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Abstract
In this paper, we investigate a Cauchy problem for the time-fractional diffusion equation
by using a new simplified iteration algorithm. The algorithm arises from the well-known
Kozlov-Maz’ya iterative scheme for solving the Cauchy problem of classical ill-posed bound-
ary value problems. A relaxation factor in the algorithm is introduced. Based on Fourier
analysis, we give a choice rule for the relaxation factor. The iteration algorithm combined
with a stopping criterion is given for stable numerical reconstruction of the solution. For
illustration, several numerical experiments are constructed to demonstrate the feasibility
and efficiency of the proposed method.
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1 Introduction

Partial differential equations with fractional-order derivative arose from the studies of con-
tinuous random walk and Lévy motion [1–4] and high-frequency financial data [5,6]. Among
these studies, the modeling of advection and dispersion phenomena in groundwater hydrol-
ogy to simulate the transport of passive tracers carried by fluid flow in a porous medium
resulted in a partial differential equation with fractional-order derivative [7–11]. For eco-
nomical and safe control of plants, there is a great demand for a good estimation of the

∗The project is supported by the National Natural Science Foundation of China (No. 11661072) and
the Natural Science Foundation of Northwest Normal University (No. NWNU-LKQN-17-5).

†Corresponding author. Email: xiangtuanxion@nwnu.edu.cn; xiongxt@gmail.com

1



concentration and flow of pollutants from only spatially observed data during advection
and dispersion processes. In general, fluid flow and diffusion phenomena are governed by a
fractional diffusion equation. If the initial concentration distribution and boundary condi-
tions are given, a complete recovery of the unknown solution is attainable from solving a
well-posed forward problem [12, 13]. In real life, however, the boundary conditions can be
lost, and the distribution data can only be collected at a particular time. This is usually
referred to as ill-posed backward determination problem, which is, in nature, “unstable”
because the unknown solution and its derivatives have to be determined from indirect ob-
servable data that contains measurement error. The major difficulty in establishing any
numerical algorithm for approximating the solution is due to the severe ill-posedness of the
problem and the ill-conditioning of the resultant discretized matrix.

Anomalous diffusion has been found in a broad variety of physics and engineering disci-
plines, for example, electron transportation [14], dissipation [15], and heat conduction [16].
It is well known that the continuous-time random walk is a microscopic model for anoma-
lous diffusion. By an argument similar to the derivation of the classical diffusion equation
from the random walk model, one can derive time-fractional diffusion models [17,18]. In re-
cent years, the study of the fractional derivative anomalous diffusion equation has attracted
attention from many researchers, such as [20–28].

In many practical real-life problems, diffusion is anomalous, but the boundary data can
only be measured on a part of the boundary. This leads to the Cauchy problem of the
fractional diffusion equation, which is by nature ill-posed, refer to [19] for more details. To
the knowledge of the authors, there is still a lack of full understanding of inverse problems
for fractional differential equations. Recent works can be found in [29–37].

The Cauchy problem of the classical heat diffusion equation arises from many physical
and engineering disciplines. It is well known that the Cauchy problem of heat diffusion e-
quation is ill-posed in the Hadamard sense that a small measurement error in the boundary
data can induce enormous error in the solution. Under an additional condition, a continuous
dependence of the solution on the Cauchy data can be obtained. This is called conditional
stability [38]. Due to the severe ill-posedness of the problem, it is difficult, if not impos-
sible, to solve the Cauchy problem of heat diffusion equation by using classical numerical
methods without using some kinds of regularization strategies [39]. Theoretical concepts
and computational implementation related to the Cauchy problem of heat diffusion equa-
tion have been discussed by many authors. See, for instance, [40, 41] for computational
aspects and [42] for theoretical aspects. To the authors’ knowledge, most of the literature
on the Cauchy problem of time-fractional diffusion equation considered the convergence
rate for regularization methods using the Fourier technique. The work studied the problem
in a bounded semi-infinite domain, and by using the analytic solution, one can construct
the regularization solution. However, in this paper, we consider the Cauchy problem in
a bounded finite domain. The difference from most similar problems is that the analytic
solution is not available now, and the regularization methods cannot be constructed via the
analytic solution. In order to overcome this difficulty, we will apply the iterative method
with a relaxation factor. Although many iterative procedures are presented for solving
many ill-posed problems, e.g., [43, 44], the relaxation factor in the iterative algorithms is
seldom discussed from the viewpoint of convergence of algorithms.

