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Abstract

This paper studies a pseudo-hyperbolic equation with purely integral conditions using

the reproducing kernel Hilbert space method (RKHSM). By leveraging the properties of

reproducing kernel functions (RKFs), we derive exact and approximate solutions to the

∗Corresponding author
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equation. We present three numerical examples to assess our approach’s efficiency and ac-

curacy. The results demonstrate that the RKHSM yields highly accurate approximations,

underscoring its effectiveness as a reliable method for solving pseudo-hyperbolic equations

with integral constraints. Our findings contribute to the growing research on analytical

and numerical techniques for solving such equations.

Keywords: Partial differential equations, Approximate solutions, Gram-Schmidt orthogonal-

ization process, Computational techniques.

1 Introduction

Differential equations serve as a fundamental mathematical framework for modeling various

dynamic processes across multiple disciplines. These equations describe relationships involving

unknown functions and their derivatives, making them essential for capturing the evolution

of physical, biological, and financial systems over time. Among them, ordinary differential

equations (ODEs) are widely used to represent processes where changes depend on a single

independent variable [1], such as population dynamics, mechanical vibrations, and economic

systems. Notably, systems of ODEs play a crucial role in financial modeling, where they help

analyze the stability and dynamics of economic variables [2].

On the other hand, partial differential equations (PDEs) extend this concept by involv-

ing multiple independent variables, making them indispensable for modeling complex physical

and engineering phenomena. PDEs are particularly useful for describing heat diffusion, wave

propagation, and fluid and gas dynamics, including water flow and air movement. Many math-

ematicians have extensively explored these topics, particularly in the context of modern physics

and technology. For example, in [3], the authors studied the long-term behaviors of solutions for

the initial boundary value problem of pseudo-hyperbolic equations. In [4], Bouziani examined a

class of nonclassical hyperbolic equations with nonlocal conditions. In [5], Merad and Bouziani

applied the Laplace transform to solve pseudo-parabolic equations with nonlocal conditions.

Finally, in [6], Merad and Bouziani investigated the solvability of the telegraph equation with

purely integral conditions. Recent studies on nonlocal conditions have addressed boundary data

that cannot be directly measured.

Pseudo-hyperbolic equations play a crucial role in physics by describing a wide range of

physical phenomena. For example, in [7], Guo and Rui developed least-squares Galerkin pro-
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cedures for pseudo-hyperbolic equations. In [8], Liu et al. proposed splitting positive definite

mixed element methods for solving pseudo-hyperbolic equations. Finally, in [9], Liu et al. in-

troduced a new splitting 1-Galerkin mixed method for pseudo-hyperbolic equations.. Recent

research highlights their capability to model the dynamics of propagating waves in striated and

rotating fluids [10], nerve conduction and reaction-diffusion processes, as well as applications

in heat and mass transfer, engineering, and mathematical biology. In [11], Aronszajn intro-

duced the theory of reproducing kernels, which is fundamental to many areas of mathematical

analysis. In [12], Nagumo et al. developed an active pulse transmission line simulating nerve

axons. In [13], Arima and Hasegawa studied global solutions for mixed problems of a semi-

linear differential equation. In [14], Pao investigated a mixed initial boundary value problem

arising in neurophysiology. In [15], Ponce studied the global existence of small solutions to

a class of nonlinear evolution equations. Finally, in [16], Bouziani and Benouar addressed a

mixed problem with integral conditions for a third-order parabolic equation.

Pseudo-hyperbolic equations with purely integral conditions are essential for understanding

and modeling heat distribution, wave motion, and fluid dynamics. The study of such equa-

tions has gained significant attention in recent years [17, 18]. This study focuses on obtaining

approximate solutions for pseudo-hyperbolic equations with purely integral conditions.

