept on various of hyperbolic systems, e.g. ODEs
T=A(t)x, teJ, (1.1)

where interval J C R, is said that there exist a projection matrix P and a funda-
mental matrix X (¢) of (1.1), and positive constants K; and (; (i = 1,2) such that
forall t,s € J,

||X(t)PX_1(s)|| < Kle_ﬁl(t_s), t> s,

IX(E)(I — P)XY(s)]| < Kae 2670, s>+, (1.2)

*E-mail address:matzhj@163.com.
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Correspondingly, the roughness of dichotomy is regarded as the persistence of di-
chotomy undergoing small linear perturbation, i.e., the perturbed system

i=(A{t)+ B(t))z, teJ

still admits dichotomy behaviour in the form of (1.2) along with small variations
of P, X(t), K; and f; (i = 1,2). According to the difference of asymptotic rate,
there are diverse dichotomies, e.g., the classical exponential dichotomy (1.2) ([16]),
(h, k)-dichotomy ([30]), polynomial dichotomy ([8]), etc. The dichotomies and their
corresponding properties are core issues in the field of dynamical systems, which can
be traced back to the papers of Perron ([33]) and Li ([26]) on conditional stability
of linear differential and difference equations respectively. And they are gradually
formalized, developed and summarized in literatures [28, 29, 16]. Recently decades,
many research results were devoted to exploring the existence criteria of exponen-
tial dichotomy (see Hale ([22]), Chow and Leiva ([13]), Sasu ([38]), Barreira and
Valls ([7]), Battelli and Palmer ([10]) and the references therein). The roughness
referred before are also widely focused on, and firstly demonstrated by Masser-
a and Schéffer ([28]) under hypothesis that the original matrix A(t) is bounded.
Schiffer ([39]) subsequently eliminated the assumption of boundedness. Coppel
([15]) gave a general elementary proof of roughness if matrix A(¢) commutes with
the projection P. In 1978 Coppel ([16, pp.28-33]) exhibited a simpler proof via
the so-called projected integral inequalities raised by Hale ([22, pp.110-111]). Later,
Naulin and Pinto ([31]) improved the size of perturbation B(t) in Coppel’s [16,
pp-34-35] without boundedness of A(t) yet. Popescu ([36]) further generalized the
results of [16] and [31] to infinite dimensional Banach spaces. Thereafter, the no-
tion of nonuniform exponential dichotomy, roughly speaking dichotomy formula
(1.2) involving extra nonuniform constants in exponents, was proposed by Bar-
reira and Valls ([7]), where its roughness was also studied. In 2013 Zhou, Lu and
Zhang ([48]) studied the roughness of tempered exponential dichotomy for random
difference equations in Banach spaces lack of the so-called Multiplicative Ergodic
Theorem. Moreover, plenty of works on the roughness of exponential dichotomy
could be found in [12, 13, 16, 31, 36, 7] for continuous dynamical systems and in
(34, 38, 48, 49] for discrete dynamical systems and references therein. In addition,
the corresponding admissibility problem of dichotomy, i.e. admissible functions pair
of solutions  and inhomogeneous perturbations f, was investigated extensively in
[29, 38, 49, 6, 19] and so on.

Although the research on dichotomy involved ODEs ([28, 29, 22, 16, 30, 31, 12,
36, 7, 8, 10, 19]), difference equations ([26, 38, 49, 48]), functional differential e-
quations ([32]), random systems ([2, 20, 14, 27]), skew-product semiflows ([13, 34]),
etc., till now there is no result of dichotomy for fractional differential equations
(FDEs for short). Fractional derivative started from a letter from L’Hospital to
Leibniz about discussing the meaning of a half derivative. From then on, because
of better approximation to practical model associated with memory and hereditary
phenomena than ODEs and PDEs, FDEs are steadily developed in the aspects of
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Physics and Chemistry ([47, 44]), Biology and Medicine ([18, 41]), Engineering
and Control Theory ([3, 35]) and Economics and Psychology ([11, 40]), especially
in recent decades (see monographs [35, 25, 21, 50, 23, 17]). Traditional definitions
of fractional derivative and integral, such as Riemann-Liouville’s, Caputo’s and
Griinwald-Letnikov’s ([35, 25]), have no product rule and chain rule of derivative,
such that the solutions of FDEs neither fulfil group property nor generate dynamical
systems. There is a vast of works on well-posedness ([50]), stability ([25]), Laplace
transform method and optimal control ([35]), variational method, attractors and
numerical solutions ([21]) and chaos ([5]) of FDEs, but the study on hyperbolicity
of FDEs is temporarily in blank state. Until 2014, Khalil et al. ([24]) introduced
a new definition of fractional derivative, that is so-called conformable fractional
derivative, which can almost satisfy all corresponding characteristics analogous to
integer derivative. Thus, the solutions of CFDEs (abbreviation of conformable frac-
tional differential equations) also can generate dynamical systems, which makes it
possible to consider the hyperbolic behaviors of FDEs. Later, Abdeljawad ([1])
accomplished the definition of left and right conformable fractional derivatives and
the variation of constants formula of CFDESs and solved CFDESs via Laplace trans-
form. In 2017 Souahi et al. ([42]) employed Lyapunov direct method to present the
stability, asymptotic stability and exponential stability of CFDEs. In 2019 Khan
et al. ([43]) further verified the generalized definition and its semigroup and linear
properties of conformable derivative and existence and uniqueness of solutions for
CFDEs. During the same year, Balci et al. ([4]) displayed the Neimark-Sacker bi-
furcation and chaotic behavior for a tumor-immune system modelled by a CFDE.
In 2020 Xie et al. ([46]) showed an exact solution and difference scheme for a
gray model with conformable derivative. Recently, Wu et al. ([45]) revealed the
Hyers-Ulam stability of a conformable fractional model.

In this paper we attempt to establish the theory of dichotomy for CFDEs.
In order to generalize the hyperbolicity of ODEs to CFDEs, we first modify the
definitions of conformable fractional derivative and integral and a conformable ex-
ponential function originated from [24, 1]. Subsequently, some preliminaries, e.g.
the well-posedness of solutions, operator semigroups and variation of constants for-
mula, are achieved in section 2. In section 3, we provide the definitions of so-called
conformable exponential stability and dichotomy with respect to CFDEs, whose
asymptotic rate is the conformable exponential function. These stability and di-
chotomy include the classical exponential stability and dichotomy ([16]) in ODEs
with integer derivative as special cases. Meanwhile, we develop the conformable
fractional integral versions of projected inequalities to prove the existence of con-
formable exponential dichotomy and corresponding invariant manifolds. In section
4, we discuss the roughness of conformable exponential dichotomy in R,. In sec-
tion 5, we additionally study nonuniform conformable exponential stability and
dichotomy and their roughness in R,. Our results extend the works of Hale ([22]),
Coppel ([16]), Barreira and Valls ([7]) to CFDEs.
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2 Linear CFDEs

Throughout this paper, we define the following functions sets:

I(R,R) := {¢ : R — R|y is a nondecreasing function},

C(R,R) :={p:R — R | is a continuous function},
Cy(R,R) := {¢ : R — R| ¢ is a continuous and bounded function},
Ci(R,R) := {¢ : R — R |y is a continuous and nondecreasing function}.

Further, set real constants a € (0, 1] and t., o, t* satisfying t. < ¢, < t*, function
f:(ts,t") — R, and norms

Hx\|—§:ml : [to, +00) = R™,

I|A®)| _maX{ZMn |Z|alg Z|am b, AR — R

In this section, we focus on the qualitative properties of linear CFDEs and their
perturbations. Analogously to the linear ODEs, there also exists fundamental
solutions for linear CFDEs. Consider the nonautonomous linear CFDE

Tz = A(t)z, (t,r) € R (2.1)

where matrix function A € C(R,R™ ™). Our primary purpose is to establish its
well-posedness, e.g. existence and uniqueness, continuous dependence on initial
data of solutions and continuation of solutions. Before this, as a preliminary, we
modify the definition and some properties of conformable fractional derivative and
integral raised by Khalil, Horani, Yousef and Sababheh([24]) and Abdeljawad([1]),

to make them make more sense.

Definition 2.1 The a-conformable fractional derivative of f is defined as

7o) = tim LT =IO (2.2)

e—0 £

In particular, if lir% Tf(t) exists, then
—

Tf(0) :=lHmT*f(¢t).

t—0

Here function f is called as a-conformable differentiable, if T f(t) exists.