It is well known that iterative regularization methods stabilize the ill-posed problems
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by stopping the iterative process at the optimum point. This is the semi-convergence of
iterative methods for solving ill-posed problems. In these methods, the number of itera-
tions performed plays the role of a regularization parameter. In most iterative methods
for solving ill-posed problems of mathematical physics equations, a least squares method is
applied [45], and a corresponding variational functional should be given, the gradient of the
functional should be calculated, and the computation of the gradient of a given functional
is usually complex. In this paper, we will not give any functional and will not compute
the corresponding gradient. The used idea in this paper is from the Kozlov-Maz’ya iter-
ation [43]. The Kozlov-Maz’ya method is very efficient for solving the ill-posed Cauchy
problem of partial differential equations with integer-order derivatives. And this method
has been extended to solve other types of ill-posed problems [44]. Since the formula of inte-
gration by parts for the integer-order differentiation does not exist for the fractional-order
differentiation, this leads to some theoretical results for classical differential equations that
are not adapted to the fractional differential equations. Due to this fact, to the authors’
knowledge, this method has not been applied to solving the Cauchy problem of fractional
differential equations yet. For describing this iterative method more clearly, we only restrict
ourselves to solving the Cauchy problem in the one-dimensional case. We will propose a
similar but simpler algorithm with a heuristic stopping rule and a relaxation factor for
solving the Cauchy problem of the fractional diffusion equation. The method with Fourier
analysis for choosing the relaxation factor is considered. Numerical results show that our
newly proposed stopping rule with the relaxation factor works well. The contribution of
this paper consists of two points:

1. A simplified Kozlov-Maz’ya iteration with a relaxation factor is tried to solve the
Cauchy problem of fractional diffusion equations. For this problem, the algorithm is simpler
than the classical Kozlov-Maz’ya iteration, and the cost of the computation is less.

2. A theoretical analysis on the relaxation factor is conducted. Based on Fourier
analysis, a choice rule for the relaxation factor is given.

The paper is organized as follows. In Section 2, we consider two similar Cauchy problems
for the time-fractional diffusion equation, and in Section 3, we give the rules for selecting the
relaxation factor of the iterative algorithm using the Fourier transformation technique. In
the last section, several numerical examples are constructed to demonstrate the feasibility
and efficiency of the proposed method.

2 Mathematical formulation of the Cauchy problem

In most work on the Cauchy problem of fractional diffusion equation, the authors consider
the following Cauchy problem for the time-fractional diffusion equation in the bounded
semi-infinite domain Ω1 := {(x, t)|0 < x < a, t > 0} and in the bounded finite domain
Ω2 := {(x, t)|0 < x < a, 0 < t < T}:

∂βu
∂tβ

− uxx = 0,
u(0, t) = ϕ(t),
ux(0, t) = h(t),
u(x, 0) = 0,

(2.1)
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where the time fractional derivative ∂βu
∂tβ

is the Caputo fractional derivative of order β (0 <
β ≤ 1) defined in [46],

∂βu

∂tβ
=

1

Γ(1− β)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)β
, 0 < β < 1, (2.2)

∂βu

∂tβ
=

∂u(x, t)

∂t
, β = 1. (2.3)

Problem I. The Cauchy problem defined in Ω1 is to recover the unknown solutions
L(t) := u(a, t) from the given data pairs ϕ(t), h(t).

Most work on this problem only considered the homogeneous initial condition. This can
be explained in the following:

Remark 2.1. The following problem with non-homogeneous initial condition

∂βu(1)

∂tβ
− u

(1)
xx = 0,

u(1)(0, t) = ϕ(t),

u
(1)
x (0, t) = h(t),

u(1)(x, 0) = u0(x)

(2.4)

can be split into Problem I and the following problem

∂βu(2)

∂tβ
− u

(2)
xx = 0,

u(2)(0, t) = 0,

u
(2)
x (0, t) = 0,

u(2)(x, 0) = u0(x).