The general form of a pseudo-hyperbolic equation with purely integral conditions is given

as follows:

Let τ > 0, and define the domain as Θ = {(z, l) ∈ R2 | 0 < z < 1, 0 < l ≤ τ}. We seek a

function u : Θ → R that satisfies the equation [18]:

∂2u

∂l2
− α∂

2u

∂z2
− β ∂3u

∂l∂z2
= g(z, l), 0 < z < 1, 0 < l ≤ τ, (1)

subject to the initial conditions:

u(z, 0) = ϕ(z), 0 < z < 1, (2)

∂u(z, 0)

∂l
= ψ(z), 0 < z < 1, (3)

and the purely integral conditions:

∫ 1

0

u(z, l) dz = E(l), 0 < l ≤ τ, (4)
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∫ 1

0

zu(z, l) dz = G(l), 0 < l ≤ τ, (5)

where u : Θ → R is the unknown function, and g : Θ → R is a sufficiently smooth function.

The functions ϕ, ψ : [0, 1] → R and E,G : [0, τ ] → R are given, while α and β are positive

constants.

To handle the nonhomogeneous conditions, we transform the problem (1)-(5) into an equiv-

alent one with homogeneous conditions. We introduce the transformation:

v(z, l) = u(z, l) + S(z, l), (6)

where

S(z, l) =− 6z(El(0)l − 2Gl(0)l − E(l) + E(0) + 2G(l)− 2G(0))

+ 2(2El(0)l − 3Gl(0)l − 2E(l) + 2E(0) + 3G(l)− 3G(0))− lψ(z)− ϕ(z). (7)

Consequently, problem (1)-(5) can be equivalently transformed into determining the function

v that satisfies the following conditions:

∂2v
∂l2
− α∂2v

∂z2
− β ∂3v

∂l∂z2
= H(z, l), 0 < z < 1, 0 < l < τ,

v(z, 0) = 0, 0 < z < 1,
∂v(z,0)
∂l

= 0, 0 < z < 1,∫ 1

0
v(z, l)dz = 0, 0 < l < τ,∫ 1

0
zv(z, t)dz = 0, 0 < l < τ,

(8)

where

H(z, l) = g(z, l) +
∂2S(z, l)

∂l2
− α∂

2S(z, l)

∂z2
− β∂

3S(z, l)

∂l∂z2
. (9)

Numerical methods are widely applied to solve a variety of differential equations, including

ordinary and partial differential equations, both classical and fractional derivatives. These

methods are essential for understanding complex systems in fields such as physics, biology, and

finance, providing approximations where analytical solutions are not feasible. Techniques like

Tikhonov regularization, Chebyshev series, and B-spline methods have been effectively used to

address different types of equations in these domains [19–25]. This study applies the RKHSM

to approximate solutions for pseudo-hyperbolic equations with purely integral conditions. The

RKHSM is a powerful numerical and analytical technique for solving a wide range of ordinary
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and partial differential equations involving various orders of derivatives. One of its key strengths

is its ability to generate solutions in the form of rapidly convergent series, with efficiently

computable components. Its advantages include (1) the ability to produce globally smooth

numerical solutions; (2) uniform convergence of the numerical solutions and their derivatives

to the exact solutions; (3) applicability of the numerical solutions and all their derivatives at

any arbitrary point within the defined domain; and (4) its mesh-free nature, eliminating the

need for time discretization while ensuring ease of implementation. The concept of reproducing

kernels originated in the early 20th century with Zaremba [26] and Bergman [27] and has

since been widely applied to various types of differential equations and numerical analysis.

For instance, in [28], Inc and Akgül applied the reproducing kernel Hilbert space method to

solve Troesch’s problem. In [29], Abu Arqub et al. presented numerical solutions of fractional

differential equations of Lane-Emden type using an accurate technique. In [30], Fardi and

Ghasemi solved nonlocal initial-boundary value problems for parabolic and hyperbolic integro-

differential equations using the reproducing kernel Hilbert space method. In [31], Li and Wu

introduced a new algorithm for solving nonclassical problems based on the reproducing kernel.

In [32], Akgül and Bonyah applied the reproducing kernel Hilbert space method to solve the

generalized Kuramoto-Sivashinsky equation. In [33], Jiang and Cui focused on solving nonlinear

singular pseudo-parabolic equations with nonlocal mixed conditions in the reproducing kernel

space. Finally, in [34], Yang and Lin used the reproducing kernel Hilbert space method to solve

linear initial-boundary value problems.