Our Definition 2.1 extends the one in [24] to the case of t < 0. And differ-
ent from the definition in [1], there are same formulae in (2.2) for both ¢ < 0
and ¢t > 0. Further, we can deduce the following relations between conformable
fractional derivative and Newton-Leibniz derivative and between conformable frac-
tional integral and Riemann integral.
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Proposition 2.1 The a-conformable fractional derivative of f can be represented
as

Tf@) =1t f (1), e (t.t).
Proposition 2.2 The a-conformable fractional integral of f is given by

2 £ / s/l f te (t ).

The following special function and fractional integral inequality both will be
useful throughout this paper.

Definition 2.2 The following special function is called as a conformable exponen-
tial function:

to +o0 Aktak
exp()\a)zz kk" AeR, teR,,
Ea<)‘7t) = ~ )ak

K(—t
exp(—)\ ) akkv _ MER, tecR_.

Lemma 2.1 Let functions a € I([to,t*),Ry) and f € C([to,t*),R;). Assume that
w: [to, t*) — Ry satisfies fractional integral inequality
u(t) < a(t) +Ip f()u(t), t€ [to,t7). (2.3)
Then u can be estimated by
u(t) < a(t)efol®
< a(t)Ea< sup f(s), \t])Ea( sup f(s), ytoy), tefto,t").  (24)

s€[to,t] s€[to,t]

One can prove Lemma 2.1 easily, and the following results on well-posedness of
solutions also can be attained simply. Consider the initial value problem (IVP) as
follows

{ Tox(t) = f(t,z(t), (t,z)e R, (2.5)

x(ty) = .
Given constants a,b > 0 and domains

D, ={(t,x) eR"™ .t €[ty —a,ty +a] "R, ||z — zo]| < b}, to >0,
D_={(t,x) eR"™ ™ :t €[ty —a,to +a] NR_, ||z — ]| < b}, tr <0,

assume that the function f satisfies:
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(B1) feC(Dy,R") (resp. f € C(D_,R"));

(B2) f(t,z) satisfies Lipschitz condition with respect to = in Dy (resp. D_), i.e.,
there is a positive constant L such that

1f (8 21) = f(t 22)l] < Lllay — afl,  (£,21), (¢, 22) € Dy (resp. D).

Theorem 2.1 Suppose that (B1) and (B2) hold. Then IVP (2.5) has a unique
continuous solution in I, = [ty — d1,to + 04] N Ry for tg > 0 (resp. I_ :=
[to —0_,to + -] NR_ forty <0), where

b
8, = mi {,—tl-a}, M, = £,
+ = min e, o = max £t @)l

d_ := min {a, Mi(—to)la}, M_:= max [|f(t,z)].

— (t,z)eD_

Applying Lemma 2.1, the following lemma on continuation of solutions can be
naturally proved.

Lemma 2.2 All solutions of (2.1) have mazimal interval R.

Analogously to linear ODEs, some elementary properties on linear CFDEs (2.1)
will be presented as follows, whose proofs will be omitted because of trivia.

Proposition 2.3 If 1,25 : R — R™ are both solutions of (2.1), then ayzy + asxs
is also a solution of (2.1) for any ai,as € R. And the set of all solutions of (2.1)
15 an n-D linear space.

Remark 2.1 n x n matriz function X(t), consisting of n linearly independent
solutions x1(t), ..., x,(t) as its columns, is also called a fundamental solution of
(2.1). And for different fundamental solutions X (t) and Y (t), they can be linearly
represented by each other, i.e., there exists an invertible linear transformation C
such that Y (t) = X (t)C for all t € R.

Proposition 2.4 The general solution of (2.1) associated with initial data xo can
be written as

v(t) = X)X Hto)ro, tER, (2.6)

where X (t) is any fundamental solution of (2.1).
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Proposition 2.5 If X(t) is a fundamental solution of (2.1), then

det X (t) = det X (to) exp (I%trA(t)), teR.

As a special case of (2.1), the linear autonomous system
Ter = Awx, (t,z) € R"™ (2.7)
where A is an n X n real constant matrix, also has the following characteristic

similar to linear autonomous ODE.

Definition 2.3 The conformable exponent of an n x n real constant matrix A is
defined as

Ea<A, 1) = Z w,

(2.8)

and denote E,(0,1) = I for convention.

Proposition 2.6 The power series in (2.8) is convergent for any matriz A.

Recall the Jordan canonical form in ODEs as follows

Jpo--- 0 Ao 10
P'AP=1| 0o . ol, =10 1, =121, (2.9)
0 - J 0 0 N

where P is an n X n nonsingular complex matrix and J); is an eigenvalue of A.
Thus, the conformable exponent of a matrix can be easily computed as follows.

Proposition 2.7 Let A is an n X n real matriz with Jordan canonical form in
(2.9), then

E,(J,1) - 0
E,(A1) = PE,(P'AP,1)P ' =P 0 0 P
0 o Eo(J,1)

Further, one can verify the following formula.
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Proposition 2.8 If A= A\ + N, where the nilpotent matrix N is

0 1 0
N=10 . 1],
0 0 O
then the following expression fulfills:
Eo(A,1) = Eo(A 1)<I+N+ N )
ol e a  a?2! a=Y(n -1/

Relying on the preliminaries above, one can solve (2.7) as follows.

Lemma 2.3 The matriz E,(A,t) is a fundamental solution of (2.7) for allt € R.

Both Proposition 2.4 and Lemma 2.3 lead to the following result on general
solutions of (2.7).

Proposition 2.9 The general solution of (2.7) associated with initial data xo can
be expressed as

_ Eu(Ast)

Consider the inhomogeneous linear CFDE
Ter = A(t)z + f(t), (t,x) € R"T (2.10)

where f € C(R,R") and matrix function A € C(R,R"*"). One can verify the
analogous properties to ODEs as follows.

Proposition 2.10 Like ODEs, if both x3(t) and x3(t) are solutions of (2.10), then
xi(t)—x5(t) is a solution of (2.1). On the other hand, if x(t) and x*(t) are solutions
of (2.1) and (2.10) respectively, then x(t) + x*(t) is also a solution of (2.10).

These properties can easily lead to the following structure of general solutions
for (2.10).
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Proposition 2.11 If z*(t) is a solution of (2.10), then general solutions of (2.10)
associated with initial data xo can be represented as

z(t) = X)X Hto)xo + 2*(t), tER,

where X (t) is any fundamental solution of (2.1).
Next, we will give the variation of constants formula for (2.10).

Theorem 2.2 Let X (t) is a fundamental matrixz of (2.1), then the general solu-
tions of (2.10) associated with initial data xo can be given by

z(t) = X(O)X H(to)wo + X(OI2 X () f(t), teR (2.11)

Particularly, if A(t) degenerates into an nxn real constant matriz A, the variation
of constants formula (2.11) becomes the form

 Eu(A1)

f(t)
o(t) = Eu(A, to)

Proposition 2.12 If an n x n real constant matriz A has only eigenvalues with
negative real part, then there exist constants K, X > 0 such that

||E04(A7 t)H < KEa(_)‘7t)> te R+'

The proof is similar to the case in ODEs, referred Proposition 2.27 in [9, p.77].

3 Stability and conformable exponential dichoto-
my

In this section, we study the concepts of stability and conformable exponential
dichotomy of CFDEs. Before this, Souahi, Makhlouf and Hammami([42]) com-
bined Lyapunov stability and properties of conformable fractional derivative given
by Abdeljawad([1]) to raise the concepts of stability, asymptotic stability and frac-
tional exponential stability for the nonlinear system (2.5). For the nonautonomous
linear CFDE (2.1), the definitions of uniform stability and uniformly asymptotic
stability are more essential.

Based on the definition of stability for CFDEs described in [42], we introduce the
following definition of uniformly stability analogous to the corresponding concept
of ODEs in e.g. [16, p.1].
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Definition 3.1 The solution &(t) of system (2.5) is said to be

(C1) wuniformly stable, if for any € > 0 there exists § := §(e) > 0 such that any
solution x(t) of (2.5) satisfies for some s > 0, the inequality ||x(s)—z(s)| <
implies ||x(t) — &(t)|| < e for allt > s;

(C2) attractive, if there exists 69 > 0 and T :=T(g) > 0 for any € > 0 such that
for some s > 0, the inequality ||z(s) — Z(s)|| < do implies ||x(t) — Z(t)]| < e
forallt > s+1T;

(C3) wuniformly asymptotically stable, if it is uniformly stable and attractive.

The following definition is on the conformable exponential stability.

Definition 3.2 The solution z. = 0 of system (2.5) is conformable exponential
stable if

Eoz()\a tO)

[z(t)[] < Km

H.T()”, tZ th

where constants K, A > 0.

More generally, we focus on the significant application of Definition 3.1 to linear
equation (2.1).

