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Abstract

The solutions of traditional fractional differential equations neither satisfy
group property nor generate dynamical systems, so hyperbolicity of these e-
quations is difficult to study. Benefitting from the new proposed conformable
fractional derivative, we investigate dichotomy of conformable fractional e-
quations, including conformable exponential dichotomy and stability, rough-
ness and nonuniform dichotomy.
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1 Introduction

The well-known dichotomy concept on various of hyperbolic systems, e.g. ODEs

ẋ = A(t)x, t ∈ J, (1.1)

where interval J ⊂ R, is said that there exist a projection matrix P and a funda-
mental matrix X(t) of (1.1), and positive constants Ki and βi (i = 1, 2) such that
for all t, s ∈ J ,

∥X(t)PX−1(s)∥ ≤ K1e
−β1(t−s), t ≥ s,

∥X(t)(I − P )X−1(s)∥ ≤ K2e
−β2(s−t), s ≥ t.

(1.2)
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Correspondingly, the roughness of dichotomy is regarded as the persistence of di-
chotomy undergoing small linear perturbation, i.e., the perturbed system

ẋ = (A(t) +B(t))x, t ∈ J

still admits dichotomy behaviour in the form of (1.2) along with small variations
of P , X(t), Ki and βi (i = 1, 2). According to the difference of asymptotic rate,
there are diverse dichotomies, e.g., the classical exponential dichotomy (1.2) ([16]),
(h, k)-dichotomy ([30]), polynomial dichotomy ([8]), etc. The dichotomies and their
corresponding properties are core issues in the field of dynamical systems, which can
be traced back to the papers of Perron ([33]) and Li ([26]) on conditional stability
of linear differential and difference equations respectively. And they are gradually
formalized, developed and summarized in literatures [28, 29, 16]. Recently decades,
many research results were devoted to exploring the existence criteria of exponen-
tial dichotomy (see Hale ([22]), Chow and Leiva ([13]), Sasu ([38]), Barreira and
Valls ([7]), Battelli and Palmer ([10]) and the references therein). The roughness
referred before are also widely focused on, and firstly demonstrated by Masser-
a and Schäffer ([28]) under hypothesis that the original matrix A(t) is bounded.
Schäffer ([39]) subsequently eliminated the assumption of boundedness. Coppel
([15]) gave a general elementary proof of roughness if matrix A(t) commutes with
the projection P . In 1978 Coppel ([16, pp.28-33]) exhibited a simpler proof via
the so-called projected integral inequalities raised by Hale ([22, pp.110-111]). Later,
Naulin and Pinto ([31]) improved the size of perturbation B(t) in Coppel’s [16,
pp.34-35] without boundedness of A(t) yet. Popescu ([36]) further generalized the
results of [16] and [31] to infinite dimensional Banach spaces. Thereafter, the no-
tion of nonuniform exponential dichotomy, roughly speaking dichotomy formula
(1.2) involving extra nonuniform constants in exponents, was proposed by Bar-
reira and Valls ([7]), where its roughness was also studied. In 2013 Zhou, Lu and
Zhang ([48]) studied the roughness of tempered exponential dichotomy for random
difference equations in Banach spaces lack of the so-called Multiplicative Ergodic
Theorem. Moreover, plenty of works on the roughness of exponential dichotomy
could be found in [12, 13, 16, 31, 36, 7] for continuous dynamical systems and in
[34, 38, 48, 49] for discrete dynamical systems and references therein. In addition,
the corresponding admissibility problem of dichotomy, i.e. admissible functions pair
of solutions x and inhomogeneous perturbations f , was investigated extensively in
[29, 38, 49, 6, 19] and so on.

Although the research on dichotomy involved ODEs ([28, 29, 22, 16, 30, 31, 12,
36, 7, 8, 10, 19]), difference equations ([26, 38, 49, 48]), functional differential e-
quations ([32]), random systems ([2, 20, 14, 27]), skew-product semiflows ([13, 34]),
etc., till now there is no result of dichotomy for fractional differential equations
(FDEs for short). Fractional derivative started from a letter from L’Hospital to
Leibniz about discussing the meaning of a half derivative. From then on, because
of better approximation to practical model associated with memory and hereditary
phenomena than ODEs and PDEs, FDEs are steadily developed in the aspects of
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Physics and Chemistry ([47, 44]), Biology and Medicine ([18, 41]), Engineering
and Control Theory ([3, 35]) and Economics and Psychology ([11, 40]), especially
in recent decades (see monographs [35, 25, 21, 50, 23, 17]). Traditional definitions
of fractional derivative and integral, such as Riemann-Liouville’s, Caputo’s and
Grünwald-Letnikov’s ([35, 25]), have no product rule and chain rule of derivative,
such that the solutions of FDEs neither fulfil group property nor generate dynamical
systems. There is a vast of works on well-posedness ([50]), stability ([25]), Laplace
transform method and optimal control ([35]), variational method, attractors and
numerical solutions ([21]) and chaos ([5]) of FDEs, but the study on hyperbolicity
of FDEs is temporarily in blank state. Until 2014, Khalil et al. ([24]) introduced
a new definition of fractional derivative, that is so-called conformable fractional
derivative, which can almost satisfy all corresponding characteristics analogous to
integer derivative. Thus, the solutions of CFDEs (abbreviation of conformable frac-
tional differential equations) also can generate dynamical systems, which makes it
possible to consider the hyperbolic behaviors of FDEs. Later, Abdeljawad ([1])
accomplished the definition of left and right conformable fractional derivatives and
the variation of constants formula of CFDEs and solved CFDEs via Laplace trans-
form. In 2017 Souahi et al. ([42]) employed Lyapunov direct method to present the
stability, asymptotic stability and exponential stability of CFDEs. In 2019 Khan
et al. ([43]) further verified the generalized definition and its semigroup and linear
properties of conformable derivative and existence and uniqueness of solutions for
CFDEs. During the same year, Balci et al. ([4]) displayed the Neimark-Sacker bi-
furcation and chaotic behavior for a tumor-immune system modelled by a CFDE.
In 2020 Xie et al. ([46]) showed an exact solution and difference scheme for a
gray model with conformable derivative. Recently, Wu et al. ([45]) revealed the
Hyers-Ulam stability of a conformable fractional model.

In this paper we attempt to establish the theory of dichotomy for CFDEs.
In order to generalize the hyperbolicity of ODEs to CFDEs, we first modify the
definitions of conformable fractional derivative and integral and a conformable ex-
ponential function originated from [24, 1]. Subsequently, some preliminaries, e.g.
the well-posedness of solutions, operator semigroups and variation of constants for-
mula, are achieved in section 2. In section 3, we provide the definitions of so-called
conformable exponential stability and dichotomy with respect to CFDEs, whose
asymptotic rate is the conformable exponential function. These stability and di-
chotomy include the classical exponential stability and dichotomy ([16]) in ODEs
with integer derivative as special cases. Meanwhile, we develop the conformable
fractional integral versions of projected inequalities to prove the existence of con-
formable exponential dichotomy and corresponding invariant manifolds. In section
4, we discuss the roughness of conformable exponential dichotomy in R+. In sec-
tion 5, we additionally study nonuniform conformable exponential stability and
dichotomy and their roughness in R+. Our results extend the works of Hale ([22]),
Coppel ([16]), Barreira and Valls ([7]) to CFDEs.
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2 Linear CFDEs

Throughout this paper, we define the following functions sets:

I(R,R) := {φ : R → R |φ is a nondecreasing function},
C(R,R) := {φ : R → R |φ is a continuous function},
Cb(R,R) := {φ : R → R |φ is a continuous and bounded function},
CI(R,R) := {φ : R → R |φ is a continuous and nondecreasing function}.

Further, set real constants α ∈ (0, 1] and t∗, t0, t
∗ satisfying t∗ < t0 < t∗, function

f : (t∗, t
∗) → R, and norms

∥x(t)∥ :=
n∑

i=1

|xi(t)|, x : [t0,+∞) → Rn,

∥A(t)∥ := max{
n∑

i=1

|ai1(t)|,
n∑

i=1

|ai2(t)|, ...,
n∑

i=1

|ain(t)|}, A : R → Rn×n.

In this section, we focus on the qualitative properties of linear CFDEs and their
perturbations. Analogously to the linear ODEs, there also exists fundamental
solutions for linear CFDEs. Consider the nonautonomous linear CFDE

T αx = A(t)x, (t, x) ∈ Rn+1, (2.1)

where matrix function A ∈ C(R,Rn×n). Our primary purpose is to establish its
well-posedness, e.g. existence and uniqueness, continuous dependence on initial
data of solutions and continuation of solutions. Before this, as a preliminary, we
modify the definition and some properties of conformable fractional derivative and
integral raised by Khalil, Horani, Yousef and Sababheh([24]) and Abdeljawad([1]),
to make them make more sense.

Definition 2.1 The α-conformable fractional derivative of f is defined as

T αf(t) := lim
ε→0

f(t+ ε|t|1−α)− f(t)

ε
, t ∈ (t∗, t

∗). (2.2)

In particular, if lim
t→0

T αf(t) exists, then

T αf(0) := lim
t→0

T αf(t).

Here function f is called as α-conformable differentiable, if T αf(t) exists.

Our Definition 2.1 extends the one in [24] to the case of t ≤ 0. And differ-
ent from the definition in [1], there are same formulae in (2.2) for both t ≤ 0
and t ≥ 0. Further, we can deduce the following relations between conformable
fractional derivative and Newton-Leibniz derivative and between conformable frac-
tional integral and Riemann integral.
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Proposition 2.1 The α-conformable fractional derivative of f can be represented
as

T αf(t) = |t|1−αf ′(t), t ∈ (t∗, t
∗).

Proposition 2.2 The α-conformable fractional integral of f is given by

Iα
t0
f(t) =

∫ t

t0

|s|α−1f(s)ds, t ∈ (t∗, t
∗).

The following special function and fractional integral inequality both will be
useful throughout this paper.

Definition 2.2 The following special function is called as a conformable exponen-
tial function:

Eα(λ, t) :=


exp

(
λ
tα

α

)
=

+∞∑
k=0

λktαk

αkk!
, λ ∈ R, t ∈ R+,

exp
(
− λ

(−t)α

α

)
=

+∞∑
k=0

(−λ)k(−t)αk

αkk!
, λ ∈ R, t ∈ R−.