(2.5)

The above problem (2.5) is a well-posed problem. Therefore, in (2.1), the homogeneous
initial condition is not important for the inverse problem.

In this paper, we consider seeking the solutions in two different domains Ω1 and Ω2 for
problem (2.1). In the case of Ω1, we can take the Laplace transform and find the analytic
solution. By using the Laplace transform and the Fourier transform [47], the solution of
Problem I in the frequency domain can be obtained,

û(x, ξ) = cosh(xη)ϕ̂(ξ) +
sinh(xη)

η
ĥ(ξ), (2.6)

where ξ is the variable of Fourier transform with respect to t,

η := (iξ)
β
2 = |ξ|

β
2 (cos(

βπ

4
) + i sign(ξ) sin(

βπ

4
)). (2.7)

The inverse Fourier transform on (2.6) gives u(x, t).

We note here that, for fixed 0 < x ≤ a, the values of | cosh(xη)| and | sinh(xη)
η

| in (2.6)

are unbounded as |η| → ∞. Therefore, the problem is ill-posed, and some regularization
methods should be applied.

So far, for Problem I, there has been a lot of literature considering the theoretic result
of regularization errors. But if the time t is finite, the analysis of regularization errors is
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difficult. In most practical situations, the time variable t is finite, and we consider the
following problem:

Problem II. The Cauchy problem (2.1) in the bounded finite domain Ω2 := {(x, t)|0 <
x < a, 0 < t < T}, where T is a positive constant. Reconstruct the solution u(a, t) from the
Cauchy data pairs.

However, we could not find an explicit expression for the solution via Fourier trans-
formation in this case, and we cannot construct a regularization solution or give the error
analysis. Noting that this problem is similar to Problem I, we can analyze the regularization
methods for solving this problem based on the methods for Problem I because the solution
of Problem I can be expressed explicitly. Now we describe an iterative algorithm with a
relaxation factor for solving Problem II.

3 A simplified iterative algorithm

It is well-known that the Kozlov-Maz’ya iteration for solving the Cauchy problem of the
classical partial differential equations is equivalent to the Landweber method [48]. For
clarifying the idea of this method, we consider the Cauchy problem of classical heat equation
in Ω2:

∂u
∂t

− uxx = 0,
u(0, t) = ϕ(t),
ux(0, t) = h(t),
u(x, 0) = 0.

(3.1)

Here we want to seek the solution f(t) := u(a, t). The Kozlov-Maz’ya iteration is given as
follows:

Step 1. Given an initial guess f0(t) and solve the forward problem to obtain v(0, t) and
vx(a, t):

∂v
∂t

− vxx = 0,
v(a, t) = f0(t),
vx(0, t) = h(t),
v(x, 0) = 0.

(3.2)

We define the mapping K : f0(t) → v(0, t), i.e., Kf0(t) = v(0, t), where K also depends on
h(t).

Step 2. Based on the obtained data vx(a, t) from Step 1, then solve the forward problem
to obtain f1(t) := w(a, t):

∂w
∂t

− wxx = 0,
w(0, t) = ϕ(t),
wx(a, t) = vx(a, t),
w(x, 0) = 0.

(3.3)

Let z(x, t) = w(x, t)− v(x, t), then z(x, t) satisfies

∂z
∂t

− zxx = 0,
z(0, t) = ϕ(t)−Kf0(t) := r(t),
zx(a, t) = 0,
z(x, 0) = 0.

(3.4)
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We define the mappingK∗ : z(0, t) → z(a, t), i.e.,K∗(ϕ(t)−Kf0(t)) = z(a, t) = f1(t)−f0(t).
Therefore, This formula becomes

f1(t) = f0(t) +K∗(ϕ(t)−Kf0(t)).

Using the iteration index k, we have for k = 1, 2, · · ·

fk(t) = fk−1(t) +K∗(ϕ(t)−Kfk−1(t)).