Proposition 3.1 Suppose X (t) is a fundamental matriz of (2.1) and c is a real
constant, then solution x, =0 of (2.1) is said to be

(D1) stable for any to € R if and only if there exists K := K (tg) > 0 such that

IXO)| <K, to<t< +oo;

(D2) wuniformly stable for tq > ¢ if and only if there exists K := K(c) > 0 such
that

I X)X s)|| <K, to<s<t<+oo;
(D3) asymptotically stable for any ty € R if and only ifthfl | X ()] =0;
—400

(D4) uniformly asymptotically stable for to > c if and only if there exist K :=
K(c) >0 and A := X(c¢) > 0 such that

E.(), )
Eo,(\t)’

I X)X (s)| < K to < s <t < +4oo. (3.1)
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Particularly, (D1)-(D4) all hold for autonomous system (2.7), if fundamental
matriz X (t) is replaced by E,(A,t).

The proof of (D1)-(D4) can refer to the Theorem 2.1 in [22, p.84]. In partic-
ular, since the conformable exponential stability implies the uniformly asymptotic
stability, one can simply verify conclusion (D4). The definitions of the correspond-
ing stabilities above for Caputo FDEs had been proposed in references e.g. [17,

p.140].

Next, we shall propose the concept of conformable exponential dichotomy for
linear CFDE (2.1).

Definition 3.3 Suppose that X (t) is a fundamental matriz of (2.1). The equation
(2.1) possesses a conformable exponential dichotomy if there exists a projection
matriz P, i.e. P?> = P, and positive constants N;, B; (i = 1,2) such that

-1 Ea(ﬁbs)
| X () PX(s)| < Nl—Ea(ﬁl,t>’ t>s,
—1 Ea(ﬂQu t) (32)
[X(E) (I = P)X™(s)]| < sz, s>t

In particular, (2.1) possesses an ordinary dichotomy if (3.2) hold with 1 = B = 0.

Finally, we concern perturbation of nonautonomous linear CFDE (2.1). Con-
sider the perturbed equation

Tor= A + (). (t.) € B, (33)
where f € C(R"" R") and matrix function A € C(R, R™*").

The following conclusion give out the projection form of equivalent integral
equation and the existence of bounded solutions for equation (3.3).

Lemma 3.1 Suppose that function f € C(R"™ R"), P is a projection matriz
given in Definition 3.3 and equation (2.1) possesses a conformable exponential di-
chotomy. If x € Cy([to, +00),R") is a solution of (3.3) with x(ty) = x¢ for constant
to € Ry, then
x(t) =X (t)PX ' (to)zo + X ()P} X' (¢) f (¢, x(t))
+ X ()1 — P)IS X H) f(t,x(t), t>to.
If x € Cyp((—o00,to],R™) is a solution of (3.3) with x(ty) = o for constant to € R_,
then

(3.4)

w(t) =X (t)(I = P)X " (to)wo + X(t)(I = P)Zp X~ (t) f(t, x(t))

+ X(PI X (D) f(tx(t), t<t (3.5)

Conwversely, any bounded solution of (3.4) or (3.5) is a solution of (3.3).
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Proof. For convenience, we only prove (3.4), formula (3.5) can be proved
in an analogous manner. Assume z(t) is a bounded solution of (3.3) and M :=

sup ||z(t)]| for t > to. The continuity of f implies that there exists a positive
te(to,+00)
constant N such that N := sup | f(t,z(¢))||. By the variation of constants
te[to,+00)
formula (2.11), for any 7 > ¢, the solution x(t) satisfies

X()(I = P)XH(t)a(t) =X()(I — P)X " (r)x(7)

3.6
+ X (I - P)YZ>X () f(t,z(t)), t,T>to, (3.6)
where the following estimate can be obtained by (3.2)
_ Ea(62 t)
XA -P)X Y )z(1n)|| < No=2222 sup (¢
X (@) = P)X—(r)a(7)]| RS te[tOm)H @l
Ea(ﬁ27t>
< MN. t, T >1
= BBy T

It yields that
lim | X(#)(I - P)X Y(r)x(r)|| =0, t>to.

T—+00

On the other hand, in integral equation (3.6) for t > ¢,
IX(@)( = PYZZX () f (8, ()] < NNoEo (B2, 1) 7 Ea(—P2, 1)]

< NNy Eo (B, t)/ s*Lexp < - Bgs—> ds
t a
< NNyE,(52,1)

P
NN,
<

— 62 I

(Ea(_ﬁ% t) - Ea(_ﬁm 7’))

which implies that
IX(@)( = PYZE X (t)f(t 2(t)]| < +o0, >t
It follows from (3.6) that
XHI-P)X 't)x@t)=XH)I - P)YI: X () ftz(t), t>te. (3.7)
From the variation of constants formula (2.11), it also follows that for ¢ > ¢,
X()PXHt)z(t) = X(O)PX ' (to)z(to) + X(O)PIE X (1) f(t,z(t).  (3.8)

Since x(t) = X(t)PX*(t)z(t) + X(t)(I — P)X~(t)z(t), substituting (3.7) and
(3.8) into it, we attain (3.4). And the converse conclusion can be verified by direct
calculation to end the proof. 0J

The following Lemma is the fractional-order version of projected integral in-
equality.
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Lemma 3.2 Suppose that N;, B; and ¢ are all positive constants for i = 1,2, and
bounded continuous nonnegative solutions u(t) satisfy

Eo(B1,10) eNy
u(t) <N + IO EL (B, t)u(t
() 1 Ea(ﬁht) Ea(ﬂl;ﬂ to (ﬁl ) () (3 9)
u(t '
- €NQEa(527t)Iioo%, t >ty >0,
E
u(t) SNQM _ 5N2Ea(62,t)lgﬂ
Eo (52, to) E. (B2, 1) (3.10)
€N1 ’
+——1 7% E.(B,t)u(t), t<t,<O0.
B, Gty el st
Set that
N1 N2 NZ 5Nz’
=l ——+ — K; = =0 — —— =1,2
f 8(51+52)’ ‘ 1—6’ Aii= B 1-6’ ! ’
If 6 < 1, then
E.( )\, t
lﬁa tZ t07
LU B NG
2 o <t
Eo (X2, to)

Proof. Without loss of generality, we only consider inequality (3.9), because
inequality (3.10) can be changed into (3.9) through transformations ¢ — —t and
to — —to. Next, we need to verify tliin u(t) = 0. In deed, since u(t) is bounded,

—+o0
let o := limsupu(t). If ¢ > 0 and for any constant ¢ satisfying § < 9 < 1, there

t—-+o0

exists t; > to such that for any ¢ > ¢; we have u(t) < 9~'o. For t > t; we compute

Eo(B,t0) eNy
Eo(Br,t) * Ea(ﬂht)ItoEa(ﬁl,h)u(tl)

eNy 1 ]

u(t) < Ny

—1 « (e
+79 o Ea(ﬁht)ztlEa(ﬁht)_5N2Ea(62>t)z+ooEa(ﬂ27t)
Eo(B1,to) eNi o (NN
SN G gy T BB (i) + 97 o5 4+ 7).

Since # < ¥ < 1, the upper limit of the right hand side of the inequality above is
less than o as t — +o00. It follows from the inequality above that
Ny N,

o< 19_105<E + E) < o,

that is a contradiction. Hence, 0 = 0 and lim wu(t) = 0.
t——+o00
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Set v(t) := supu(7). Obviously, the function v(¢) is nonincreasing and for any
T>t

t > to, there exists to > ¢ such that for t < s <y, v(t) = u(t2) = v(s). Replacing
tin (3.9) with ¢y, for t > to we calculate that

Eqo (1, to) N, .
EalBr ) Ea(gl,tQ)ItoEa(Bl,tz)u(tz)

—eN2Eo(Ba, t2) +m%

Ea(ﬁlatO) {—:Nl o
Eo(f1,1) * Eo (B, t)ItoEOé(Bly to)u(ts)

—eN By (Ba, t2) +“%

Ea (P, to) eN; N
BuBrt) " Ea(By ) Lo lePrult)

= 1
—v(t) [mﬁyﬂx(ﬁb t) + eNoE, (B, to) +Wm]

Ea(ﬂlatO) €N1 o & &
E.(Gt) +Ea(61,t>ItOEa(Bl,t)u(t) v(t)e (61 + 52)

v(t) = u(ty) < Ny

<M

<M

<N

Ea(ﬁlv t)

Put U)(t) = m

v(t), then it follows from the definition of v that

w(t) < Ny + =Ny ———— Ly E.(B1, t)v(t) + 0w(t)
(Blato)
:N1+€N11-tog ( )+6U)(t), tzto,

that is

N eN
! +1_1GI§5 w(t), t>t.