For a better understanding of the RKHSM, including its theoretical background, historical

development, modifications, fundamental characteristics, kernel functions, and its orthogonal

and orthonormal basis properties, interested readers may refer to [35]. This work provides a

comprehensive exploration of the methodology, properties, and practical applications of the

RKHS approach.

Several authors have recently addressed problems involving integral conditions using the

RKHS approach. For instance, L. Yingzhen and Z. Yongfang [36] applied RKHS to solve

nonlinear pseudo-parabolic equations with nonlocal boundary conditions. Additionally, M. Cui,

along with F. Geng, developed a method based on RKHSM for solving forced Duffing equations

with integral boundary conditions [37]. In [38], Hemati et al. proposed a numerical solution for

the multiterm time-fractional diffusion equation using reproducing kernel theory. In [39], Sakar

et al. introduced a novel technique for solving the fractional Bagley-Torvik equation. In [40],
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Abu Arqub et al. applied the reproducing kernel approach to solve fuzzy fractional initial value

problems under the Mittag-Leffler kernel differential operator. In [41], Akgül presented a new

method for fractional derivatives with a non-local and non-singular kernel. In [42], Akgül et

al. solved the fractional gas dynamics equation using a new technique. In [43], Allahviranloo

and Sahihi used the reproducing kernel method to solve fractional delay differential equations.

In [44], Attia et al. studied solutions for the time-fractional advection-diffusion equation using

numerical methods. In [45], Azarnavid used Bernoulli polynomials to solve nonlinear Volterra

integro-differential equations of fractional order. In [46], Babolian et al. applied the reproducing

kernel method to solve Bratu-type fractional order differential equations. In [47], Beyrami and

Lotfi introduced a method with error analysis for solving a logarithmic singular Fredholm

integral equation. In [48], Chellouf et al. solved fractional differential equations with temporal

two-point boundary value problems using the reproducing kernel Hilbert space method. In [49],

Geng and Cui developed a new method for solving forced Duffing equations with integral

boundary conditions. In [50], Momani et al. investigated Caputo-Fabrizio fractional Riccati and

Bernoulli equations using the iterative reproducing kernel method. Finally, in [51], Abu Arqub

et al. developed the reproducing kernel Hilbert space algorithm for solving time-fractional

nonlocal reaction-diffusion equations.

2 Preliminaries

2.1 Reproducing Kernel Hilbert Spaces S1[0, 1], S2[0, τ ] and ℵ(Θ)

To solve equations (1)-(5), we introduce the following reproducing kernel Hilbert spaces (RKHSs).

1. The function S1[0, 1] is defined as [35]:

S1[0, 1] = {v| v, v′, v(2) ∈ AC[0, 1], v(3) ∈ L2[0, 1], and
∫ 1

0

v(z)dz =

∫ 1

0

zv(z)dz = 0},

where AC denotes the space of absolutely continuous functions.

The inner product and norm of this space are defined as follows:

〈v1, v2〉S1[0,1]
=

2∑
i=0

v
(i)
1 (0)v

(i)
2 (0) +

∫ 1

0

v
(3)
1 (z)v

(3)
2 (z)dz, (10)
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and

‖v1‖S1[0,1] =
√
〈v1, v1〉S1[0,1]

. (11)

Theorem 2.1. The Hilbert space S1[0, 1] is a RKHS with the RKF my(z). For each fixed

y ∈ [0, 1] and any v(z) ∈ S1[0, 1],there exists my(z) ∈ S1[0, 1] and z ∈ [0, 1], such that [35]

〈v(.),my(.)〉 = v(y).

The RKF my(z) is given by:

my(z) =


∑6

i=1 ci(y)zi−1 + a1(y)
6!
z6 + a2(y)

7!
z7, ifz ≤ y,∑6

i=1 di(y)zi−1 + a1(y)
6!
z6 + a2(y)