This is the famous Landweber method for solving ill-posed operator equations.
In this method, for solving the inverse problems, one has to solve two forward problems

(3.2) and (3.3). If the space dimension becomes higher, then the cost of computation is very
expensive. For this reason, we propose a simplified version of the Kozlov-Maz’ya iteration.
In this version, we use Dirichlet data in the forward problem and use the Neumann data for
fitting, and only one forward problem needs to be solved. Thus, the cost of computation is
much less than the classical version.

The iterative algorithm for solving (2.1) in Ω2 can be constructed as follows:

• Step 1. Specify an initial guess T0 for the temperature w(a, t) at the boundary x = a.

• Step 2. If Tk(t) has been constructed, solve the well-posed forward problem

∂βw(k)

∂tβ
− (w(k))xx = 0, 0 < x < a, 0 < t < T,

w(k)(0, t) = ϕ(t), 0 < t < T,
w(k)(a, t) = Tk(t), 0 < t < T,
w(k)(x, 0) = 0, 0 < x < a

(3.5)

to determine the k-th approximation w
(k)
x (0, t).

• Step 3. Construct Tk+1(t), which is given by

Tk+1(t) = Tk(t)− c(w(k)
x (0, t)− h(t)), (3.6)

where c is a relaxation factor that makes the algorithm convergent.

• Step 4. Repeat Steps 2 and 3 until a prescribed stopping criterion is satisfied.

Obviously, we only need to solve the forward problem (3.5) in each iteration, which is
different from the classical method. In Step 3, we construct the iteration scheme by using
the Neumann data w

(k)
x (0, t) to fit the data h(t).

3.1 Analysis on the relaxation factor

In order to show the convergence of the algorithm, we turn to Problem I for the sake of
theoretical analysis. For Problem I, we write the key steps:
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• If T̃k(t) has been constructed, solve the well-posed forward problem

∂βu(k)

∂tβ
− (u(k))xx = 0, 0 < x < a, t > 0,

u(k)(0, t) = ϕ̃(t), t > 0,

u(k)(a, t) = T̃k(t), t > 0,
u(k)(x, 0) = 0, 0 < x < a

(3.7)

to determine the k-th approximation u
(k)
x (0, t).

• Construct T̃k+1(t), which is given by

T̃k+1(t) = T̃k(t)− c(u(k)
x (0, t)− h̃(t)), (3.8)

where c is a positive parameter.

Let us define the error function e(k)(x, t) := u(k)(x, t) − u(x, t), where u(x, t) is the
solution of the forward problem:

∂βu
∂tβ

− uxx = 0, 0 < x < a, t > 0,

u(0, t) = ϕ̃(t), t > 0,

u(a, t) = L̃(t), t > 0,
u(x, 0) = 0, 0 < x < a.

(3.9)

Due to (3.7) and (3.9), we have for e(k)(x, t):

∂βe(k)

∂tβ
− (e(k))xx = 0, 0 < x < a, t > 0,

e(k)(0, t) = 0, t > 0,
e(k)(a, t) = εk, t > 0,
e(k)(x, 0) = 0, 0 < x < a.

(3.10)

where εk := T̃k(t)− L̃(t).

Noting that e
(k)
x (0, t) := u

(k)
x (0, t)− ux(0, t) = u

(k)
x (0, t)− h̃(t), (3.8) becomes

εk+1 = εk − ce(k)x (0, t). (3.11)

Using the Fourier transform in (3.10) with respect to t, we can obtain the solution of
(3.10) in the frequency domain:

ê(k)(x, ξ) =
sinh(ηx)

sinh(η)
ε̂k(ξ). (3.12)

From (3.8), we have

ê(k)x (0, ξ) = η
1

sinh(η)
ε̂k(ξ). (3.13)

Consider (3.11) in the frequency domain, we have

ε̂k+1(ξ) = ε̂k(ξ)− cê(k)x (0, ξ) = (1− c
η

sinh(η)
)ε̂k(ξ). (3.14)

In order to guarantee the convergence of the algorithm, we should select the parameter
c, which should satisfy |1−c η

sinh(η)
| < 1. For example, if 0 < c < 1, we have |1−c η

sinh(η)
| < 1.