Lemma 2.1 Let functions a ∈ I([t0, t
∗),R+) and f ∈ C([t0, t

∗),R+). Assume that
u : [t0, t

∗) → R+ satisfies fractional integral inequality

u(t) ≤ a(t) + Iα
t0
f(t)u(t), t ∈ [t0, t

∗). (2.3)

Then u can be estimated by

u(t)≤ a(t)eI
α
t0
f(t)

≤ a(t)Eα

(
sup

s∈[t0,t]
f(s), |t|

)
Eα

(
sup

s∈[t0,t]
f(s), |t0|

)
, t ∈ [t0, t

∗). (2.4)

One can prove Lemma 2.1 easily, and the following results on well-posedness of
solutions also can be attained simply. Consider the initial value problem (IVP) as
follows {

T αx(t) = f(t, x(t)), (t, x) ∈ Rn+1,
x(t0) = x0.

(2.5)

Given constants a, b > 0 and domains

D+ = {(t, x) ∈ Rn+1 : t ∈ [t0 − a, t0 + a] ∩ R+, ∥x− x0∥ ≤ b}, t0 ≥ 0,

D− = {(t, x) ∈ Rn+1 : t ∈ [t0 − a, t0 + a] ∩ R−, ∥x− x0∥ ≤ b}, t0 ≤ 0,

assume that the function f satisfies:
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(B1) f ∈ C(D+,Rn) (resp. f ∈ C(D−,Rn));

(B2) f(t, x) satisfies Lipschitz condition with respect to x in D+ (resp. D−), i.e.,
there is a positive constant L such that

∥f(t, x1)− f(t, x2)∥ ≤ L∥x1 − x2∥, (t, x1), (t, x2) ∈ D+ (resp. D−).

Theorem 2.1 Suppose that (B1) and (B2) hold. Then IVP (2.5) has a unique
continuous solution in I+ := [t0 − δ+, t0 + δ+] ∩ R+ for t0 ≥ 0 (resp. I− :=
[t0 − δ−, t0 + δ−] ∩ R− for t0 ≤ 0), where

δ+ := min
{
a,

b

M+

t1−α
0

}
, M+ := max

(t,x)∈D+

∥f(t, x)∥,

δ− := min
{
a,

b

M−
(−t0)

1−α
}
, M− := max

(t,x)∈D−
∥f(t, x)∥.

Applying Lemma 2.1, the following lemma on continuation of solutions can be
naturally proved.

Lemma 2.2 All solutions of (2.1) have maximal interval R.

Analogously to linear ODEs, some elementary properties on linear CFDEs (2.1)
will be presented as follows, whose proofs will be omitted because of trivia.

Proposition 2.3 If x1, x2 : R → Rn are both solutions of (2.1), then a1x1 + a2x2

is also a solution of (2.1) for any a1, a2 ∈ R. And the set of all solutions of (2.1)
is an n-D linear space.

Remark 2.1 n × n matrix function X(t), consisting of n linearly independent
solutions x1(t), ..., xn(t) as its columns, is also called a fundamental solution of
(2.1). And for different fundamental solutions X(t) and Y (t), they can be linearly
represented by each other, i.e., there exists an invertible linear transformation C
such that Y (t) = X(t)C for all t ∈ R.

Proposition 2.4 The general solution of (2.1) associated with initial data x0 can
be written as

x(t) = X(t)X−1(t0)x0, t ∈ R, (2.6)

where X(t) is any fundamental solution of (2.1).
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Proposition 2.5 If X(t) is a fundamental solution of (2.1), then

detX(t) = detX(t0) exp
(
Iα
t0
trA(t)

)
, t ∈ R.

As a special case of (2.1), the linear autonomous system

T αx = Ax, (t, x) ∈ Rn+1, (2.7)

where A is an n × n real constant matrix, also has the following characteristic
similar to linear autonomous ODE.

Definition 2.3 The conformable exponent of an n × n real constant matrix A is
defined as

Eα(A, 1) :=
+∞∑
k=0

Ak

αkk!
, (2.8)

and denote Eα(0, 1) = I for convention.

Proposition 2.6 The power series in (2.8) is convergent for any matrix A.

Recall the Jordan canonical form in ODEs as follows

P−1AP :=

 J1 · · · 0

0
. . . 0

0 · · · Jl

 , Ji =

 λi 1 0

0
. . . 1

0 0 λi

 , i = 1, 2, ..., l, (2.9)

where P is an n × n nonsingular complex matrix and λi is an eigenvalue of A.
Thus, the conformable exponent of a matrix can be easily computed as follows.

Proposition 2.7 Let A is an n × n real matrix with Jordan canonical form in
(2.9), then

Eα(A, 1) = PEα(P
−1AP, 1)P−1 = P

 Eα(J1, 1) · · · 0

0
. . . 0

0 · · · Eα(Jl, 1)

P−1.

Further, one can verify the following formula.
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Proposition 2.8 If A = λI +N , where the nilpotent matrix N is

N =

 0 1 0

0
. . . 1

0 0 0

 ,

then the following expression fulfills:

Eα(A, 1) = Eα(λ, 1)
(
I +

N

α
+

N2

α22!
+ · · ·+ Nn−1

α(n−1)(n− 1)!

)
.

Relying on the preliminaries above, one can solve (2.7) as follows.

Lemma 2.3 The matrix Eα(A, t) is a fundamental solution of (2.7) for all t ∈ R.

Both Proposition 2.4 and Lemma 2.3 lead to the following result on general
solutions of (2.7).

Proposition 2.9 The general solution of (2.7) associated with initial data x0 can
be expressed as

x(t) =
Eα(A, t)

Eα(A, t0)
x0, t ∈ R.

Consider the inhomogeneous linear CFDE

T αx = A(t)x+ f(t), (t, x) ∈ Rn+1, (2.10)

where f ∈ C(R,Rn) and matrix function A ∈ C(R,Rn×n). One can verify the
analogous properties to ODEs as follows.

Proposition 2.10 Like ODEs, if both x∗
1(t) and x∗

2(t) are solutions of (2.10), then
x∗
1(t)−x∗

2(t) is a solution of (2.1). On the other hand, if x(t) and x∗(t) are solutions
of (2.1) and (2.10) respectively, then x(t) + x∗(t) is also a solution of (2.10).

These properties can easily lead to the following structure of general solutions
for (2.10).
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Proposition 2.11 If x∗(t) is a solution of (2.10), then general solutions of (2.10)
associated with initial data x0 can be represented as

x(t) = X(t)X−1(t0)x0 + x∗(t), t ∈ R,

where X(t) is any fundamental solution of (2.1).

Next, we will give the variation of constants formula for (2.10).

Theorem 2.2 Let X(t) is a fundamental matrix of (2.1), then the general solu-
tions of (2.10) associated with initial data x0 can be given by

x(t) = X(t)X−1(t0)x0 +X(t)Iα
t0
X−1(t)f(t), t ∈ R. (2.11)

Particularly, if A(t) degenerates into an n×n real constant matrix A, the variation
of constants formula (2.11) becomes the form

x(t) =
Eα(A, t)

Eα(A, t0)
x0 + Eα(A, t)Iα

t0

f(t)

Eα(A, t)
, t ∈ R.

Proposition 2.12 If an n × n real constant matrix A has only eigenvalues with
negative real part, then there exist constants K,λ > 0 such that

∥Eα(A, t)∥ ≤ KEα(−λ, t), t ∈ R+.

The proof is similar to the case in ODEs, referred Proposition 2.27 in [9, p.77].

3 Stability and conformable exponential dichoto-

my

In this section, we study the concepts of stability and conformable exponential
dichotomy of CFDEs. Before this, Souahi, Makhlouf and Hammami([42]) com-
bined Lyapunov stability and properties of conformable fractional derivative given
by Abdeljawad([1]) to raise the concepts of stability, asymptotic stability and frac-
tional exponential stability for the nonlinear system (2.5). For the nonautonomous
linear CFDE (2.1), the definitions of uniform stability and uniformly asymptotic
stability are more essential.

Based on the definition of stability for CFDEs described in [42], we introduce the
following definition of uniformly stability analogous to the corresponding concept
of ODEs in e.g. [16, p.1].
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Definition 3.1 The solution x̂(t) of system (2.5) is said to be

(C1) uniformly stable, if for any ε > 0 there exists δ := δ(ε) > 0 such that any
solution x(t) of (2.5) satisfies for some s ≥ 0, the inequality ∥x(s)−x̂(s)∥ < δ
implies ∥x(t)− x̂(t)∥ < ε for all t ≥ s;

(C2) attractive, if there exists δ0 > 0 and T := T (ε) > 0 for any ε > 0 such that
for some s ≥ 0, the inequality ∥x(s) − x̂(s)∥ < δ0 implies ∥x(t) − x̂(t)∥ < ε
for all t ≥ s+ T ;

(C3) uniformly asymptotically stable, if it is uniformly stable and attractive.

The following definition is on the conformable exponential stability.

Definition 3.2 The solution x∗ = 0 of system (2.5) is conformable exponential
stable if

∥x(t)∥ ≤ K
Eα(λ, t0)

Eα(λ, t)
∥x0∥, t ≥ t0,

where constants K,λ > 0.

More generally, we focus on the significant application of Definition 3.1 to linear
equation (2.1).

Proposition 3.1 Suppose X(t) is a fundamental matrix of (2.1) and c is a real
constant, then solution x∗ = 0 of (2.1) is said to be

(D1) stable for any t0 ∈ R if and only if there exists K := K(t0) > 0 such that

∥X(t)∥ ≤ K, t0 ≤ t < +∞;

(D2) uniformly stable for t0 ≥ c if and only if there exists K := K(c) > 0 such
that

∥X(t)X−1(s)∥ ≤ K, t0 ≤ s ≤ t < +∞;

(D3) asymptotically stable for any t0 ∈ R if and only if lim
t→+∞

∥X(t)∥ = 0;

(D4) uniformly asymptotically stable for t0 ≥ c if and only if there exist K :=
K(c) > 0 and λ := λ(c) > 0 such that

∥X(t)X−1(s)∥ ≤ K
Eα(λ, s)

Eα(λ, t)
, t0 ≤ s ≤ t < +∞. (3.1)
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Particularly, (D1)-(D4) all hold for autonomous system (2.7), if fundamental
matrix X(t) is replaced by Eα(A, t).

The proof of (D1)-(D4) can refer to the Theorem 2.1 in [22, p.84]. In partic-
ular, since the conformable exponential stability implies the uniformly asymptotic
stability, one can simply verify conclusion (D4). The definitions of the correspond-
ing stabilities above for Caputo FDEs had been proposed in references e.g. [17,
p.140].

Next, we shall propose the concept of conformable exponential dichotomy for
linear CFDE (2.1).

Definition 3.3 Suppose that X(t) is a fundamental matrix of (2.1). The equation
(2.1) possesses a conformable exponential dichotomy if there exists a projection
matrix P , i.e. P 2 = P , and positive constants Ni, βi (i = 1, 2) such that

∥X(t)PX−1(s)∥ ≤ N1
Eα(β1, s)

Eα(β1, t)
, t ≥ s,

∥X(t)(I − P )X−1(s)∥ ≤ N2
Eα(β2, t)

Eα(β2, s)
, s ≥ t.