w(t) < T 0

Applying Lemma 2.1 to the inequality above, we attain

E (ENl t)
1 5N1 N1 o 1_9’
t) < > t>t
wt) < 7 oTig—p) =0 =N T 0
a(l_ea 0)
Combining with the definitions of v and w, we acquire
€N1
Eo(—71)
N “\1_g " Eu(B,t E,(\,t
aty < =0 FalPuto) _ g Balhito) s
1—0 eNy E.(B1,t) Eo(A,t)
a(m,to)
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A
—9
As a corollary of Lemma 3.2, we introduce a more useful result in estimate of
dichotomy.

and \; = 1 — O

where K; = T 9

Corollary 3.1 Suppose that N;, 5; and € are all positive constants for 1 = 1,2,
and bounded continuous nonnegative solutions u(t) satisfy

Ea(ﬂ?a t) 5N1 o
u(t) <Ny Fo(Bas) + RN t)ItOEa<617t>u(t)

o (3.11)
—8N2E(ﬂ2,)sm s>t1>t >0,
Ea(ﬁly ) ’U,(t)
u(t) <Ny =20 BT eNoEo (02, 1) I, DB (Bort) 3.12)
8N1 o ‘
+ WIS Eo(Br,t)u(t), s<t<ty<0.
If 0 < 1, then
KQ?“EAQ’O, s> 1>t
KlEa()\l’t)’ S<t<t0,

where 0, K; and \; were all defined in Lemma 3.2.

Proof. Without loss of generality, we only consider inequality (3.11), because
inequality (3.12) can be changed into (3.11) through transformations t — —t,
s — —s and tg — —tg. Let t; := (s* —t* +1§)/, then s > t; > ty, because of the
fact s >t > to. From (3.11) it follows that for s > t; >ty > 0,

« « o « EOt 6 7t
u((s™ — 1] +t0>1/ ) SNZ%
N Ea(Br ) Ea(By, )
+5N/ Fo1Z20VPL T B\ ) oy 0
' to Eo(B1,5)Ea(B1, o) (7)
B — Ea(ﬂ% ) a(ﬁZatO)
+eN. / ol u(T)dr.
’ (5o —t13)1/a Eo (B2, ) Ea(B2,t1) (7)

Put v(t;) := u((s® — & +t§)"*) then u(r) = v((s* — 7® + t§)¥/*). The inequality
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above yields that for s > ¢t; > tg > 0,

Eo(B2, o)
v(t]) < Ng———"—"—=
( 1> - 2Ea(621t1)
RN Bl ) Ea(By )
+5N/ portZaalh el Pl T (50— o g g0y
i Eo(B1,8)Ea(B1;to) ( o)™
s _1 Ba(B2, 8) Ea(Ba, to) !
+5N/ ot - P2 0((s = T + )Y dr.
2 (s —te+18) 1/ Eo(Ba, 7)Eo(B2,11) ( ")

Let ¢ := (5% — 7% 4+ t§)'/%, then

Eo(Ba, to) /“ 1 Ba(B2,0)
v(t) <K No———= +eN. LT ——%v(1)dL
(1) 2Ea(ﬁ27tl) ? to Ea(ﬂ%tl) ()
* a1 Bal(Br,t1)
+eN- / O (D) de, s >ty >t > 0.
' t1 Ea(ﬁlab) <) ' °
The inequality also can be amplified as
B (B2, t0) eNy
t1) <N IXE, (B, t1)v(t
v(t) < QEa(ﬁmh) * E. (52, t1) to (B2 ta)oltr)
’U(t1>

—eN1E, (P, t1>Ij:OOM7

By the synchronous boundedness of both functions u and v, we employ Lemma 3.2
to gain

t1 >t > 0.

Eoz()\%tO)
t) < Ko—————=, t1 > tg.
U( 1)_ QEQ()\27t1)7 1= Ulo
It follows from the definition of v(t;) that
Eo(Aa,t)
t) < Kg—————= >t>1t
U()_ ZEQ()\Q,S)’ s =21 =2 1o,
Ng €N2 . . .
where Ky = 1o Ay = [o — T—a given in Lemma 3.2. Hence, Corollary 3.1 is
proved. 0J

In the end of this section, we demonstrate the relation of invariant manifolds
between equation (2.1) and its perturbation (3.3). But before we do that, let us
introduce the following notion.

Definition 3.4 Let Q) is any subset of R™ including zero and P is a projection
matriz such that R" = PR™ & (I — P)R" and P> = P. We say ) is tangent to
(I—P)R" (resp. PR") at zero, if | Px||/||({—P)x| — 0 (resp. |[(I—P)z||/||Px| —
0) as x — 0 in .
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From now on, let k := R(I — P), where denote R(P) by the rank of matrix P
and assume that

(E1) ¢ € C/(R4,R,) satisfies ((0) =

E2) A(¢) consists of functions f € C'(R"*!,R") such that
(

f(t,O) =0,
£t z) = fE )l < C@@)llz =yl lll, [yl < o

(E3) Projection matrix P fulfils X (¢)P = PX(t) for all ¢t € R.

Theorem 3.1 Suppose that (E1)-(E3) hold and denote the unstable and stable
manifolds of the hyperbolic equilibrium x = 0 of equation (3.3) as Uy := Ux(f) and
Sn—k = Sn_k(f) respectively, for any f € A((). Then Uy and S,_ are tangent
to (I — P)R™ and PR"™ at x = 0 respectively, where (I — P)R"™ and PR™ are the
unstable and stable invariant subspaces of the hyperbolic equilibrium xz = 0 of (2.1),
respectively. Moreover, there exist positive constants M, v; and ~o such that

Ea('yl,%)
|lz(2)]| SMWIIx(to)H, t>1t >0, x(ty) € Sns, -
le@ll <ar 22020 0l t<th <0, alt) € U,

a()

Remark 3.1 The hyperbolic equilibrium x = 0 of ODE & = A(t)x is also the
hyperbolic equilibrium of CFDE (2.1). In fact, by Definition 2.1, one can verify

T2(0) = lim T (t) = lim A(¢)z(t) = lim z(¢) = ©(0),

t—0 t—0 t—0

which implies the assertion.

Proof of Theorem 3.1. Assume A, N;, §; (i = 1,2) are all given in (3.1) and
(3.2) respectively, and the function ((o) (¢ > 0) is given in (E1). Take ¢ satisfy

N, N, 1 N, N,
(E+E)<(5) < > N, < (62+>\_4N1N2<(6))(E+E) (3.14)

Choose zg satisfy ||zo|| < 6/2N; for xy € R™, and define L£(Pxo,d) is a set of
functions = € C([ty, +00),R"), where |||l := sup |[z(t)|| < 6 and ¢, > 0.
t,

0 <t<+o0

L(Pxg,9) is a closed bounded subset consisting of the Banach space of all bounded



18 Baishun Wang and Jun Zhou

continuous functions mapping [to, +00) to R”™ with the uniform topology. For any
x € L(Pxy,9), define

(T2)(t) =X (O)PX " (to)zo + X () PTEX T (1) f (1, (1)
T+ X — PYIS X0 f(ta(t), ¢ > to.

It is easy to know that Jz is well defined and continuous for ¢t > ¢y. From (3.2),
(3.14) and (E2), we calculate that

(3.15)

7O < M2 ol + T B (50,010
—NoEo (s, t) ioo”j;t(;; );H
Eo (B, to) 1 Nz
< Mg g ol +¢(6 (5 + 5 lele
< Nl + ¢(6) (3 + 52)9
)
< 5 + 5 — (5,

thus || Jz||e < 6 and J : L(Pxo,0) — L(Pxo,0).

Analogously to the computation above, we obtain

IT2)® — (O] <O (5 + 5 )lle = vl < lle =yl ¢2 10

which implies that J is a contraction mapping in £(Pxg,d). In fact, there is a
unique fixed point x,(t, Pxg) € L(Pxo,d) satisfying (3.4). Note that the func-
tion z,(t, Pxo) is continuous with respect to Pxy and z,.(t,0) = 0. Let z.(t) :=
x.(t, Pxo) and Z,.(t) := z.(t, Piy), it follows from (3.4), (3.1) and (E3) that

~ Ea()\at(]) ~
fo.(6) (0] < K220 Py — P
NIC( ) a [ — 7
+ 02 B 50 () — .0

() — 2. (1)
Ea(ﬁQat) 7

— NoC () Ea(Bo, IO, t> to.