In the forthcoming section, we set 0 < c < 1 for computation.
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3.2 Solve the forward problem

Now we come back to Problem II. For the proposed iteration method, how to solve the
forward problem (3.5) is the key problem. For convenience, we drop the index k in (3.5).

Before conducting the numerical experiment, we first give the finite difference scheme
for solving the forward problem.

We concentrate on the following forward problem for the given data ϕ(t) and T (t):

∂βw
∂tβ

− wxx = 0, 0 < x < a, 0 < t < T,
w(0, t) = ϕ(t), 0 < t < T,
w(a, t) = T (t), 0 < t < T,
w(x, 0) = 0, 0 < x < a.

(3.15)

Using an unconditionally stable implicit finite difference scheme, we can obtain the data
wx(0, t). Let tn = (n−1)τ be the grid points at the t-axis, n = 1, 2, · · · , s+1 with time step
length τ = T/s, xj = (j− 1)h, j = 1, 2, · · · ,m+1 with spatial step length h = a/m be the
spatial grid points; wn

j be the difference approximation to w(xj, tn). The finite difference
scheme for the solution is given as follows [49]:

− 1

h2
w2

j−1 + (σβ,τ +
2

h2
)w2

j −
1

h2
w2

j+1 = σβ,τw
1
j , j = 2, 3, · · · ,m, (3.16)

and for n = 3, · · · , s+ 1,

− 1

h2
wn

j−1+(σβ,τ+
2

h2
)wn

j −
1

h2
wn

j+1 = σβ,τw
n−1
j −σβ,τ

n∑
i=3

υi−1,β(w
n−i+2
j −wn−i+1

j ), j = 2, 3, · · · ,m,

(3.17)
with initial condition

w1
j = 0, j = 1, 2, · · · ,m+ 1 (3.18)

and boundary condition

wn
1 = ϕ((n− 1)τ), wn

m+1 = T ((n− 1)τ), n = 2, · · · , s+ 1, (3.19)

where σβ,τ = 1
Γ(1−β)(1−β)τβ

, υi,β = i1−β − (i − 1)1−β, i = 2, 3, · · · . The Neumann data for
the Cauchy problem can be constructed by the approximation:

wx(0, tn) ≈
wn

2 − wn
1

h
, n = 1, 2, · · · , s+ 1. (3.20)

4 Numerical results and discussion

4.1 Experiment setting

Since an explicit exact solution for the inverse problem II is difficult to construct, we solve
the following forward problem with the exact data L(t), which will be reconstructed in the
corresponding inverse problem

∂βw
∂tβ

− wxx = 0, 0 < x < a, 0 < t < T,
w(0, t) = ϕ(t), 0 < t < T,
w(a, t) = L(t), 0 < t < T,
w(x, 0) = 0, 0 < x < a

(4.1)
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to obtain the exact data wx(0, t) = h(t). Now for the inverse problem II, we have the Cauchy
data ϕ(t), h(t), and the exact solution w(a, t) := L(t). In computation, we can obtain the
Cauchy data ϕ(t), h(t) in the form of vectors denoted as Φ, H. The noisy Cauchy data of
Φδ and Hδ are generated as:

Φδ = Φ+ (maxΦ) · σ1 rand(size(Φ)), Hδ = H + (maxH) · σ2 rand(size(H)), (4.2)

where

Φ = (ϕ(t1), · · · , ϕ(ts+1))
T , (4.3)

H = (h(t1), · · · , h(ts+1))
T , (4.4)

δ = RMSE(Φδ − Φ) +RMSE(Hδ −H), (4.5)

in which maxΦ, maxH denotes the maximum of the vectors Φ, H, respectively, σ1 indicates
the error level of Φ, σ2 denotes the error level of H, and RMSE denotes the root mean
square error between two vectors W and W ∗ defined by

RMSE(W −W ∗) =

√√√√ 1

s+ 1

s+1∑
j=1

(W (tj)−W ∗(tj))2, (4.6)

where rand(size(·)) is a random number generated by MATLAB between [−1, 1].
Numerical implementation is performed using MATLAB in IEEE double precision. In

the numerical examples, we fix T = 1, a = 1, h = 1
100

, and τ = 1
50
. For each noise level

σ1, σ2, the value of δ can be computed by (4.5). For Example 1 and Example 2, we fix the
factor c = 0.3. However, in Example 3, we change the factor c.