7!
z7, ify < z,

(12)

with

d1(y) = − 28872
26510995

y7 + 3932
757457

y6 + 5201
90894840

y5 + 1236
757457

y4 + 7976
757457

y3 + 23928
757457

y2

- 29664
757457

y + 5201
757457

,

d2(y) = 9516
5302199

y7 − 23584
3787285

y6 − 1236
3787285

y5 − 171665
18178968

y4 − 48404
757457

y3 − 145212
757457

y2

+171665
757457

y − 29664
757457

,

d3(y) = 13098
26510995

y7 − 40291
22723710

y6 + 997
3787285

y5 + 12101
1514914

y4 + 608257
9089484

y3 + 608257
3029828

y2

-145212
757457

y + 23928
757457

,

d4(y) = 4366
26510995

y7 − 40291
68171130

y6 + 997
11361855

y5 + 12101
4544742

y4 − 37300
6817113

y3 − 37300
2272371

y2

- 48404
757457

y + 7976
757457

,
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d5(y) = − 793
10604398

y7 + 2948
11361855

y6 + 103
7574570

y5 − 1017
757457

s4 + 12101
4544742

y3 + 12101
1514914

y2

+ 24408
757457

y + 1236
757457

,

d6(y) = − 1203
132554975

y7 + 983
22723710

y6 − 1306
18936425

y5 + 103
7574570

y4 + 997
11361855

y3

+ 997
3787285

y2 − 1236
(3787285

y − 31344
3787285

,

a1(y) = 400968
26510995

y7 − 220144
3787285

y6 + 23592
757457

y5 + 141504
757457

y4 − 322328
757457

y3 − 966984
757457

y2

-3396096
757457

y + 2831040
757457

,

a2(y) = − 744192
26510995

y7 + 400968
3787285

y6 − 173232
3787285

y5 − 285480
757457

y4 + 628704
757457

y3 + 1886112
757457

y2

+6851520
757457

y − 4157568
757457

,

c1(y) = − 28872
26510995

y7 + 3932
757457

y6 − 31344
3787285

y5 + 1236
757457

y4 + 7976
757457

y3 + 23928
757457

y2

- 29664
757457

y + 5201
757457

,

c2(y) = 9516
5302199

y7 − 23584
3787285

y6 − 1236
3787285

y5 + 24408
757457

y4 − 48404
757457

y3 − 145212
757457

y2

+171665
757457

y − 29664
757457

,

c3(y) = 13098
26510995

y7 − 40291
22723710

y6 + 997
3787285

y5 + 12101
1514914

y4 − 37300
2272371

y3 + 608257
3029828

y2

-145212
757457

y + 23928
757457

,
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c4(y) = 4366
26510995

y7 − 40291
68171130

y6 + 997
11361855

y5 + 12101
4544742

y4 − 37300
6817113

y3 + 608257
9089484

y2

- 48404
757457

y + 7976
757457

,

c5(y) = − 793
10604398

y7 + 2948
11361855

y6 + 103
7574570

y5 − 1017
757457

y4 + 12101
4544742

y3 + 12101
1514914

y2

- 171665
18178968

y + 1236
757457

,

c6(y) = − 1203
132554975

y7 + 983
22723710

y6 − 1306
18936425

y5 + 103
7574570

y4 + 997
11361855

y3

+ 997
3787285

y2 − 1236
(3787285

y + 5201
90894840

.

Proof. We need to prove the existence of my(z) ∈ S1[0, 1]. For any v(z) ∈ S1[0, 1], we aim

to show that

〈v(.),my(.)〉S1[0,1]
= v(y).

Letmy(z) ∈ S1[0, 1].Using equation (10) along with the conditions
∫ 1

0
v(z)dz =

∫ 1

0
zv(z)dz =

0, we obtain

〈v(z),my(z)〉S1[0,1]
=

2∑
i=0

v(i)(0)∂izmy(0) +

∫ 1

0

v(3)(z)∂3zmy(z)dz.

Applying integration by parts three times, we get:

〈v(z),my(z)〉S1[0,1]

=
2∑
i=0

v(i)(0)[∂izmy(0)− (−1)2−i∂5−iz my(0)] +
2∑
i=0

(−1)2−iv(i)(1)∂5−iz my(1)−
∫ 1

0

v(z)∂6zmy(z)dz

=
2∑
i=0

v(i)(0)[∂izmy(0)− (−1)2−i∂5−iz my(0)] +
2∑
i=0

(−1)2−iv(i)(1)m(5−i)
y (1)−

∫ 1

0

v(z)m(6)
y (z)dz

+ a1(y)

∫ 1

0

v(z)dz + a2(y)

∫ 1

0

zv(z)dz
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=
2∑
i=0

v(i)(0)[∂izmy(0)− (−1)2−i∂3zmy(0)] +
2∑
i=0

(−1)2−iv(i)(1)∂5−iz my(1)

−
∫ 1

0

v(z)[∂6zmy(z)− a1(y)− a2(y)z]dz.