By Lemma 3.2, we acquire

Eq (71, t0)

(L, Pxg) — 2.(t, Piy)|| < 2K =02
|74 (t, Pro) — w.(t, Pio)| B 1)

|Pzo — Paol|, t>ty,  (3.16)
NlﬁlﬁQ
NSy + Nofy

verify that the first expression of the estimate (3.13) is true. Proceeding analogously

NS B2
N1y + Nofy

where v, = A — Combining the fact x.(¢,0) = 0 and (3.16), one can

0 (3.16), the second estimate in (3.13) is also true, when v, = \ —
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Set Bj/on, is the open ball in R™ centered at the origin with radius 4 /2Ny, and
take S:_, = {x : v = x,(to, Pxo), x0 € Bsjan, "R™}. Let h(Pxg) := x.(to, Pxo) for
rg € Bsjan, NR", we observe that h is a continuous mapping from Bs/on, N (PR™)
to S*_,, then

n—k»
h(Pxy) = Prg+ X(to)(I — P)I$ X " (to) f(to, 2« (to, Pxg)).
Given xg, Zo € Bs/on, NR", we employ (3.2), (3.14), (3.16) and (E2) to obtain

[z (to) — &.(to) |
Eo(B2,t0)

R 2N, No( (6
> || Pzo — Piol| [1+Ea(52+71,t0)1a 1V2¢(9)

T Eo(Ba + 71, t0)
2N{N,(C(6 1
> (1 - —C”) |Po — Piol| > || Pro — Pioll,
B2 + M 2

yielding h is a bijective. And since h™' = P is continuous, h is a homeomorphism.
Hence, S, is homeomorphic to the (n — k)-D open unit ball in R*™*. If S*  is
not a positively invariant set, then we expand S;_, into the positively invariant
Sn—k, by absorbing all the positive orbits of the solutions starting from S*_,. From
the uniqueness of the solutions, S,,_x is also homeomorphic to the open unit ball in
R"~*. In other words, the case || Pz|| < §/2N; for all z € S,,_, implies S, _j, = S*_,.
It follows from (3.15), (3.16), (E2) and the fact z.(¢,0) = 0 that

1/ (to, 2+ (to, Po)) |l

[h(Po) = h(Pio)l| = |[Pro — Pioll + NoC(8) Ea (B2, 10) Lo

(I — P)a.(to, Pxo)|| < —NoEo(B2,t0)I¢

E. (B2, to)

* 7P
< N (B o) 25 UG o 1, P
< Ny Ea (B to)72, ST o

+oo Ea (527 tO)

2N7 IV
52 2¢(2N1]| Pao])) | Po-

Since ||Pxo|| — 0 as ||xzo|| = 0, we get ||({—P)x.(to, Pxo)||/||Pxol| = 0as ||zo|| = 0
in S,,_x. Consequently S, is tangent to PR™ at zero. Similarly, one can construct
the set Uy via (3.5), and complete the proof of Theorem 3.1. O

<

4 Roughness of dichotomy

Our focus of this section is the roughness of the conformable exponential dichotomy:.
That is the preservation of dichotomy for hyperbolic linear systems undergoing
small linear perturbation. Consider the perturbed equation of linear CFDE (2.1)
as follows

Ty =[A{t) + B()ly, (t,y) e R™, (4.1)
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where matrix functions A € C(R,R™") and B € Cy(R,R™*"). The following is
one of our main results of this paper.

Theorem 4.1 Assume that X (t) is a fundamental matriz of (2.1) such that X (0) =

I, and equation (2.1) possesses a conformable exponential dichotomy, i.e., estimates

(3.2) hold in Ry. If e :=sup ||B(t)| is sufficiently small, then perturbed equation
>0

(4.1) also possesses a confo}mable exponential dichotomy in R,.

Proof. We divide the proof of Theorem 4.1 into the following three steps.

Step 1: Finding bounded solutions of equation (4.1). Let matrix function ¥ €
Cy(Ry, R™™) equipped with norm

¥ lloe := sup Y (1)
Define mapping L : Cp(R, R™") — Cy(R, R™™™) as
LY(t)=Xt)P+ X)PIEX ' ()BU)Y (t) + X (t)(I — P)IS X' (t)B(H)Y (1).

It follows from (3.2) that

Ny eEN1||Y oo _ o N2V |s
HLY(t)H < EO{(/Blyt> Ea(ﬁlyt) IO Ea(ﬂht) Ea(627t):z’—+oo Ea(627t> :

Observing that LY (t) is bounded and continuous for ¢ > 0, we obtain

Ny N
12V oo < Ny +2( 22+ 22 1Y e
b B

Given another Y € Cp(R,, R™™) analogously we get
N N N. ~
1LY = LY oo < (22 + 22) IV = V.
B B
This yields that the mapping L has a unique Y; € Cy(R,;, R™*") such that
Yi(t) =X ()P + X(t)PI{X ' (t)B(t)Y:1(t) (42)
+X(O) = P)I$ X (1) B)Yi(t), '
if

9:26(%+%><1.

Obviously, Y;(t) is also a matrix solution of (4.1) and differentiable. Post-projecting
P on both hands sides of (4.2), we also know that Y7 (¢) P is the unique fixed point
of L, and Yi(t)P = Yi(t).



Conformable Exponential Dichotomy and Roughness of CFDEs 21

Step 2: Constructing projection matrix. Let @ := Y7(0), then QP = Q. Com-
bining (4.2) with the property P(I — P) = 0, and replacing ¢ with s, we attain
XH)PX H(s)Yi(s) = X(t)P + X (t)PI3X ' (s)B(s)Y1(s). (4.3)
It follows from (4.2) and (4.3) that
Vi(t) =X (O PX " (Vis) + X () PTEX (0 BEOY; (0 "
+ X(t)(I — P)I$ X ' (t)B)Yi(t), t>s>0. '

Noting (4.3) with ¢ = s = 0, we gain PQ) = P. Post-projecting ) on both hands
sides of (4.2) again, we acquire

Vi@ = X(OP + X(O)PTX () BOYA(1)Q
+X(t)(I — P)I X (1) B()Y1(H)Q,
implying Y;(¢)@ is also a fixed point of L. In conclusion,
Yi(t)Q = Yi(t) = Ya(t)P.
Obviously, @ is a projection when t = 0.
Provided Y (¢) is a fundamental matrix of (4.1) fulfilling Y (0) = I, we derive
Yi(t) = Y()Q. (4.5)
Set
Y5(t) =Y()(I - @), (4.6)

then Y (¢) = Yi(t) + Ya(t). Relying on the variation of constants formula (2.11), we
calculate that

Yalt) = X(0)XH0)Y2(0) + X (TS X)) BtV (t)
= XY (0)(I - Q)+ X(O)I§X () B(t)Ya(t)
=Xt - Q)+ XTI X 1 (t)B(t)Ya(t). (4.7)
Combining (4.7) with the fact (I — P)(I — Q) = I — @, and replacing ¢t with s, we
acquire
X()(I = P)X " (s)Ya(s) = X()(I — Q) + X(t)(I — P)IgX " (s)B(s)Ya(s). (4.8)
Subsequently, by (4.7) and (4.8), we receive
Ya(t) = X(6)(1 — P)X 7 (s)Ya(s) + X ()Zg X (t) B(t)Ya(t)
—X()(I = P)I;X " (s)B(s)Ya(s)
X(O)(I = P)X ™ (s)Ya(s) + X (t) PIg X (t) B(1)Ya(t)
+X (t)(I = P)IgX () B(t)Ya(t) — X(t)(I — P)I§ X (s)B(s)Ya(s)
)
(

X()(I — P)X™'(s)Ya(s) + X (t) PTg X~ (t) B(t)Ya(t)
LX) - PYI°X () B()Ya(t), s>t >0. (4.9)
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From (4.4) and (4.9) it follows that for any vector &,

Ea(ﬁlas) N o
1Yi(2)¢]l < Nl—Ea(ﬁl,t) IYi(s)Ell + & R )|I (B, ) Y1 (1)
_5N2Ea(527 ) iooEifl((ng) t>s52>0,
and
Eo(B2,1) Nt o
1Ya2(t)E]| < N2Ea(ﬂz7 )||Y2( s$)IEl+ & E. (G, )|Io Eo(B1,1)Ya(t)¢]
—eNyE, (52, 1) SEY2<§32)6> >t>0.

Thus, by Lemma 3.2 and Corollary 3.1, we can know

E.(\,s
V06l < PRI, ¢ 520
- ( Al’ K (4.10)
Yo(#)E]| < Kyaol22 1Y, >t >
Y2 ()€l < 2EQ(A2’S)|| 2(s)Ell, s 0,
here Ky = 0 a— g N e = (N N i =10
where i i 1_9an _€<E+E> ori=1,2.