4.2 The initial guess

An arbitrary function T0(t) may be selected as an initial guess for the boundary value
w(a, t) of the Cauchy problem II. However, in order to improve the rate of convergence of
the iterative algorithm, we have selected a function that ensures the solution of the problem
satisfies the compatibility conditions w(a, 0) = w(x, 0) = 0.

In all of numerical examples, the initial guess is given by a constant function

T0(t) = 0. (4.7)

4.3 The convergence error

In order to investigate the convergence of the described algorithm, at every iteration, we
evaluate the convergence error defined by

eb = ∥w(k)(t)− L(t)∥L2[0,T ], (4.8)

which can be computed by the notation of RMSE defined by (4.6). w(k)(t) is the com-
putation value after k iterations, and L(t) is the exact value defined by L(t) := w(a, t).
However, the error eb can only be computed if the exact solution w(a, t) is known, and such
a solution is not available in practice. Therefore, a stopping criterion must be developed in
order to cease the iterative process when convergence has been achieved.
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4.4 The stopping criterion

In general, iterative regularization methods stabilize the ill-posed problems by stopping
the iterative process at the optimum point. In these methods, the number of iterations
performed plays the role of a regularization parameter. Therefore, a stopping criterion is
needed for the iterative algorithm considered in this paper.

In order to obtain a stopping criterion, let us review the famous iterative method, i.e.,
the Landweber iterative method for solving ill-posed problems.

Consider linear ill-posed problems:

Ax = y, (4.9)

where A : H1 → H2 is a linear, injective, closed operator between infinite-dimensional
Hilbert spaces H1 and H2 with non-closed range R(A). Suppose that yδ ∈ H2 is the noisy
data with

∥y − yδ∥ ≤ δ

and known noise level δ.
Landweber [50] suggested rewriting the equation Ax = y in the form x = (I−λA∗A)x+

λA∗y for some λ > 0 and iterating this, i.e., computing

x0 := 0, xk = (I − λA∗A)xk−1 + λA∗y (4.10)

for k = 1, 2, · · · .
Let r > 1 be a fixed number. Stop the algorithm at the first occurrence of k with

∥Axk,δ − yδ∥ ≤ rδ. Under the stopping rule, the Landweber iteration method is convergent
[39].

Now following the idea from the above stopping rule, we have

∥w(k)
x (0, t)− h(t)∥L2[0,T ] ≤ rδ, r > 1, (4.11)

where w
(k)
x (0, t) is the computation value after k iterations, and h(t) is the exact value

defined by h(t) := wx(0, t).

4.5 Numerical examples

Example 1. First we solve the forward problem (4.1) with β = 0.5, w(0, t) := ϕ(t) =
1 − e−2t and w(a, t) := L(t) = 3 sin(2πt) by using the implicit finite difference method.
We get the exact data h(t) := wx(0, t). Figure 1 displays the input data wx(0, t). Now we
use the iterative algorithm with the initial guess T0(t) = 0 for reconstructing the solution
w(a, t). In practice, the noise level σ2 ≫ σ1, it is reasonable to only consider the noise level
σ2 and set σ1 = 0. In the iterative algorithm for inverse problem II, we add random noise
σ2 = 10−1 to the exact data h(t). According to (4.5), we have δ = 0.10.

(a) First we investigate the convergence error. We plot the convergence error (4.8) vs
the number of iterations, see Figure 2. The error eb initially decreases rapidly and then it
slows down and tends to a small positive constant of order 2 ∗ 10−1.