(3.2)

In particular, (2.1) possesses an ordinary dichotomy if (3.2) hold with β1 = β2 = 0.

Finally, we concern perturbation of nonautonomous linear CFDE (2.1). Con-
sider the perturbed equation

T αx = A(t)x+ f(t, x), (t, x) ∈ Rn+1, (3.3)

where f ∈ C(Rn+1,Rn) and matrix function A ∈ C(R,Rn×n).

The following conclusion give out the projection form of equivalent integral
equation and the existence of bounded solutions for equation (3.3).

Lemma 3.1 Suppose that function f ∈ C(Rn+1,Rn), P is a projection matrix
given in Definition 3.3 and equation (2.1) possesses a conformable exponential di-
chotomy. If x ∈ Cb([t0,+∞),Rn) is a solution of (3.3) with x(t0) = x0 for constant
t0 ∈ R+, then

x(t) =X(t)PX−1(t0)x0 +X(t)PIα
t0
X−1(t)f(t, x(t))

+X(t)(I − P )Iα
+∞X−1(t)f(t, x(t)), t ≥ t0.

(3.4)

If x ∈ Cb((−∞, t0],Rn) is a solution of (3.3) with x(t0) = x0 for constant t0 ∈ R−,
then

x(t) =X(t)(I − P )X−1(t0)x0 +X(t)(I − P )Iα
t0
X−1(t)f(t, x(t))

+X(t)PIα
−∞X−1(t)f(t, x(t)), t ≤ t0.

(3.5)

Conversely, any bounded solution of (3.4) or (3.5) is a solution of (3.3).
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Proof. For convenience, we only prove (3.4), formula (3.5) can be proved
in an analogous manner. Assume x(t) is a bounded solution of (3.3) and M :=
sup

t∈[t0,+∞)

∥x(t)∥ for t ≥ t0. The continuity of f implies that there exists a positive

constant N such that N := sup
t∈[t0,+∞)

∥f(t, x(t))∥. By the variation of constants

formula (2.11), for any τ ≥ t0, the solution x(t) satisfies

X(t)(I − P )X−1(t)x(t) =X(t)(I − P )X−1(τ)x(τ)

+X(t)(I − P )Iα
τ X

−1(t)f(t, x(t)), t, τ ≥ t0,
(3.6)

where the following estimate can be obtained by (3.2)

∥X(t)(I − P )X−1(τ)x(τ)∥ ≤ N2
Eα(β2, t)

Eα(β2, τ)
sup

t∈[t0,+∞)

∥x(t)∥

≤ MN2
Eα(β2, t)

Eα(β2, τ)
, t, τ ≥ t0.

It yields that

lim
τ→+∞

∥X(t)(I − P )X−1(τ)x(τ)∥ = 0, t ≥ t0.

On the other hand, in integral equation (3.6) for t ≥ t0,

∥X(t)(I − P )Iα
τ X

−1(t)f(t, x(t))∥ ≤ NN2Eα(β2, t)|Iα
τ Eα(−β2, t)|

≤ NN2Eα(β2, t)

∫ τ

t

sα−1 exp
(
− β2

sα

α

)
ds

≤ NN2Eα(β2, t)

β2

(Eα(−β2, t)− Eα(−β2, τ))

≤ NN2

β2

,

which implies that

∥X(t)(I − P )Iα
+∞X−1(t)f(t, x(t))∥ < +∞, t ≥ t0.

It follows from (3.6) that

X(t)(I − P )X−1(t)x(t) = X(t)(I − P )Iα
+∞X−1(t)f(t, x(t)), t ≥ t0. (3.7)

From the variation of constants formula (2.11), it also follows that for t ≥ t0,

X(t)PX−1(t)x(t) = X(t)PX−1(t0)x(t0) +X(t)PIα
t0
X−1(t)f(t, x(t)). (3.8)

Since x(t) = X(t)PX−1(t)x(t) + X(t)(I − P )X−1(t)x(t), substituting (3.7) and
(3.8) into it, we attain (3.4). And the converse conclusion can be verified by direct
calculation to end the proof. �

The following Lemma is the fractional-order version of projected integral in-
equality.
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Lemma 3.2 Suppose that Ni, βi and ε are all positive constants for i = 1, 2, and
bounded continuous nonnegative solutions u(t) satisfy

u(t) ≤N1
Eα(β1, t0)

Eα(β1, t)
+

εN1

Eα(β1, t)
Iα
t0
Eα(β1, t)u(t)

− εN2Eα(β2, t)Iα
+∞

u(t)

Eα(β2, t)
, t ≥ t0 ≥ 0,

(3.9)

u(t) ≤N2
Eα(β2, t)

Eα(β2, t0)
− εN2Eα(β2, t)Iα

t0

u(t)

Eα(β2, t)

+
εN1

Eα(β1, t)
Iα
−∞Eα(β1, t)u(t), t ≤ t0 ≤ 0.

(3.10)

Set that

θ := ε
(N1

β1

+
N2

β2

)
, Ki :=

Ni

1− θ
, λi := βi −

εNi

1− θ
, i = 1, 2.

If θ < 1, then

u(t) ≤


K1

Eα(λ1, t0)

Eα(λ1, t)
, t ≥ t0,

K2

Eα(λ2, t)

Eα(λ2, t0)
, t ≤ t0.

Proof. Without loss of generality, we only consider inequality (3.9), because
inequality (3.10) can be changed into (3.9) through transformations t → −t and
t0 → −t0. Next, we need to verify lim

t→+∞
u(t) = 0. In deed, since u(t) is bounded,

let σ := lim sup
t→+∞

u(t). If σ > 0 and for any constant ϑ satisfying θ < ϑ < 1, there

exists t1 ≥ t0 such that for any t ≥ t1 we have u(t) ≤ ϑ−1σ. For t ≥ t1 we compute

u(t) ≤N1
Eα(β1, t0)

Eα(β1, t)
+

εN1

Eα(β1, t)
Iα
t0
Eα(β1, t1)u(t1)

+ϑ−1σ
[ εN1

Eα(β1, t)
Iα
t1
Eα(β1, t)− εN2Eα(β2, t)Iα

+∞
1

Eα(β2, t)

]
≤N1

Eα(β1, t0)

Eα(β1, t)
+

εN1

Eα(β1, t)
Iα
t0
Eα(β1, t1)u(t1) + ϑ−1σε

(N1

β1

+
N2

β2

)
.

Since θ < ϑ < 1, the upper limit of the right hand side of the inequality above is
less than σ as t → +∞. It follows from the inequality above that

σ ≤ ϑ−1σε
(N1

β1

+
N2

β2

)
< σ,

that is a contradiction. Hence, σ = 0 and lim
t→+∞

u(t) = 0.
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Set v(t) := sup
τ≥t

u(τ). Obviously, the function v(t) is nonincreasing and for any

t ≥ t0, there exists t2 ≥ t such that for t ≤ s ≤ t2, v(t) = u(t2) = v(s). Replacing
t in (3.9) with t2, for t ≥ t0 we calculate that

v(t) = u(t2) ≤ N1
Eα(β1, t0)

Eα(β1, t2)
+

εN1

Eα(β1, t2)
Iα
t0
Eα(β1, t2)u(t2)

−εN2Eα(β2, t2)Iα
+∞

u(t2)

Eα(β2, t2)

≤ N1
Eα(β1, t0)

Eα(β1, t)
+

εN1

Eα(β1, t)
Iα
t0
Eα(β1, t2)u(t2)

−εN2Eα(β2, t2)Iα
+∞

u(t2)

Eα(β2, t2)

≤ N1
Eα(β1, t0)

Eα(β1, t)
+

εN1

Eα(β1, t)
Iα
t0
Eα(β1, t)u(t)

−v(t)
[ εN1

Eα(β1, t2)
Iα
t2
Eα(β1, t) + εN2Eα(β2, t2)Iα

+∞
1

Eα(β2, t2)

]
≤ N1

Eα(β1, t0)

Eα(β1, t)
+

εN1

Eα(β1, t)
Iα
t0
Eα(β1, t)u(t) + v(t)ε

(N1

β1

+
N2

β2

)
.

Put w(t) :=
Eα(β1, t)

Eα(β1, t0)
v(t), then it follows from the definition of v that

w(t) ≤ N1 +
εN1

Eα(β1, t0)
Iα
t0
Eα(β1, t)v(t) + θw(t)

= N1 + εN1Iα
t0
w(t) + θw(t), t ≥ t0,

that is

w(t) ≤ N1

1− θ
+

εN1

1− θ
Iα
t0
w(t), t ≥ t0.

Applying Lemma 2.1 to the inequality above, we attain

w(t) ≤ N1

1− θ
exp(Iα

t0

εN1

1− θ
) =

N1

1− θ

Eα(
εN1

1− θ
, t)

Eα(
εN1

1− θ
, t0)

, t ≥ t0.

Combining with the definitions of v and w, we acquire

u(t) ≤ N1

1− θ

Eα(
εN1

1− θ
, t)

Eα(
εN1

1− θ
, t0)

Eα(β1, t0)

Eα(β1, t)
= K1

Eα(λ1, t0)

Eα(λ1, t)
, t ≥ t0,
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where K1 =
N1

1− θ
and λ1 = β1 −

δN1

1− θ
. Therefore, Lemma 3.2 is proved. �

As a corollary of Lemma 3.2, we introduce a more useful result in estimate of
dichotomy.

Corollary 3.1 Suppose that Ni, βi and ε are all positive constants for i = 1, 2,
and bounded continuous nonnegative solutions u(t) satisfy

u(t) ≤N2
Eα(β2, t)

Eα(β2, s)
+

εN1

Eα(β1, t)
Iα
t0
Eα(β1, t)u(t)

− εN2Eα(β2, t)Iα
s

u(t)

Eα(β2, t)
, s ≥ t ≥ t0 ≥ 0,

(3.11)

u(t) ≤N1
Eα(β1, s)

Eα(β1, t)
− εN2Eα(β2, t)Iα

t0

u(t)

Eα(β2, t)

+
εN1

Eα(β1, t)
Iα
s Eα(β1, t)u(t), s ≤ t ≤ t0 ≤ 0.

(3.12)

If θ < 1, then

u(t) ≤


K2

Eα(λ2, t)

Eα(λ2, s)
, s ≥ t ≥ t0,

K1

Eα(λ1, s)

Eα(λ1, t)
, s ≤ t ≤ t0,

where θ, Ki and λi were all defined in Lemma 3.2.