Step 3: Estimation of fundamental solutions. To prove from (4.10) that the
perturbed equation (4.1) also possesses a conformable exponential dichotomy, we
only need to exhibit that Y (£)QY ~!(¢) is bounded. From the facts (I — P)P = 0,
(I — P)(I —P)=1— P and (4.2) it follows that

X(O)I = P)XT()Yi(t) = X(8)(I — P)YIE X7 () B()Ya(t).

By (4.10), for any vector £, we calculate that

IX(@) = PYXTHOV(E] < —eNoBal B2, 1) imﬁ(ﬁja;
< —Ea(M + Bo ) Vi(0)E1Z OOE(AK—jVB)
€K1N2
= )\1+5 [Ya(t)&]- (4.11)

Analogously, pre-multiplying X (¢)PX ~(¢) on both hands sides of (4.7), by the
property P(I — Q) = 0, we obtain

Xt PXH)Ya(t) = X (t)PITX H(t) B(t)Ya(t).
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It follows from (4.10) that for any vector &,

IX (O PXH()Y2()E]l < L5 Eo(Br, t)Y2(t)S

(Bl? )
€K2N1

S -z -
Ea()‘Q + 617 t)

€K2N1
v AEON | (4.12)

Substituting (4.5) and (4.6) into (4.11) and (4.12) respectively, and replacing £ by
Y 1(t)€, we acquire
IX () = PYX()YVa(t)g]l < [ X6 = P)X ()Y (H)QY ()]

€K1N2 1
< /\1+52||Y(t)QY @l (4.13)

Y2025 Ea (A + 1, 1)

and
X () PXH ) Ya(t)E]| < [XOPX Q)Y () — Q)Y (1)

< LIV - QY 0gl (4.14)

On the other hand, it is evident to derive that
Y()QY (1) - X()PX (1) = X( )P+ (1= PIXT ()Y (H)QY (1)

XOPX MY 0[Q+ (T - QI (1)
(OPX )Y (HQY (1)
+X(t)(f P)XT )Y ()QY ™ (t)
—X(O)PX )Y (1)QY ™ (t)
—XOPX YO - QY (1)
= X(O)(I = P)XT ()Y ()QY ' (t)
—XMPXTOY M) —QY (1), (4.15)

Combining (4.13) and (4.14) with (4.15), we can obtain

sKlNg . eKo Ny o,

A1+ 52 A2+ B

where p1(t) == [[Y(£)QY " (t)|l, p2(t) = [[Y(t)(I — Q)Y (t)]|. For convenience,

take N := max{Ny, No} and § := min{3;, 82} such that § < 0 := 2eN/j, and it
yields

Y (0)QY (1) — X(t)PX (1) <

_ €K1N2 EKQNl
=lYOQY )| < +
m=IYOQYT Ol < (G am*y, 4 5
<€K1N2 €K2N1
AL+ ﬁzul A2 + B He
< (g + p2) + N, (4.16)

)+ IX@OPX ()]

N
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eN?
where n = m It is obvious that

Y(O)QYTH(t) - X()PXH(t) = X(1)(I = P)X ' (t) = Y (1)(1 — Q)Y (1),

then

u < <€K1N2 €K2N1
2 =

e )+ Vo < + ) + N, 417
N +ﬁ2ﬂl N +51M2 2 < n(p + p2) (4.17)
By adding the inequality (4.16) and (4.17), we attain

2N
1-2n

p1+ e <

If n < 1/2, then

< N < .
pias pr2 < 1(pn + p2) + N < o

Substituting (4.5) and (4.6) into (4.10), and replacing & by Y 1(s)¢, we gain

E.(\, .
Yy (s)el < KBy (s)0y - (s)e
KiN E,(M\,s)
- 1_277Ea()\1,t)||§||7 tZSZO,

-1 E01<)‘27t) -1
Y (£)(I = Q)Y (s)¢]l < szHY(S)(I — Q)Y (s)¢ll

KoN Eo(Ma,1)
T 1-2nE,()s,9)

1€l s=¢=0.

For the arbitrariness of vector £, we obtain the conformable exponential dichotomy
as follows

B KiN E,()\,s)
Y () QY ! < t> 5>
_ KyN Eq(Xg,t)
Y () (I - Q)Y : >t>
IY(OU - QY 6l < {25 5y 52620

Therefore, Theorem 4.1 is proved completely. U

Finally, we present the concrete constants of estimates in Theorem 4.1. Like
the condition N = max{Ny, No} and 8 = min{p, B2} such that § < 0 = 2eN/
eN? N 1 ™
< < -
26—5:N S 10N —5 2 ™

by elementary calculation, we can obtain the following brief statement.

holds, let N > 1 and 0 < 2/5N such that n =
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Corollary 4.1 Suppose that equation (2.1) possesses the conformable exponential
dichotomy (3.2) in R,. If

p
e:=sup |B(t)| < ==,
sup BO)] < 5

then perturbed equation (4.1) also possesses the following conformable exponential
dichotomy:

25N? E,(8 — 3¢N, s)
>0,
9 E.(B—3eN,t)
25N? E, (3 — 3¢N, 1)
9 FE.(8—3eN,s)’

Y ()QY ! (s)]| <

Y () - Q)Y (s)]| <

s>t>0,

where Y (t) is a fundamental matriz of (4.1) such that Y (0) = I, and both projection
matrices () and P have the same rank. Moreover,

9e N3
c £>0.

IV (OQY (1) = XOPX 0 € g £

5 Nonuniform dichotomy

This section is a continuation of studies for the conformable exponential dichoto-
my. More precisely, we concern nonuniform conformable exponential dichotomy.
Let B(Z) consist of all bounded linear operators in Banach space Z. Consider
nonautonomous linear CFDE on Z

T =Alt)x, (t,z)eJxZ, (5.1)
where linear operator A € C(J,B(Z)) for some interval J C R and B(Z) is also a
Banach space with the norm ||A|| ;= sup | Az| forall A € B(Z). Let T'(t, s) be

z€Z,||z||=1
a family of evolution operators satisfying x(t) = T'(t, s)z(s) for t > s and t,s € J,
where z(t) is any solution of (5.1). T'(t,s) further satisfies:

(F1) T'(t,t) = Id (abbreviation of identity) for ¢t € J;

(F2) T(t,s)T(s,7)=T(t,7) for t,s,7 € J;

(F3) the evolution operator T'(¢, s) is invertible and T (¢, s) = T'(s,t) for ¢, s € J.

First, we introduce the notions of nonuniform asymptotical stability and nonuni-
form conformable exponential dichotomy.
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Definition 5.1 FEquation A(5.A1) 18 said to be nonuniform asymptotically stable in
J if there exist constants N, 3 > 0 and € > 0 such that

Ea(B. 5)
EJ@@

In particular, (5.1) is uniformly asymptotically stable like (3.1) if (5.2) hold with
e=0.

IT(t s)| < No2Dp (e |s]), t>s, tsel. (5.2)

Definition 5.2 FEquation (5.1) is said to admit a nonuniform conformable expo-
nential dichotomy in J if there exist projections P : J — B(Z) such that

T(t,s)P(s) = P(t)T(t,s), t>s, t,s€J, (5.3)
and constants N,,Bz >0 (i=1,2) and € > 0 such that fort,s € J,

(517 s)
E.(B1,t)
Eo(Bo,t)
*Eol(B, s)

In particular, (5.1) admits a uniform conformable exponential dichotomy like (3.2)
if (5.4) hold with e = 0.

IT(t, 5)P(s)|| < My —==2—E,(e,|s]), t>s,
(5.4)

IT(t.5)(1d = P(s)]| < Na—"2—Eq(e.|s]), s > t.

All results in this section are presented in R, , and denote

t
z2f(t) = [ 7
Consider the linear perturbation of (5.1) as follows
T = [A(t) + B(t)]z, (t,z) € Ry x Z, (5.5)

where linear operators A € C'(Ry,B(Z)) and B € Cy(R4,B(Z)). The following
theorem gives out the roughness of nonuniform asymptotical stability.

Theorem 5.1 Assume that equation (5.1) admits nonuniform asymptotical stabil-
ity in Ry, and there exists constant & such that || B(t)|| < 0/FEa(e,t) fort € Ry. If
0= 5N/ﬁ < 1, then equation (5.5) also admits nonuniform asymptotical stability
i Ry, that is,

N Eu(v,s)

t <
U < =g

E.(e,8), t>s, t,seR,, (5.6)

~ 0
whereyzﬁ—l

7 and U(t, s) denotes the evolution operator associated to (5.5).