(b) As we point out before, it is impossible for one to plot the convergence error defined
by (4.8) because the exact solution L(t) is not known in practice. Now we test the stopping
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Figure 1: The input data wx(0, t) for Example 1.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of iterations

e b

Figure 2: The convergence error vs number of iterations for Example 1.
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Figure 3: (3a) The convergence error during the iterative process for Example 1; (3b)
Reconstruction result with RMSE=0.23 and iterative step k = 11 for Example 1.
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Figure 4: (4a) The convergence error during the iterative process for Example 1; (4b)
Reconstruction result with RMSE=0.023 and iterative step k = 20 for Example 1.

rule (4.11), where we take r = 2. The results are shown in Figure 3, where (3a) shows the
convergence error during the iterative process until (4.11) is satisfied, (3b) shows the result
of reconstruction by the iterative method.

From Figure 3, we can see that the stopping rule (4.11) is effective, and the iterative
stop point is almost optimum.

(c) If the noise level σ2 = 10−2 and the other parameters are the same as (b), using the
stopping rule (4.11), the reconstruction result is shown in Figure 4.

Example 2. Consider the following forward problem

∂βw
∂tβ

− wxx = 0, 0 < x < a, 0 < t < T,
w(0, t) = 0, 0 < t < T,
w(a, t) = L(t), 0 < t < T,
w(x, 0) = 0, 0 < x < a,

(4.12)

where L(t) is given by
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Figure 5: The exact input data wx(0, t) vs β for Example 2.

L(t) =

{
1, 0.2 ≤ t ≤ 0.5 and 0.6 ≤ t ≤ 0.8,
0, else.

(4.13)

The results displayed in Figures 5-7 are:
Figure 5 shows the input data wx(0, t) with different β.
Figure 6 shows the result for the convergence error with β = 0.9, σ2 = 10−2.
From Figure 6, we see that the number of iterations performed plays the role of a

regularization parameter. Therefore, a stopping rule should be employed.
Figure 7 shows the result with β = 0.7 and σ2 = 10−2. Fig.(7a) shows the convergence

error during the iterative process until the stopping rule (4.11) is satisfied with r = 2.
Fig.(7b) shows the approximation result. For smaller β, we can obtain better approximation
results. This is because the smaller β is, the less ill-posed Problem II is, which has been
pointed out in Section 2, see (2.7).

Example 3. Let w(0, t) = 1− e−t2 and

L(t) := w(a, t) =

{
2t, if 0 ≤ t ≤ 0.5,
2(1− t), if 0.5 ≤ t ≤ 1.

In this example, we change the factor c.
The results displayed in Figures 8 - 10 are:
Figure 8 shows the input data wx(0, t) for different β.
Figure 9 shows the result for the convergence error with β = 0.9, σ2 = 10−2, c = 0.1.
Figure 10 shows the result with β = 0.9 and σ2 = 10−1, δ = 0.02, c = 0.1. Fig.(10a)

shows the convergence error during the iterative process until the stopping rule (4.11) is
satisfied with r = 2. Fig.(10b) shows the approximation result.
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Figure 6: The convergence error vs the number of iterations for Example 2.
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Figure 7: (7a) The convergence error during the iterative process for Example 2; (7b)
Reconstruction result with RMSE=0.07 and iterative step k = 50 for Example 2.
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Figure 8: The exact input data wx(0, t) vs β for Example 3.
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Figure 9: The convergence error vs the number of iterations for Example 3.
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Figure 10: (10a) The convergence error during the iterative process for Example 3; (10b)
Reconstruction result with RMSE=0.06 and iterative step k = 40 for Example 3.

5 Conclusion

In this paper, based on the Kozlov-Maz’ya iteration method, we give a simplified iterative
algorithm with a relaxation factor for solving the Cauchy problem for the fractional dif-
fusion equation. This simplified version only needs to solve one forward problem in each
iterative step and can make the cost of computation less. We give the stopping rule for
iterative steps with the relaxation factor. We find out that the iterative method has a
semi-convergence effect for this ill-posed problem. However, some detailed analysis for the
convergence should be done in the future work. Numerical experiments show that the newly
proposed stopping rule with the relaxation factor is effective for solving the inverse problem.
This method will be extended to the two-dimensional case in the future.
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