Proof. Without loss of generality, we only consider inequality (3.11), because
inequality (3.12) can be changed into (3.11) through transformations t → −t,
s → −s and t0 → −t0. Let t1 := (sα − tα + tα0 )

1/α, then s ≥ t1 ≥ t0, because of the
fact s ≥ t ≥ t0. From (3.11) it follows that for s ≥ t1 ≥ t0 ≥ 0,

u((sα − tα1 + tα0 )
1/α) ≤N2

Eα(β2, t0)

Eα(β2, t1)

+εN1

∫ (sα−tα1+tα0 )
1/α

t0

τα−1Eα(β1, τ)Eα(β1, t1)

Eα(β1, s)Eα(β1, t0)
u(τ)dτ

+εN2

∫ s

(sα−tα1+tα0 )
1/α

τα−1Eα(β2, s)Eα(β2, t0)

Eα(β2, τ)Eα(β2, t1)
u(τ)dτ.

Put v(t1) := u((sα − tα1 + tα0 )
1/α) then u(τ) = v((sα − τα + tα0 )

1/α). The inequality
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above yields that for s ≥ t1 ≥ t0 ≥ 0,

v(t1) ≤N2
Eα(β2, t0)

Eα(β2, t1)

+εN1

∫ (sα−tα1+tα0 )
1/α

t0

τα−1Eα(β1, τ)Eα(β1, t1)

Eα(β1, s)Eα(β1, t0)
v((sα − τα + tα0 )

1/α)dτ

+εN2

∫ s

(sα−tα1+tα0 )
1/α

τα−1Eα(β2, s)Eα(β2, t0)

Eα(β2, τ)Eα(β2, t1)
v((sα − τα + tα0 )

1/α)dτ.

Let ι := (sα − τα + tα0 )
1/α, then

v(t1) ≤N2
Eα(β2, t0)

Eα(β2, t1)
+ εN2

∫ t1

t0

ια−1 Eα(β2, ι)

Eα(β2, t1)
v(ι)dι

+εN1

∫ s

t1

ια−1Eα(β1, t1)

Eα(β1, ι)
v(ι)dι, s ≥ t1 ≥ t0 ≥ 0.

The inequality also can be amplified as

v(t1) ≤N2
Eα(β2, t0)

Eα(β2, t1)
+

εN2

Eα(β2, t1)
Iα
t0
Eα(β2, t1)v(t1)

−εN1Eα(β1, t1)Iα
+∞

v(t1)

Eα(β1, t1)
, t1 ≥ t0 ≥ 0.

By the synchronous boundedness of both functions u and v, we employ Lemma 3.2
to gain

v(t1) ≤ K2
Eα(λ2, t0)

Eα(λ2, t1)
, t1 ≥ t0.

It follows from the definition of v(t1) that

u(t) ≤ K2
Eα(λ2, t)

Eα(λ2, s)
, s ≥ t ≥ t0,

where K2 =
N2

1− θ
, λ2 = β2 −

εN2

1− θ
given in Lemma 3.2. Hence, Corollary 3.1 is

proved. �

In the end of this section, we demonstrate the relation of invariant manifolds
between equation (2.1) and its perturbation (3.3). But before we do that, let us
introduce the following notion.

Definition 3.4 Let Ω is any subset of Rn including zero and P is a projection
matrix such that Rn = PRn ⊕ (I − P )Rn and P 2 = P . We say Ω is tangent to
(I−P )Rn (resp. PRn) at zero, if ∥Px∥/∥(I−P )x∥ → 0 (resp. ∥(I−P )x∥/∥Px∥ →
0) as x → 0 in Ω.
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From now on, let k := R(I − P ), where denote R(P ) by the rank of matrix P
and assume that

(E1) ζ ∈ CI(R+,R+) satisfies ζ(0) = 0;

(E2) Λ(ζ) consists of functions f ∈ C(Rn+1,Rn) such that

f(t, 0) = 0,

∥f(t, x)− f(t, y)∥ ≤ ζ(σ)∥x− y∥, ∥x∥, ∥y∥ ≤ σ;

(E3) Projection matrix P fulfils X(t)P = PX(t) for all t ∈ R.

Theorem 3.1 Suppose that (E1)-(E3) hold and denote the unstable and stable
manifolds of the hyperbolic equilibrium x = 0 of equation (3.3) as Uk := Uk(f) and
Sn−k := Sn−k(f) respectively, for any f ∈ Λ(ζ). Then Uk and Sn−k are tangent
to (I − P )Rn and PRn at x = 0 respectively, where (I − P )Rn and PRn are the
unstable and stable invariant subspaces of the hyperbolic equilibrium x = 0 of (2.1),
respectively. Moreover, there exist positive constants M , γ1 and γ2 such that

∥x(t)∥ ≤M
Eα(γ1, t0)

Eα(γ1, t)
∥x(t0)∥, t ≥ t0 ≥ 0, x(t0) ∈ Sn−k,

∥x(t)∥ ≤M
Eα(γ2, t)

Eα(γ2, t0)
∥x(t0)∥, t ≤ t0 ≤ 0, x(t0) ∈ Uk.

(3.13)

Remark 3.1 The hyperbolic equilibrium x = 0 of ODE ẋ = A(t)x is also the
hyperbolic equilibrium of CFDE (2.1). In fact, by Definition 2.1, one can verify

T αx(0) = lim
t→0

T αx(t) = lim
t→0

A(t)x(t) = lim
t→0

ẋ(t) = ẋ(0),

which implies the assertion.

Proof of Theorem 3.1. Assume λ, Ni, βi (i = 1, 2) are all given in (3.1) and
(3.2) respectively, and the function ζ(σ) (σ ≥ 0) is given in (E1). Take δ satisfy

(
N1

β1

+
N2

β2

)ζ(δ) <
1

2
, N1 < (β2 + λ− 4N1N2ζ(δ))(

N1

β1

+
N2

β2

). (3.14)

Choose x0 satisfy ∥x0∥ ≤ δ/2N1 for x0 ∈ Rn, and define L(Px0, δ) is a set of
functions x ∈ C([t0,+∞),Rn), where ∥x∥∞ := sup

t0≤t<+∞
∥x(t)∥ ≤ δ and t0 ≥ 0.

L(Px0, δ) is a closed bounded subset consisting of the Banach space of all bounded
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continuous functions mapping [t0,+∞) to Rn with the uniform topology. For any
x ∈ L(Px0, δ), define

(J x)(t) :=X(t)PX−1(t0)x0 +X(t)PIα
t0
X−1(t)f(t, x(t))

+X(t)(I − P )Iα
+∞X−1(t)f(t, x(t)), t ≥ t0.

(3.15)

It is easy to know that J x is well defined and continuous for t ≥ t0. From (3.2),
(3.14) and (E2), we calculate that

∥(J x)(t)∥ ≤ N1
Eα(β1, t0)

Eα(β1, t)
∥x0∥+

N1

Eα(β1, t)
Iα
t0
Eα(β1, t)∥f(t, x(t))∥

−N2Eα(β2, t)Iα
+∞

∥f(t, x(t))∥
Eα(β2, t)

≤ N1
Eα(β1, t0)

Eα(β1, t)
∥x0∥+ ζ(δ)

(N1

β1

+
N2

β2

)
∥x∥∞

≤ N1∥x0∥+ ζ(δ)
(N1

β1

+
N2

β2

)
δ

<
δ

2
+

δ

2
= δ,

thus ∥J x∥∞ < δ and J : L(Px0, δ) → L(Px0, δ).

Analogously to the computation above, we obtain

∥(J x)(t)− (J y)(t)∥ ≤ ζ(δ)
(N1

β1

+
N2

β2

)
∥x− y∥∞ ≤ 1

2
∥x− y∥∞, t ≥ t0,

which implies that J is a contraction mapping in L(Px0, δ). In fact, there is a
unique fixed point x∗(t, Px0) ∈ L(Px0, δ) satisfying (3.4). Note that the func-
tion x∗(t, Px0) is continuous with respect to Px0 and x∗(t, 0) = 0. Let x∗(t) :=
x∗(t, Px0) and x̂∗(t) := x∗(t, P x̂0), it follows from (3.4), (3.1) and (E3) that

∥x∗(t)− x̂∗(t)∥ ≤ K
Eα(λ, t0)

Eα(λ, t)
∥Px0 − Px̂0∥

+
N1ζ(δ)

Eα(β1, t)
Iα
t0
Eα(β1, t)∥x∗(t)− x̂∗(t)∥

−N2ζ(δ)Eα(β2, t)Iα
+∞

∥x∗(t)− x̂∗(t)∥
Eα(β2, t)

, t ≥ t0.

By Lemma 3.2, we acquire

∥x∗(t, Px0)− x∗(t, P x̂0)∥ ≤ 2K
Eα(γ1, t0)

Eα(γ1, t)
∥Px0 − Px̂0∥, t ≥ t0, (3.16)

where γ1 = λ−
N1β1β2

N1β2 +N2β1

. Combining the fact x∗(t, 0) = 0 and (3.16), one can

verify that the first expression of the estimate (3.13) is true. Proceeding analogously

to (3.16), the second estimate in (3.13) is also true, when γ2 = λ−
N2β1β2

N1β2 +N2β1

.
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Set Bδ/2N1 is the open ball in Rn centered at the origin with radius δ/2N1, and
take S∗

n−k := {x : x = x∗(t0, Px0), x0 ∈ Bδ/2N1 ∩Rn}. Let h(Px0) := x∗(t0, Px0) for
x0 ∈ Bδ/2N1 ∩Rn, we observe that h is a continuous mapping from Bδ/2N1 ∩ (PRn)
to S∗

n−k, then

h(Px0) = Px0 +X(t0)(I − P )Iα
+∞X−1(t0)f(t0, x∗(t0, Px0)).

Given x0, x̂0 ∈ Bδ/2N1 ∩ Rn, we employ (3.2), (3.14), (3.16) and (E2) to obtain

∥h(Px0)− h(Px̂0)∥ ≥ ∥Px0 − Px̂0∥+N2ζ(δ)Eα(β2, t0)Iα
+∞

∥x∗(t0)− x̂∗(t0)∥
Eα(β2, t0)

≥ ∥Px0 − Px̂0∥
[
1 + Eα(β2 + γ1, t0)Iα

+∞
2N1N2ζ(δ)

Eα(β2 + γ1, t0)

]
≥
(
1− 2N1N2ζ(δ)

β2 + γ1

)
∥Px0 − Px̂0∥ ≥ 1

2
∥Px0 − Px̂0∥,

yielding h is a bijective. And since h−1 = P is continuous, h is a homeomorphism.
Hence, S∗

n−k is homeomorphic to the (n − k)-D open unit ball in Rn−k. If S∗
n−k is

not a positively invariant set, then we expand S∗
n−k into the positively invariant

Sn−k, by absorbing all the positive orbits of the solutions starting from S∗
n−k. From

the uniqueness of the solutions, Sn−k is also homeomorphic to the open unit ball in
Rn−k. In other words, the case ∥Px∥ < δ/2N1 for all x ∈ Sn−k implies Sn−k ≡ S∗

n−k.
It follows from (3.15), (3.16), (E2) and the fact x∗(t, 0) = 0 that

∥(I − P )x∗(t0, Px0)∥ ≤ −N2Eα(β2, t0)Iα
+∞

∥f(t0, x∗(t0, Px0))∥
Eα(β2, t0)

≤ −N2Eα(β2, t0)Iα
+∞

ζ(∥x∗(t0, Px0)∥)
Eα(β2, t0)

∥x∗(t0, Px0)∥

≤ −N2Eα(β2, t0)Iα
+∞

ζ(2N1∥Px0∥)
Eα(β2, t0)

2N1∥Px0∥

≤ 2N1N2

β2

ζ(2N1∥Px0∥)∥Px0∥.