Conformable Exponential Dichotomy and Roughness of CFDEs 27

Proof. Consider the space
W :={U(t, s)i>s € B(Z) : U is continuous and [|U||, < o0, (t,s) € R% },

equipped with a-weighted norm

WU|o = sup{%:tzs,(t,s)eﬂ%i}. (5.7)

It is easy to verify that W is a Banach space. In W define an operator J by
(JU)(t,s) =T(t,s) +Z3T(t,-)B(-)U(-, s).
It follows from (5.2) that
TU)E )| < NT )+ ZENTEHINBOIUC )]

~

<N qEe (BA )Ea(e, s) + 5NHUH“?C“(€’ S>I§Ea(f},t)
E.(B,1) ) E.(B,1)
< NE,(e,s) + %VHUHQEQ(G, 5).

And by (5.7) we obtain

1TU e < N

< 00,

which yields that the operator J : W — W is well defined. Analogously to the
computation above, we have

SN
||jU1_jU2Ha S B _UQHOM U17U2 GW

which implies that J is a contraction since § < B / N. So there exists a unique
U € W satistying JU = U, and one can verify that it is a solution of (5.5). We
apply Lemma 3.2 with condition 6 := §N /3 < 1 to the estimation of ||U(t,s)].
And inequality (5.6) is true. O

Subsequently, our purpose is to establish roughness of nonuniform conformable
exponential dichotomy in R,. A preliminary theorem and the main theorem of
roughness are both stated as follows.

Theorem 5.2 Assume that equation (5.1) admits a nonuniform conformable ex-
ponential dichotomy (5.4) in Ry, and there exists constant § such that |B(t)| <
d/Eq(e,t) fort € Ry. If

0:=4¢ (Nl ]Y2> <1, e<min{B, R}, (5.8)

b B
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then there exist projections P : R, — B(Z) such that
T(t,s)P(s) = P()T(t,s), t>s, t.secRy, (5.9)

and constants K;,\; >0 (i =1,2) and € > 0 such that

. . A
IT(t, ) ImP(s)|| < K. E“((A“ j;E (e,s), t>s>0,
Ea(;’ﬂ (5.10)
IT°(t, s)|Im(Id — P(s))|| < K> EZ(A;’S) Eo(e,s), s>1t>0,
N; . ON; . | |
where K; = 1—¢ =i — 7 (1 =1,2), and T'(t,s) is the evolution operator

associated to equatwn (5.5).

Theorem 5.3 Assume that equation (5.1) admits a nonuniform conformable expo-
nential dichotomy (5.4) in Ry under condition (5.8). If 0 is sufficiently small such
that || B(t)|| < §/Ea(2¢,t) fort € R, then equation (5.5) also admits a nonuniform
conformable exponential dichotomy in R, .

Proof of Theorem 5.2. We divide the proof into the following several steps.

Step 1: Construction of bounded solutions for (5.5). Recall space W in Theorem
5.1, then the following lemma gives out the existence of bounded solution.

Lemma 5.1 For eacht,s € R, equation (5.5) has a unique solution U € W such
that

Ult,s) =T(t,s)P(s) + ZST(t,-)P(-)B(-)U(, s)

()B(
F T2t ) = PO)BOU(.s), 2. (5.11)

Proof. Clearly, if the function U(t, s):>, satisfies (5.11), then it is a solution of
(5.5). We must demonstrate that the operator L defined by

(LU)(t,s) =T(t,s)P(s) +Z;T(t,-)P(-)B(-)U(-,s)
SIS Tt )1 = P()BOU(s), ¢35,
has a unique fixed point in W. It follows from (5.4) that

L)@, s)| < HT(t $)P(s)|| + ZENTE ) PONIBOINIUE, o)
TollT(t)Ad = PC)IBONIUE )

< leﬁ?a(e,s) +0 & + ]YQ U ||aEale, s).
Eo(B1,t) 1 B
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Combining (5.7) with (5.8), we obtain
|LUll, < N + 81Ul < oo,

this implies that the operator L : W — W is well defined. Analogously to the
computation above, we have

| LU = LUs||lo < O||UL = Uslla, Ui, Us € W,

which shows that L is a contraction since 8 < 1. Then there exists a unique U € W
such that LU = U. Therefore, Lemma 5.1 is proved. O

Now we explain that the bounded solutions exhibit the following property.

Lemma 5.2 For eacht > 72> s in R,,

U(t,7)U(t,s) = Ul(t,s).

Proof. From (5.11) and (5.3), for some 7 € R, we can calculate that

U(t, T)U(r,s) = T(t, s)P(s) + ZIT(t, 7)P(T) B(T)U(T, s)
+IXT(t, ) P()B(U(, T)U(7, 5)
+I¢. T(t,-)(Id = P(-)B(U(-,7)U(7,5), t>T2>s.

Let H(t,7) :=U(t,7)U(1,s) — U(t,s) for t > 7 > s, this yields
H(t,7) =12T(t,-)P(-)B(-)H(-,s) + ¢, T(t,-)(Id — P(-))B(-)H(-,s). (5.12)
Define operator I as
(KH)(t,7) = T2T(t,)P()B()VH(,5) + T8, T(t, ) (1d = P()B()H(-,5),
for any H € W and ¢ > 7. It follows from the identity above and (5.4) that

)t ) < ZATCEHPONBOIIEC )
T, ) (Ad = PC)IBONIHC o)

<5 <]Y1 N2> 1F ]l Eue, 5).

1 P
By (5.7), we have

ICH o < O H]la < oo,
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then IC : W — W is well defined for t > 7. Similarly to the calculation above, we
attain

H’Cﬁl — KﬁzHa < HHEH — ]:[2”0{7 Hth cW.

Because of hypothesis (5.8), K is a contraction. Thus, there is a unique HeWw
such that H = H. On the other hand, we know that 0 € W satisfies (5.12) and
KO = 0. By Lemma 5.1, we assert H = H=0fort>7>sin R, . Therefore,
Lemma 5.2 is proved. U

~

Step 2: Establishment of projections P(t) in (5.9). Given constant ¢ € R, for
any t > ¢ in R, we consider the following linear operator

~

P(t) :=T(t,)U (1, )T (¢, 1), (5.13)

where T(t,s) is the evolution operator associated to (5.5). Clearly, the operator
P(t) may depend on ¢, and U(t,t)U(¢,t) = U(t,¢) by Lemma 5.2. The following
lemma illustrates the commutativity of projections P(t) as formula (5.9).

Lemma 5.3 For anyt € R, the operator ]3(25) is a projection satisfying (5.9).

Proof. By the details above and (F1)-(F2), we derive

\.b
~
N>

—~

\.ﬁ
~

~—

I
=

—~
~

~—

This completes the proof of Lemma 5.3. U

Step 3: Characterization of bounded solutions. The following two lemmas
propose the nonuniform projection integral equation and its property respectively.

Lemma 5.4 For some s € Ry, if z € Cy([s, +00),Z) is a solution of (5.5) with
z(s) = zs, then

2(t) = T(t, 8)P(s)zs + IIT(t,-)P()B()2(-) + I8 T(¢,-)(Id = P()B()2(-).

Tl}e E)roof of this lemma is similar to the method of Lemma 3.1 when € <
min{f, B2} holds.
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Lemma 5.5 For some s € Ry, if the function P(:)T(-,s) € Cy([s, +o0), B(Z)),
then

P)T(t,s) =T(t,s)P(s)P(s) + IoT(t, -)PE-)B(-)ﬁ(-)T(-, 5)

. (5.14)
+ T2 T, ) (Id — P()B()PO)T(,9).

Proof. For a given ¢« € R, it follows from Lemma 5.1 that the function U (¢, ¢)§
is a solution of (5.5) with initial value U(¢,¢)§ for any £ € Z and t > «. By (5.13)
and (5.9), we gain U(t,¢) = T'(t,0)U(¢,¢), and

A

P(t)T(t,s):f(t,s)p(s):AT(t,s)T( DU (1, )T (1, )
=T, )U(t,0)T(t,8) = U(t, )T (1, s).

Thus, the equation (5.5) has solution in the form of U(t, ¢)¢ as follows
2(t) = PO)T(t,5) = U(t,)T(1,9)¢, €€ 2.
Observing that the above solution is bounded for ¢ > s, and
2(s) = U(s,0)T(s, 8)¢ = P(s)T(s,5)€ = P(s)¢,
we employ Lemma 5.4 to complete the proof of Lemma 5.5. U

The following Lemma is the projected integral inequality in the case of nonuni-
form conformable exponential dichotomy, and the method of its proof can be re-
ferred to the Lemma 3.2 and Corollary 3.1.