Since ∥Px0∥ → 0 as ∥x0∥ → 0, we get ∥(I−P )x∗(t0, Px0)∥/∥Px0∥ → 0 as ∥x0∥ → 0
in Sn−k. Consequently Sn−k is tangent to PRn at zero. Similarly, one can construct
the set Uk via (3.5), and complete the proof of Theorem 3.1. �

4 Roughness of dichotomy

Our focus of this section is the roughness of the conformable exponential dichotomy.
That is the preservation of dichotomy for hyperbolic linear systems undergoing
small linear perturbation. Consider the perturbed equation of linear CFDE (2.1)
as follows

T αy = [A(t) + B(t)]y, (t, y) ∈ Rn+1, (4.1)
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where matrix functions A ∈ C(R,Rn×n) and B ∈ Cb(R,Rn×n). The following is
one of our main results of this paper.

Theorem 4.1 Assume that X(t) is a fundamental matrix of (2.1) such that X(0) =
I, and equation (2.1) possesses a conformable exponential dichotomy, i.e., estimates
(3.2) hold in R+. If ε := sup

t≥0
∥B(t)∥ is sufficiently small, then perturbed equation

(4.1) also possesses a conformable exponential dichotomy in R+.

Proof. We divide the proof of Theorem 4.1 into the following three steps.

Step 1: Finding bounded solutions of equation (4.1). Let matrix function Y ∈
Cb(R+,Rn×n) equipped with norm

∥Y ∥∞ := sup
t≥0

∥Y (t)∥.

Define mapping L : Cb(R+,Rn×n) → Cb(R+,Rn×n) as

LY (t) = X(t)P +X(t)PIα
0 X

−1(t)B(t)Y (t) +X(t)(I − P )Iα
+∞X−1(t)B(t)Y (t).

It follows from (3.2) that

∥LY (t)∥ ≤ N1

Eα(β1, t)
+

εN1∥Y ∥∞
Eα(β1, t)

Iα
0 Eα(β1, t)− Eα(β2, t)Iα

+∞
εN2∥Y ∥∞
Eα(β2, t)

.

Observing that LY (t) is bounded and continuous for t ≥ 0, we obtain

∥LY ∥∞ ≤ N1 + ε
(N1

β1

+
N2

β2

)
∥Y ∥∞.

Given another Ŷ ∈ Cb(R+,Rn×n), analogously we get

∥LY − LŶ ∥∞ ≤ ε
(N1

β1

+
N2

β2

)
∥Y − Ŷ ∥∞.

This yields that the mapping L has a unique Y1 ∈ Cb(R+,Rn×n) such that

Y1(t) =X(t)P +X(t)PIα
0 X

−1(t)B(t)Y1(t)

+X(t)(I − P )Iα
+∞X−1(t)B(t)Y1(t),

(4.2)

if

θ := ε
(N1

β1

+
N2

β2

)
< 1.

Obviously, Y1(t) is also a matrix solution of (4.1) and differentiable. Post-projecting
P on both hands sides of (4.2), we also know that Y1(t)P is the unique fixed point
of L, and Y1(t)P = Y1(t).
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Step 2: Constructing projection matrix. Let Q := Y1(0), then QP = Q. Com-
bining (4.2) with the property P (I − P ) = 0, and replacing t with s, we attain

X(t)PX−1(s)Y1(s) = X(t)P +X(t)PIα
0 X

−1(s)B(s)Y1(s). (4.3)

It follows from (4.2) and (4.3) that

Y1(t) =X(t)PX−1(s)Y1(s) +X(t)PIα
s X

−1(t)B(t)Y1(t)

+X(t)(I − P )Iα
+∞X−1(t)B(t)Y1(t), t ≥ s ≥ 0.

(4.4)

Noting (4.3) with t = s = 0, we gain PQ = P . Post-projecting Q on both hands
sides of (4.2) again, we acquire

Y1(t)Q = X(t)P +X(t)PIα
0 X

−1(t)B(t)Y1(t)Q

+X(t)(I − P )Iα
+∞X−1(t)B(t)Y1(t)Q,

implying Y1(t)Q is also a fixed point of L. In conclusion,

Y1(t)Q = Y1(t) = Y1(t)P.

Obviously, Q is a projection when t = 0.

Provided Y (t) is a fundamental matrix of (4.1) fulfilling Y (0) = I, we derive

Y1(t) = Y (t)Q. (4.5)

Set

Y2(t) := Y (t)(I −Q), (4.6)

then Y (t) = Y1(t)+Y2(t). Relying on the variation of constants formula (2.11), we
calculate that

Y2(t) = X(t)X−1(0)Y2(0) +X(t)Iα
0 X

−1(t)B(t)Y2(t)

= X(t)Y (0)(I −Q) +X(t)Iα
0 X

−1(t)B(t)Y2(t)

= X(t)(I −Q) +X(t)Iα
0 X

−1(t)B(t)Y2(t). (4.7)

Combining (4.7) with the fact (I − P )(I −Q) = I −Q, and replacing t with s, we
acquire

X(t)(I − P )X−1(s)Y2(s) = X(t)(I −Q) +X(t)(I − P )Iα
0 X

−1(s)B(s)Y2(s). (4.8)

Subsequently, by (4.7) and (4.8), we receive

Y2(t) = X(t)(I − P )X−1(s)Y2(s) +X(t)Iα
0 X

−1(t)B(t)Y2(t)

−X(t)(I − P )Iα
0 X

−1(s)B(s)Y2(s)

= X(t)(I − P )X−1(s)Y2(s) +X(t)PIα
0 X

−1(t)B(t)Y2(t)

+X(t)(I − P )Iα
0 X

−1(t)B(t)Y2(t)−X(t)(I − P )Iα
0 X

−1(s)B(s)Y2(s)

= X(t)(I − P )X−1(s)Y2(s) +X(t)PIα
0 X

−1(t)B(t)Y2(t)

+X(t)(I − P )Iα
s X

−1(t)B(t)Y2(t), s ≥ t ≥ 0. (4.9)
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From (4.4) and (4.9) it follows that for any vector ξ,

∥Y1(t)ξ∥ ≤ N1
Eα(β1, s)

Eα(β1, t)
∥Y1(s)ξ∥+

εN1

Eα(β1, t)
|Iα

s Eα(β1, t)Y1(t)ξ|

−εN2Eα(β2, t)
∣∣∣Iα

+∞
Y1(t)ξ

Eα(β2, t)

∣∣∣, t ≥ s ≥ 0,

and

∥Y2(t)ξ∥ ≤ N2
Eα(β2, t)

Eα(β2, s)
∥Y2(s)ξ∥+

εN1

Eα(β1, t)
|Iα

0 Eα(β1, t)Y2(t)ξ|

−εN2Eα(β2, t)
∣∣∣Iα

s

Y2(t)ξ

Eα(β2, t)

∣∣∣, s ≥ t ≥ 0.

Thus, by Lemma 3.2 and Corollary 3.1, we can know

∥Y1(t)ξ∥ ≤ K1
Eα(λ1, s)

Eα(λ1, t)
∥Y1(s)ξ∥, t ≥ s ≥ 0,

∥Y2(t)ξ∥ ≤ K2
Eα(λ2, t)

Eα(λ2, s)
∥Y2(s)ξ∥, s ≥ t ≥ 0,

(4.10)

where Ki =
Ni

1− θ
, λi = βi −

εNi

1− θ
and θ = ε

(N1

β1

+
N2

β2

)
for i = 1, 2.

Step 3: Estimation of fundamental solutions. To prove from (4.10) that the
perturbed equation (4.1) also possesses a conformable exponential dichotomy, we
only need to exhibit that Y (t)QY −1(t) is bounded. From the facts (I − P )P = 0,
(I − P )(I − P ) = I − P and (4.2) it follows that

X(t)(I − P )X−1(t)Y1(t) = X(t)(I − P )Iα
+∞X−1(t)B(t)Y1(t).

By (4.10), for any vector ξ, we calculate that

∥X(t)(I − P )X−1(t)Y1(t)ξ∥ ≤ −εN2Eα(β2, t)Iα
+∞

∥Y1(t)ξ∥
Eα(β2, t)

≤ −Eα(λ1 + β2, t)∥Y1(t)ξ∥Iα
+∞

εK1N2

Eα(λ1 + β2, t)

≤ εK1N2

λ1 + β2

∥Y1(t)ξ∥. (4.11)

Analogously, pre-multiplying X(t)PX−1(t) on both hands sides of (4.7), by the
property P (I −Q) = 0, we obtain

X(t)PX−1(t)Y2(t) = X(t)PIα
0 X

−1(t)B(t)Y2(t).
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It follows from (4.10) that for any vector ξ,

∥X(t)PX−1(t)Y2(t)ξ∥ ≤ εN1

Eα(β1, t)

∣∣∣Iα
0 Eα(β1, t)Y2(t)ξ

∣∣∣
≤ εK2N1

Eα(λ2 + β1, t)
∥Y2(t)ξ∥Iα

0 Eα(λ2 + β1, t)

≤ εK2N1

λ2 + β1

∥Y2(t)ξ∥. (4.12)

Substituting (4.5) and (4.6) into (4.11) and (4.12) respectively, and replacing ξ by
Y −1(t)ξ, we acquire

∥X(t)(I − P )X−1(t)Y1(t)ξ∥ ≤ ∥X(t)(I − P )X−1(t)Y (t)QY −1(t)ξ∥

≤ εK1N2

λ1 + β2

∥Y (t)QY −1(t)ξ∥, (4.13)

and

∥X(t)PX−1(t)Y2(t)ξ∥ ≤ ∥X(t)PX−1(t)Y (t)(I −Q)Y −1(t)ξ∥

≤ εK2N1

λ2 + β1

∥Y (t)(I −Q)Y −1(t)ξ∥. (4.14)

On the other hand, it is evident to derive that

Y (t)QY −1(t)−X(t)PX−1(t) = X(t)[P + (I − P )]X−1(t)Y (t)QY −1(t)

−X(t)PX−1(t)Y (t)[Q+ (I −Q)]Y −1(t)

= X(t)PX−1(t)Y (t)QY −1(t)

+X(t)(I − P )X−1(t)Y (t)QY −1(t)

−X(t)PX−1(t)Y (t)QY −1(t)

−X(t)PX−1(t)Y (t)(I −Q)Y −1(t)

= X(t)(I − P )X−1(t)Y (t)QY −1(t)

−X(t)PX−1(t)Y (t)(I −Q)Y −1(t). (4.15)

Combining (4.13) and (4.14) with (4.15), we can obtain

∥Y (t)QY −1(t)−X(t)PX−1(t)∥ ≤ εK1N2

λ1 + β2

µ1 +
εK2N1

λ2 + β1

µ2,

where µ1(t) := ∥Y (t)QY −1(t)∥, µ2(t) := ∥Y (t)(I − Q)Y −1(t)∥. For convenience,
take N := max{N1, N2} and β := min{β1, β2} such that θ ≤ θ̂ := 2εN/β, and it
yields

µ1 = ∥Y (t)QY −1(t)∥ ≤
( εK1N2

λ1 + β2

µ1 +
εK2N1

λ2 + β1

µ2

)
+ ∥X(t)PX−1(t)∥

≤
( εK1N2

λ1 + β2

µ1 +
εK2N1

λ2 + β1

µ2

)
+N1

≤ η(µ1 + µ2) +N, (4.16)
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where η =
εN2

2β − 5εN
. It is obvious that

Y (t)QY −1(t)−X(t)PX−1(t) = X(t)(I − P )X−1(t)− Y (t)(I −Q)Y −1(t),

then

µ2 ≤
( εK1N2

λ1 + β2

µ1 +
εK2N1

λ2 + β1

µ2

)
+N2 ≤ η(µ1 + µ2) +N. (4.17)

By adding the inequality (4.16) and (4.17), we attain

µ1 + µ2 ≤
2N

1− 2η
.

If η < 1/2, then

µ1, µ2 ≤ η(µ1 + µ2) +N ≤ N

1− 2η
.

Substituting (4.5) and (4.6) into (4.10), and replacing ξ by Y −1(s)ξ, we gain

∥Y (t)QY −1(s)ξ∥ ≤ K1
Eα(λ1, s)

Eα(λ1, t)
∥Y (s)QY −1(s)ξ∥

≤ K1N

1− 2η

Eα(λ1, s)

Eα(λ1, t)
∥ξ∥, t ≥ s ≥ 0,

∥Y (t)(I −Q)Y −1(s)ξ∥ ≤ K2
Eα(λ2, t)

Eα(λ2, s)
∥Y (s)(I −Q)Y −1(s)ξ∥

≤ K2N

1− 2η

Eα(λ2, t)

Eα(λ2, s)
∥ξ∥, s ≥ t ≥ 0.

For the arbitrariness of vector ξ, we obtain the conformable exponential dichotomy
as follows

∥Y (t)QY −1(s)∥ ≤ K1N

1− 2η

Eα(λ1, s)

Eα(λ1, t)
, t ≥ s ≥ 0,

∥Y (t)(I −Q)Y −1(s)∥ ≤ K2N

1− 2η

Eα(λ2, t)

Eα(λ2, s)
, s ≥ t ≥ 0.

Therefore, Theorem 4.1 is proved completely. �

Finally, we present the concrete constants of estimates in Theorem 4.1. Like
the condition N = max{N1, N2} and β = min{β1, β2} such that θ ≤ θ̂ = 2εN/β

holds, let N ≥ 1 and θ̂ < 2/5N such that η =
εN2

2β − 5εN
<

N

10N − 5
<

1

2
. Thus,

by elementary calculation, we can obtain the following brief statement.
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Corollary 4.1 Suppose that equation (2.1) possesses the conformable exponential
dichotomy (3.2) in R+. If

ε := sup
t∈R+

∥B(t)∥ <
β

5N2
,

then perturbed equation (4.1) also possesses the following conformable exponential
dichotomy:

∥Y (t)QY −1(s)∥ ≤ 25N2

9

Eα(β − 3εN, s)

Eα(β − 3εN, t)
, t ≥ s ≥ 0,

∥Y (t)(I −Q)Y −1(s)∥ ≤ 25N2

9

Eα(β − 3εN, t)

Eα(β − 3εN, s)
, s ≥ t ≥ 0,

where Y (t) is a fundamental matrix of (4.1) such that Y (0) = I, and both projection
matrices Q and P have the same rank. Moreover,

∥Y (t)QY −1(t)−X(t)PX−1(t)∥ ≤ 2εN3

2β − 5εN − 2εN2
, t ≥ 0.

5 Nonuniform dichotomy

This section is a continuation of studies for the conformable exponential dichoto-
my. More precisely, we concern nonuniform conformable exponential dichotomy.
Let B(Z) consist of all bounded linear operators in Banach space Z. Consider
nonautonomous linear CFDE on Z

T αx = A(t)x, (t, x) ∈ J × Z, (5.1)

where linear operator A ∈ C(J,B(Z)) for some interval J ⊂ R and B(Z) is also a
Banach space with the norm ∥A∥ := sup

x∈Z,∥x∥=1

∥Ax∥ for all A ∈ B(Z). Let T (t, s) be

a family of evolution operators satisfying x(t) = T (t, s)x(s) for t ≥ s and t, s ∈ J ,
where x(t) is any solution of (5.1). T (t, s) further satisfies:

(F1) T (t, t) = Id (abbreviation of identity) for t ∈ J ;

(F2) T (t, s)T (s, τ) = T (t, τ) for t, s, τ ∈ J ;

(F3) the evolution operator T (t, s) is invertible and T−1(t, s) = T (s, t) for t, s ∈ J .

First, we introduce the notions of nonuniform asymptotical stability and nonuni-
form conformable exponential dichotomy.
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Definition 5.1 Equation (5.1) is said to be nonuniform asymptotically stable in
J if there exist constants N̂ , β̂ > 0 and ϵ ≥ 0 such that

∥T (t, s)∥ ≤ N̂
Eα(β̂, s)

Eα(β̂, t)
Eα(ϵ, |s|), t ≥ s, t, s ∈ J. (5.2)

In particular, (5.1) is uniformly asymptotically stable like (3.1) if (5.2) hold with
ϵ = 0.

Definition 5.2 Equation (5.1) is said to admit a nonuniform conformable expo-
nential dichotomy in J if there exist projections P : J → B(Z) such that

T (t, s)P (s) = P (t)T (t, s), t ≥ s, t, s ∈ J, (5.3)

and constants N̂i, β̂i > 0 (i = 1, 2) and ϵ ≥ 0 such that for t, s ∈ J ,

∥T (t, s)P (s)∥ ≤ N̂1
Eα(β̂1, s)

Eα(β̂1, t)
Eα(ϵ, |s|), t ≥ s,

∥T (t, s)(Id− P (s))∥ ≤ N̂2
Eα(β̂2, t)

Eα(β̂2, s)
Eα(ϵ, |s|), s ≥ t.

(5.4)

In particular, (5.1) admits a uniform conformable exponential dichotomy like (3.2)
if (5.4) hold with ϵ = 0.

All results in this section are presented in R+, and denote

Iα
s f(t, ·) :=

∫ t

s

τα−1f(t, τ)dτ.

Consider the linear perturbation of (5.1) as follows

T αx = [A(t) +B(t)]x, (t, x) ∈ R+ × Z, (5.5)

where linear operators A ∈ C(R+,B(Z)) and B ∈ Cb(R+,B(Z)). The following
theorem gives out the roughness of nonuniform asymptotical stability.

Theorem 5.1 Assume that equation (5.1) admits nonuniform asymptotical stabil-
ity in R+, and there exists constant δ such that ∥B(t)∥ ≤ δ/Eα(ϵ, t) for t ∈ R+. If
θ := δN̂/β̂ < 1, then equation (5.5) also admits nonuniform asymptotical stability
in R+, that is,

∥U(t, s)∥ ≤ N̂

1− θ

Eα(γ, s)

Eα(γ, t)
Eα(ϵ, s), t ≥ s, t, s ∈ R+, (5.6)

where γ = β̂−
δN̂

1− θ
and U(t, s) denotes the evolution operator associated to (5.5).
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Proof. Consider the space

W := {U(t, s)t≥s ∈ B(Z) : U is continuous and ∥U∥α < ∞, (t, s) ∈ R2
+},

equipped with α-weighted norm

∥U∥α := sup

{
∥U(t, s)∥
Eα(ϵ, s)

: t ≥ s, (t, s) ∈ R2
+

}
. (5.7)

It is easy to verify that W is a Banach space. In W define an operator J by

(JU)(t, s) = T (t, s) + Iα
s T (t, ·)B(·)U(·, s).

It follows from (5.2) that

∥(JU)(t, s)∥ ≤ ∥T (t, s)∥+ Iα
s ∥T (t, ·)∥∥B(·)∥∥U(·, s)∥

≤ N̂
Eα(β̂, s)

Eα(β̂, t)
Eα(ϵ, s) +

δN̂∥U∥αEα(ϵ, s)

Eα(β̂, t)
Iα
s Eα(β̂, t)

≤ N̂Eα(ϵ, s) +
δN̂

β̂
∥U∥αEα(ϵ, s).

And by (5.7) we obtain

∥JU∥α ≤ N̂ +
δN̂

β̂
∥U∥α < ∞,

which yields that the operator J : W → W is well defined. Analogously to the
computation above, we have

∥JU1 − JU2∥α ≤ δN̂

β̂
∥U1 − U2∥α, U1, U2 ∈ W,

which implies that J is a contraction since δ < β̂/N̂ . So there exists a unique
U ∈ W satisfying JU = U , and one can verify that it is a solution of (5.5). We
apply Lemma 3.2 with condition θ := δN̂/β̂ < 1 to the estimation of ∥U(t, s)∥.
And inequality (5.6) is true. �

Subsequently, our purpose is to establish roughness of nonuniform conformable
exponential dichotomy in R+. A preliminary theorem and the main theorem of
roughness are both stated as follows.