Lemma 5.6 Given s € Ry. Assume that the functions u € Cy([s,+00),Ry) and
v € Cy([0, s], Ry) respectively satisfy the following inequalities

- Ea(Bhs) (SNl o A
t —AEa , s —AIS Ea ,t t

ult) "Eu(But) (6ot Eo(B1,1) ettt (5.15)

o . o u(t)
5N2Ea(52,t)l+oo Q(BQ’t) t>s>

$ E(X(/B27t) 5]\71 o

v(t) SNQ_EQ(BQ, 5) Ea<€7 S)Us + Ea(Bl,t IO Ea(ﬁlj t)v(t) (5.16>

v(t)
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then there exist positive constants K; and \;(i = 1,2) such that

Ea()\l,S)
<K Eo(€,8)us, t=>s2>0,
u(t) < 1Ea()\1,t) (€, 8)u s
E,( A, t
U(t) SKQ Ea(()\j, S)) Ea(€7 3)”57 s>12> 07
here K. N A =1 o,
wnere 1_1_07 1_51_1_9'

Step 4: Norm bounds of evolution operator. We verify that the norms of the
operators T'(t, s)|ImP(s) and T'(¢, s)|Im(Id — P(s)) are bounded.

Lemma 5.7 For anyt > s in R, the first inequality in (5.10) holds.

Proof. Given £ € Z, and for ¢t > s > 0, assume that
u(t) == | PA)T(t, s)¢],

then u, = ||P(s)€]. By Lemma 5.5, we know that u(t) is bounded and satisfies
(5.15). It follows from Lemma 5.6 that

Ea()\b S)

IPOT(E s)E) < Kage 5

Eo(e,s)|[P(s)]l, 2520,

where K; and A are given in Lemma 5.6. Again by Lemma 5.3, we gain

~ ~

P)T(t,s) = T(t,s)P(s) = T(t, s)P(s)P(s).

Taking p := f’(s)f, it yields that
Ea(>\17 S)

~ A < N
1Tt 5)Pls)ull = Ko g3

Eo(e;s)llpll, t=s>0.

Therefore, we can obtain the desired inequality. O
Lemma 5.8 For any s >t in R, the second inequality in (5.10) holds.

Proof. By analogy with Lemma 5.5, we need to attain an equation for (Id —

P(t))T(t,s) via Lemma 5.3. Actually, from the variation of constants formula
(2.11), we have

T(t,s) = T(t,s) +ZOT(t,)B(-)T(-, s).
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Let function w(t) := T'(t,¢)(Id — P(¢)) for some ¢ € R, then
w(t) =T(t,0)(1d — P() + Z2T(t,) B(-Jw(). (5.17)
From (5.11) and (5.13) with ¢t = s = ¢, we calculate that
P() = U(n,0) = P() + Z2T (0, )(d = P()B()U(:, 1)
Pre-projecting P(1) on both hands sides of the above identity, we acquire P(1)P(¢) =

P(t), and

A A

(Id — P(v))(Id — P(r)) = 1d — P(v). (5.18)
Combining (5.17) with (5.18), and replacing ¢ with s, we derive

T(t,s)(Id — P(s))w(s) = T(t,)(Id — P(2))(Id — P(1))
+ZT(t, 3)(1(} — P(s))B(s)w(s)
=T(t,)(Id — P()) + Z2T(t,s)(Id — P(s))B(s)w(s).

It follows from (5.17) and the identity above that

w(t) = T(t,s)(Id = P(s))w(s) + (L, ) B(-)w(")
—I7T(t, s)(1d — P(s))B(s)w(s)
= T(t,s)(Id = P(s))w(s) + L'T(t,-) P(-) B(-)w(-)
+Z3T(t,-)(Id — P(+))B(-)w(-). (5.19)

On the other hand, by Lemma 5.3, we attain

A

(Id — P(t))T'(t,s) = T(t, s)(Id — P(s)). (5.20)

~

s) = (Id — P(T))T(T, s). Post-

Recalling the function w(r), we get w(r)T (s,
5.19), this implies

multiplying 7(¢, s) on both hands sides of (
(Id — P(t)T'(t, s) =T(t,s)(Id — P(s))(Id — P(s))
+IT(t, ) P()B()(1d = P()T (- s) (5.21)
+IIT(t, ) (1d = P(-)B()Ad = P()T(-, s).
Fixed £ € Z, we consider v(t) = |T(t, s)(Id — P(s))¢|| for s >t > 0 and v, =
|(Id — P(s))&||. According to (5.19) and (5.20), it is well known that the function

v(t) satisfies the inequality (5.16). Employing Lemma 5.6 and the similar proof to
Lemma 5.7, we easily acquire desired inequality and complete the proof. 0

In conclusion, Lemmas 5.3, 5.7 and 5.8 all derive Theorem 5.2 together. 0

The following Lemma will help to prove Theorem 5.3.
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Lemma 5.9 For any t € Ry, if constant 6 described as in Theorem 5.3 is small
enough, then

|P(t)|| < 4NE,(e,t), |Id— P(t)|| < ANE,(e,1). (5.22)

Proof. Replacing s by ¢ and pre-multiplying (Id — P(¢)) on both hands sides
of (5.14), we have

(Id = P(t) P(t) = I3, T(t,-)(Id = P(-)) B(-)P(-)T'(:,1). (5.23)
It follows from Lemmas 5.7 and 5.3 that for 7 > ¢ > 0,
1P = T OPOPO] < Kig GED Eale IO (528

By (5.23) and (5.4) we calculate that
1(1d = P) POl < ~T5IT (¢ ) (1d = PCO)IBOIIPTC 0]
SK 1N,
Eo(Ba+ M1+ 6,1)

< —Eo(Bo+ M+ 6O P T

§K, N,
o Bz + /\1 — €

1@, (5.25)

where constant € was chosen as satistying € < min{@l, ,@2} in order to guarantee
the above denominator S + Ay — € > 0. Analogously to (5.23), replacing t with s
and pre-multiplying P(t) on both hands sides of (5.21), we attain

A

P(t)(Id = P(t)) = Z2T(t,-) P()B(-)(Id = P(:)T (-, t). (5.26)
Using Lemma 5.8, for ¢ > 7 > 0 this implies

Ea()\g, 7')

[ (Id — P(T))T(T7 t)]| < K2m

Eq(e,t)||1d — P(t)]. (5.27)

From (5.26) and (5.4) one can compute that

1P(t)(1d — P(t)| < T, ) PONIBCOINIAL = PO, o)

SKo N . .
< 2 |[ld— P(t)|ZEa(Br + Ao — €, 1)
Eo(B1+ A —€,1)
SKo N R
< ————|1d - P(), (5.28)
51 —|— )\2 — €

where the chosen constant € < min{ @1, Bg} similarly. Obviously,

A

P(t) — P(t) = (Id — P(t))P(t) — P(t)(Id — P(t)).
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Taking N := max{Ny, N,} and 3 := min{f;, 5>} and combining (5.25) with (5.28),
we gain

~ 6K1N2 ~ 5K2N1 >
———IPOI + z———I1d = P
B2+ A —€ Br+ A —¢
< AlP@ + I1d = P@)I]), (5.29)

where A

IN?j
202 —56N3 — e(B — 26N
Moreover, by (5.4) with ¢ = s, it is easy to obtain that

>

1P < NEa(e,t), Q)] < NEa(e,1).
From (5.29), this yields
IP@)]

A

12@t) = POl +[1P@)]

<
< AP+ 1d = PO)]]) + NEa(e, 1).

Since ||(Id — P(t)) — (Id — P(t))|| = || P(t) — P(t)|), we also derive

I = P&)] < [|1P(t) = P@)]| + [[1d = P(2)]|
< ([[P@)[] + [[1d = P(E)]]) + N Ea(e, t).
They together imply that

1P|+ I1d = P0)]| < 20(|P(#)]| + [[1d = P)]]) + 2N Eale, 1),

and

. . INE, (e, t)
P(t Id—P@)| < ———=.
1P+l Oll's =5
Choose 11 < 1/4, then

1P|+ 111d — P(t)]| < AN Eale, 1),
yielding Lemma 5.9. U

Finally, we end this paper with the proof of roughness for nonuniform con-
formable exponential dichotomy.

Proof of Theorem 5.3. From (5.24) and (5.22), we show that

oyt (
POl < 5ot o
(
(
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A A

4 ON
where A = 3 — A—BA Analogously, it follows from (5.27) and (5.22) that
S — 20N
o AN?(3 B, ()
1 - PP < - DL g oy ba iz
f— 20N E,(\t)

Therefore, we can acquire the desired inequalities like (5.4), and the proof is com-
pleted. [
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