Theorem 5.2 Assume that equation (5.1) admits a nonuniform conformable ex-
ponential dichotomy (5.4) in R+, and there exists constant δ such that ∥B(t)∥ ≤
δ/Eα(ϵ, t) for t ∈ R+. If

θ := δ

(
N̂1

β̂1

+
N̂2

β̂2

)
< 1, ϵ < min{β̂1, β̂2}, (5.8)
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then there exist projections P̂ : R+ → B(Z) such that

T̂ (t, s)P̂ (s) = P̂ (t)T̂ (t, s), t ≥ s, t, s ∈ R+, (5.9)

and constants Ki, λi > 0 (i = 1, 2) and ϵ ≥ 0 such that

∥T̂ (t, s)|ImP̂ (s)∥ ≤ K1
Eα(λ1, s)

Eα(λ1, t)
Eα(ϵ, s), t ≥ s ≥ 0,

∥T̂ (t, s)|Im(Id− P̂ (s))∥ ≤ K2
Eα(λ2, t)

Eα(λ2, s)
Eα(ϵ, s), s ≥ t ≥ 0,

(5.10)

where Ki =
N̂i

1− θ
, λi = β̂i −

δN̂i

1− θ
(i = 1, 2), and T̂ (t, s) is the evolution operator

associated to equation (5.5).

Theorem 5.3 Assume that equation (5.1) admits a nonuniform conformable expo-
nential dichotomy (5.4) in R+ under condition (5.8). If δ is sufficiently small such
that ∥B(t)∥ ≤ δ/Eα(2ϵ, t) for t ∈ R+, then equation (5.5) also admits a nonuniform
conformable exponential dichotomy in R+.

Proof of Theorem 5.2. We divide the proof into the following several steps.

Step 1: Construction of bounded solutions for (5.5). Recall spaceW in Theorem
5.1, then the following lemma gives out the existence of bounded solution.

Lemma 5.1 For each t, s ∈ R+, equation (5.5) has a unique solution U ∈ W such
that

U(t, s) =T (t, s)P (s) + Iα
s T (t, ·)P (·)B(·)U(·, s)

+ Iα
+∞T (t, ·)(Id− P (·))B(·)U(·, s), t ≥ s.

(5.11)

Proof. Clearly, if the function U(t, s)t≥s satisfies (5.11), then it is a solution of
(5.5). We must demonstrate that the operator L defined by

(LU)(t, s) = T (t, s)P (s) + Iα
s T (t, ·)P (·)B(·)U(·, s)

+Iα
+∞T (t, ·)(Id− P (·))B(·)U(·, s), t ≥ s,

has a unique fixed point in W . It follows from (5.4) that

∥(LU)(t, s)∥ ≤ ∥T (t, s)P (s)∥+ Iα
s ∥T (t, ·)P (·)∥∥B(·)∥∥U(·, s)∥

−Iα
+∞∥T (t, ·)(Id− P (·))∥∥B(·)∥∥U(·, s)∥

≤ N̂1
Eα(β̂1, s)

Eα(β̂1, t)
Eα(ϵ, s) + δ

(
N̂1

β̂1

+
N̂2

β̂2

)
∥U∥αEα(ϵ, s).
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Combining (5.7) with (5.8), we obtain

∥LU∥α ≤ N̂1 + θ∥U∥α < ∞,

this implies that the operator L : W → W is well defined. Analogously to the
computation above, we have

∥LU1 − LU2∥α ≤ θ∥U1 − U2∥α, U1, U2 ∈ W,

which shows that L is a contraction since θ < 1. Then there exists a unique U ∈ W
such that LU = U . Therefore, Lemma 5.1 is proved. �

Now we explain that the bounded solutions exhibit the following property.

Lemma 5.2 For each t ≥ τ ≥ s in R+,

U(t, τ)U(τ, s) = U(t, s).

Proof. From (5.11) and (5.3), for some τ ∈ R+ we can calculate that

U(t, τ)U(τ, s) = T (t, s)P (s) + Iα
s T (t, τ)P (τ)B(τ)U(τ, s)

+Iα
τ T (t, ·)P (·)B(·)U(·, τ)U(τ, s)

+Iα
+∞T (t, ·)(Id− P (·))B(·)U(·, τ)U(τ, s), t ≥ τ ≥ s.

Let H(t, τ) := U(t, τ)U(τ, s)− U(t, s) for t ≥ τ ≥ s, this yields

H(t, τ) = Iα
τ T (t, ·)P (·)B(·)H(·, s) + Iα

+∞T (t, ·)(Id− P (·))B(·)H(·, s). (5.12)

Define operator K as

(KĤ)(t, τ) := Iα
τ T (t, ·)P (·)B(·)Ĥ(·, s) + Iα

+∞T (t, ·)(Id− P (·))B(·)Ĥ(·, s),

for any Ĥ ∈ W and t ≥ τ . It follows from the identity above and (5.4) that

∥(KĤ)(t, τ))∥ ≤ Iα
τ ∥T (t, ·)P (·)∥∥B(·)∥∥Ĥ(·, s)∥

−Iα
+∞∥T (t, ·)(Id− P (·))∥∥B(·)∥∥Ĥ(·, s)∥

≤ δ

(
N̂1

β̂1

+
N̂2

β̂2

)
∥Ĥ∥αEα(ϵ, s).

By (5.7), we have

∥KĤ∥α ≤ θ∥Ĥ∥α < ∞,



30 Baishun Wang and Jun Zhou

then K : W → W is well defined for t ≥ τ . Similarly to the calculation above, we
attain

∥KĤ1 −KĤ2∥α ≤ θ∥Ĥ1 − Ĥ2∥α, Ĥ1, Ĥ2 ∈ W.

Because of hypothesis (5.8), K is a contraction. Thus, there is a unique Ĥ ∈ W
such that KĤ = Ĥ. On the other hand, we know that 0 ∈ W satisfies (5.12) and
K0 = 0. By Lemma 5.1, we assert H = Ĥ = 0 for t ≥ τ ≥ s in R+. Therefore,
Lemma 5.2 is proved. �

Step 2: Establishment of projections P̂ (t) in (5.9). Given constant ι ∈ R+, for
any t ≥ ι in R+, we consider the following linear operator

P̂ (t) := T̂ (t, ι)U(ι, ι)T̂ (ι, t), (5.13)

where T̂ (t, s) is the evolution operator associated to (5.5). Clearly, the operator
P̂ (t) may depend on ι, and U(ι, ι)U(ι, ι) = U(ι, ι) by Lemma 5.2. The following
lemma illustrates the commutativity of projections P̂ (t) as formula (5.9).

Lemma 5.3 For any t ∈ R+, the operator P̂ (t) is a projection satisfying (5.9).

Proof. By the details above and (F1)-(F2), we derive

P̂ (t)P̂ (t) = T̂ (t, ι)U(ι, ι)T̂ (ι, t)T̂ (t, ι)U(ι, ι)T̂ (ι, t)

= T̂ (t, ι)U(ι, ι)U(ι, ι)T̂ (ι, t) = P̂ (t),

then P̂ (t) is a projection. Furthermore, for t ≥ s we can calculate that

T̂ (t, s)P̂ (s) = T̂ (t, s)T̂ (s, ι)U(ι, ι)T̂ (ι, t)T̂ (t, s) = P̂ (t)T̂ (t, s).

This completes the proof of Lemma 5.3. �

Step 3: Characterization of bounded solutions. The following two lemmas
propose the nonuniform projection integral equation and its property respectively.

Lemma 5.4 For some s ∈ R+, if z ∈ Cb([s,+∞), Z) is a solution of (5.5) with
z(s) = zs, then

z(t) = T (t, s)P (s)zs + Iα
s T (t, ·)P (·)B(·)z(·) + Iα

+∞T (t, ·)(Id− P (·))B(·)z(·).

The proof of this lemma is similar to the method of Lemma 3.1 when ϵ <
min{β̂1, β̂2} holds.
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Lemma 5.5 For some s ∈ R+, if the function P̂ (·)T̂ (·, s) ∈ Cb([s,+∞),B(Z)),
then

P̂ (t)T̂ (t, s) =T (t, s)P (s)P̂ (s) + Iα
s T (t, ·)P (·)B(·)P̂ (·)T̂ (·, s)

+ Iα
+∞T (t, ·)(Id− P (·))B(·)P̂ (·)T̂ (·, s).

(5.14)

Proof. For a given ι ∈ R+, it follows from Lemma 5.1 that the function U(t, ι)ξ
is a solution of (5.5) with initial value U(ι, ι)ξ for any ξ ∈ Z and t ≥ ι. By (5.13)
and (5.9), we gain U(t, ι) = T̂ (t, ι)U(ι, ι), and

P̂ (t)T̂ (t, s) = T̂ (t, s)P̂ (s) = T̂ (t, s)T̂ (s, ι)U(ι, ι)T̂ (ι, s)

= T̂ (t, ι)U(ι, ι)T̂ (ι, s) = U(t, ι)T̂ (ι, s).

Thus, the equation (5.5) has solution in the form of U(t, ι)ξ as follows

z(t) = P̂ (t)T̂ (t, s)ξ = U(t, ι)T̂ (ι, s)ξ, ξ ∈ Z.

Observing that the above solution is bounded for t ≥ s, and

z(s) = U(s, ι)T̂ (ι, s)ξ = P̂ (s)T̂ (s, s)ξ = P̂ (s)ξ,

we employ Lemma 5.4 to complete the proof of Lemma 5.5. �

The following Lemma is the projected integral inequality in the case of nonuni-
form conformable exponential dichotomy, and the method of its proof can be re-
ferred to the Lemma 3.2 and Corollary 3.1.

Lemma 5.6 Given s ∈ R+. Assume that the functions u ∈ Cb([s,+∞),R+) and
v ∈ Cb([0, s],R+) respectively satisfy the following inequalities

u(t) ≤N̂1
Eα(β̂1, s)

Eα(β̂1, t)
Eα(ϵ, s)us +

δN̂1

Eα(β̂1, t)
Iα
s Eα(β̂1, t)u(t)

− δN̂2Eα(β̂2, t)Iα
+∞

u(t)

Eα(β̂2, t)
, t ≥ s ≥ 0,

(5.15)

v(t) ≤N̂2
Eα(β̂2, t)

Eα(β̂2, s)
Eα(ϵ, s)vs +

δN̂1

Eα(β̂1, t)
Iα
0 Eα(β̂1, t)v(t)

− δN̂2Eα(β̂2, t)Iα
s

v(t)

Eα(β̂2, t)
, s ≥ t ≥ 0,

(5.16)

where us := u(s) and vs := v(s). If

θ := δ
(N̂1

β̂1

+
N̂2

β̂2

)
< 1,
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then there exist positive constants Ki and λi(i = 1, 2) such that

u(t) ≤K1
Eα(λ1, s)

Eα(λ1, t)
Eα(ϵ, s)us, t ≥ s ≥ 0,

v(t) ≤K2
Eα(λ2, t)

Eα(λ2, s)
Eα(ϵ, s)vs, s ≥ t ≥ 0,

where Ki =
N̂i

1− θ
, λi = β̂i −

δN̂i

1− θ
.

Step 4: Norm bounds of evolution operator. We verify that the norms of the
operators T̂ (t, s)|ImP̂ (s) and T̂ (t, s)|Im(Id− P̂ (s)) are bounded.

Lemma 5.7 For any t ≥ s in R+, the first inequality in (5.10) holds.

Proof. Given ξ ∈ Z, and for t ≥ s ≥ 0, assume that

u(t) := ∥P̂ (t)T̂ (t, s)ξ∥,

then us = ∥P̂ (s)ξ∥. By Lemma 5.5, we know that u(t) is bounded and satisfies
(5.15). It follows from Lemma 5.6 that

∥P̂ (t)T̂ (t, s)ξ∥ ≤ K1
Eα(λ1, s)

Eα(λ1, t)
Eα(ϵ, s)∥P̂ (s)ξ∥, t ≥ s ≥ 0,

where K1 and λ1 are given in Lemma 5.6. Again by Lemma 5.3, we gain

P̂ (t)T̂ (t, s) = T̂ (t, s)P̂ (s) = T̂ (t, s)P̂ (s)P̂ (s).

Taking µ := P̂ (s)ξ, it yields that

∥T̂ (t, s)P̂ (s)µ∥ ≤ K1
Eα(λ1, s)

Eα(λ1, t)
Eα(ϵ, s)∥µ∥, t ≥ s ≥ 0.

Therefore, we can obtain the desired inequality. �

Lemma 5.8 For any s ≥ t in R+, the second inequality in (5.10) holds.

Proof. By analogy with Lemma 5.5, we need to attain an equation for (Id −
P̂ (t))T̂ (t, s) via Lemma 5.3. Actually, from the variation of constants formula
(2.11), we have

T̂ (t, s) = T (t, s) + Iα
s T (t, ·)B(·)T̂ (·, s).
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Let function w(t) := T̂ (t, ι)(Id− P̂ (ι)) for some ι ∈ R+, then

w(t) = T (t, ι)(Id− P̂ (ι)) + Iα
ι T (t, ·)B(·)w(·). (5.17)

From (5.11) and (5.13) with t = s = ι, we calculate that

P̂ (ι) = U(ι, ι) = P (ι) + Iα
+∞T (ι, ·)(Id− P (·))B(·)U(·, ι).

Pre-projecting P (ι) on both hands sides of the above identity, we acquire P (ι)P̂ (ι) =
P (ι), and

(Id− P (ι))(Id− P̂ (ι)) = Id− P̂ (ι). (5.18)

Combining (5.17) with (5.18), and replacing t with s, we derive

T (t, s)(Id− P (s))w(s) = T (t, ι)(Id− P (ι))(Id− P̂ (ι))

+Iα
ι T (t, s)(Id− P (s))B(s)w(s)

= T (t, ι)(Id− P̂ (ι)) + Iα
ι T (t, s)(Id− P (s))B(s)w(s).

It follows from (5.17) and the identity above that

w(t) = T (t, s)(Id− P (s))w(s) + Iα
ι T (t, ·)B(·)w(·)

−Iα
ι T (t, s)(Id− P (s))B(s)w(s)

= T (t, s)(Id− P (s))w(s) + Iα
ι T (t, ·)P (·)B(·)w(·)

+Iα
s T (t, ·)(Id− P (·))B(·)w(·). (5.19)

On the other hand, by Lemma 5.3, we attain

(Id− P̂ (t))T̂ (t, s) = T̂ (t, s)(Id− P̂ (s)). (5.20)

Recalling the function w(τ), we get w(τ)T̂ (ι, s) = (Id − P̂ (τ))T̂ (τ, s). Post-
multiplying T̂ (ι, s) on both hands sides of (5.19), this implies

(Id− P̂ (t))T̂ (t, s) =T (t, s)(Id− P (s))(Id− P̂ (s))

+ Iα
ι T (t, ·)P (·)B(·)(Id− P̂ (·))T̂ (·, s)

+ Iα
s T (t, ·)(Id− P (·))B(·)(Id− P̂ (·))T̂ (·, s).

(5.21)

Fixed ξ ∈ Z, we consider v(t) := ∥T̂ (t, s)(Id − P̂ (s))ξ∥ for s ≥ t ≥ 0 and vs =
∥(Id− P̂ (s))ξ∥. According to (5.19) and (5.20), it is well known that the function
v(t) satisfies the inequality (5.16). Employing Lemma 5.6 and the similar proof to
Lemma 5.7, we easily acquire desired inequality and complete the proof. �

In conclusion, Lemmas 5.3, 5.7 and 5.8 all derive Theorem 5.2 together. �

The following Lemma will help to prove Theorem 5.3.
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Lemma 5.9 For any t ∈ R+, if constant δ described as in Theorem 5.3 is small
enough, then

∥P̂ (t)∥ ≤ 4N̂Eα(ϵ, t), ∥Id− P̂ (t)∥ ≤ 4N̂Eα(ϵ, t). (5.22)

Proof. Replacing s by t and pre-multiplying (Id − P (t)) on both hands sides
of (5.14), we have

(Id− P (t))P̂ (t) = Iα
+∞T (t, ·)(Id− P (·))B(·)P̂ (·)T̂ (·, t). (5.23)

It follows from Lemmas 5.7 and 5.3 that for τ ≥ t ≥ 0,

∥P̂ (τ)T̂ (τ, t)∥ = ∥T̂ (τ, t)P̂ (t)P̂ (t)∥ ≤ K1
Eα(λ1, t)

Eα(λ1, τ)
Eα(ϵ, t)∥P̂ (t)∥. (5.24)

By (5.23) and (5.4) we calculate that

∥(Id− P (t))P̂ (t)∥ ≤ −Iα
+∞∥T (t, ·)(Id− P (·))∥∥B(·)∥∥P̂ (·)T̂ (·, t)∥

≤ −Eα(β̂2 + λ1 + ϵ, t)∥P̂ (t)∥Iα
+∞

δK1N̂2

Eα(β̂2 + λ1 + ϵ, t)

≤ δK1N̂2

β̂2 + λ1 − ϵ
∥P̂ (t)∥, (5.25)

where constant ϵ was chosen as satisfying ϵ < min{β̂1, β̂2} in order to guarantee
the above denominator β̂2 + λ1 − ϵ > 0. Analogously to (5.23), replacing t with s
and pre-multiplying P (t) on both hands sides of (5.21), we attain

P (t)(Id− P̂ (t)) = Iα
ι T (t, ·)P (·)B(·)(Id− P̂ (·))T̂ (·, t). (5.26)

Using Lemma 5.8, for t ≥ τ ≥ 0 this implies

∥(Id− P̂ (τ))T̂ (τ, t)∥ ≤ K2
Eα(λ2, τ)

Eα(λ2, t)
Eα(ϵ, t)∥Id− P̂ (t)∥. (5.27)

From (5.26) and (5.4) one can compute that

∥P (t)(Id− P̂ (t))∥ ≤ Iα
ι ∥T (t, ·)P (·)∥∥B(·)∥∥(Id− P̂ (·))T̂ (·, t)∥

≤ δK2N̂1

Eα(β̂1 + λ2 − ϵ, t)
∥Id− P̂ (t)∥Iα

ι Eα(β̂1 + λ2 − ϵ, t)

≤ δK2N̂1

β̂1 + λ2 − ϵ
∥Id− P̂ (t)∥, (5.28)

where the chosen constant ϵ < min{β̂1, β̂2} similarly. Obviously,

P̂ (t)− P (t) = (Id− P (t))P̂ (t)− P (t)(Id− P̂ (t)).
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Taking N̂ := max{N̂1, N̂2} and β̂ := min{β̂1, β̂2} and combining (5.25) with (5.28),
we gain

∥P̂ (t)− P (t)∥ ≤ δK1N̂2

β̂2 + λ1 − ϵ
∥P̂ (t)∥+ δK2N̂1

β̂1 + λ2 − ϵ
∥Id− P̂ (t)∥

≤ η̂(∥P̂ (t)∥+ ∥Id− P̂ (t)∥), (5.29)

where

η̂ =
δN̂2β̂

2β̂2 − 5δN̂ β̂ − ϵ(β̂ − 2δN̂)
.

Moreover, by (5.4) with t = s, it is easy to obtain that

∥P (t)∥ ≤ N̂Eα(ϵ, t), ∥Q(t)∥ ≤ N̂Eα(ϵ, t).

From (5.29), this yields

∥P̂ (t)∥ ≤ ∥P̂ (t)− P (t)∥+ ∥P (t)∥
≤ η̂(∥P̂ (t)∥+ ∥Id− P̂ (t)∥) + N̂Eα(ϵ, t).

Since ∥(Id− P̂ (t))− (Id− P (t))∥ = ∥P̂ (t)− P (t)∥, we also derive

∥(Id− P̂ (t))∥ ≤ ∥P̂ (t)− P (t)∥+ ∥Id− P (t)∥
≤ η̂(∥P̂ (t)∥+ ∥Id− P̂ (t)∥) + N̂Eα(ϵ, t).

They together imply that

∥P̂ (t)∥+ ∥Id− P̂ (t)∥ ≤ 2η̂(∥P̂ (t)∥+ ∥Id− P̂ (t)∥) + 2N̂Eα(ϵ, t),

and

∥P̂ (t)∥+ ∥Id− P̂ (t)∥ ≤ 2N̂Eα(ϵ, t)

1− 2η̂
.

Choose η̂ < 1/4, then

∥P̂ (t)∥+ ∥Id− P̂ (t)∥ ≤ 4N̂Eα(ϵ, t),

yielding Lemma 5.9. �

Finally, we end this paper with the proof of roughness for nonuniform con-
formable exponential dichotomy.

Proof of Theorem 5.3. From (5.24) and (5.22), we show that

∥P̂ (τ)T̂ (τ, t)∥ ≤ N̂ β̂

β̂ − 2δN̂

Eα(λ̂, t)

Eα(λ̂, τ)
Eα(ϵ, t)∥P̂ (t)∥

≤ 4N̂2β̂

β̂ − 2δN̂

Eα(λ̂, t)

Eα(λ̂, τ)
Eα(2ϵ, t), τ ≥ t ≥ 0,
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where λ̂ = β̂ −
δN̂ β̂

β̂ − 2δN̂
. Analogously, it follows from (5.27) and (5.22) that

∥(Id− P̂ (τ))T̂ (τ, t)∥ ≤ 4N̂2β̂

β̂ − 2δN̂

Eα(λ̂, τ)

Eα(λ̂, t)
Eα(2ϵ, t), t ≥ τ ≥ 0.

Therefore, we can acquire the desired inequalities like (5.4), and the proof is com-
pleted. �
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