Now, define:  ∂izmy(0)− (−1)2−i∂5−iz my(0) = 0, i = 0, 1, 2,

∂5−iz my(1) = 0, i = 0, 1, 2.
(13)

Then, we obtain:

v(y) = −
∫ 1

0

v(z)[∂6zmy(z)− a1(y)− a2(y)z]dz,

which implies that:

∂6zmy(z)− a1(y)− a2(y)z = −δ(z − y), (14)

where δ(z − y) is the Dirac delta function defined as:

δ(z − y) =

 1, z = y,

0, z 6= y.

Thus, we confirm:

〈v(.),my(.)〉S1[0,1]
= v(y).

This proves that S1[0, 1] is a RKHS and my(z) is a RKF.

From equation (14), for x 6= y, my(z) satisfies the following linear homogeneous differential

equation of 6th order:

∂6zmy(z)− a1(y)− a2(y)z = 0. (15)

The boundary conditions are given by (13). The characteristic equation of (15) is

−λ6 + a1(y) + za2(y) = 0.

Solving equation (14), we obtain the general form of my(z) (see formula (12)). The coef-

ficients ci(y), di(y), ( for i = 1, . . . , 6) and a1(y), a2(y) are determined using the following
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conditions: 

∂izmy(0)− (−1)2−i∂5−iz my(0) = 0, i = 0, 1, 2,

∂5−iz my(1) = 0, i = 0, 1, 2,

limx→y+
∂jmy(z)

∂zj
= limz→y−

∂jmy(z)

∂zj
, j = 0, 1, 2, 3, 4,

limz→y+
∂5my(z)

∂z5
− limz→y−

∂5my(z)

∂z5
= −1,∫ 1

0
my(z)dz = 0,∫ 1

0
zmy(z)dz = 0.

(16)

Thus, the proof is complete.

2. The function space S2[0, τ ] is defined as [35]:

S2[0, τ ] = {v| v, v′, v′′ ∈ AC[0, τ ], v(3) ∈ L2[0, 1], and v(0) = v′(0) = 0}. (17)

The inner product and the norm in this space are defined as follows:

〈v1, v2〉S2[0,τ ]
=

2∑
i=0

v
(i)
1 (0)v

(i)
2 (0) +

∫ τ

0

v
(3)
1 (l)v

(3)
2 (l)dl, (18)

and

‖v1‖S2[0,τ ] =
√
〈v1, v1〉S2[0,τ ]

, (19)

where v1, v2 ∈ S2[0, τ ].

Theorem 2.2. The function space S2[0, τ ] is a RKHS. The RKF ps(l) of S2[0, τ ] is given

by [29,30]:

ps(l) =

 s2

4
l2 + s2

12
l3 − s

24
l4 + 1

120
l5, l ≤ s,

s5

120
− s4

24
l + s3

12
l2 + s2

4
l2, s < l.

(20)

For the proof, refer to the references [29] and [30].

3. Let Θ = [0, 1]× [0, τ ]. The binary function space ℵ(Θ) is defined as [35]:

ℵ(Θ) = {v(z, l)
∣∣∣ ∂4v
∂z2∂l2

is completely continuous in Θ, ∂6v
∂z3∂l3

∈ L2(Θ), v(z, 0) = ∂v(z,0)
∂l

=

0,
∫ 1

0
v(z, l)dz =

∫ 1

0
zv(z, l)dz = 0}.

The inner product in ℵ(Θ) is defined as:

〈v1(z, l), v2(z, l)〉ℵ(Θ) =
2∑
i=0

∫ τ

0

∂3

∂l3
∂i

∂zi
v1(0, l)

∂3

∂l3
∂i

∂zi
v2(0, l)dl +

2∑
j=0

〈
∂j

∂lj
v1(z, 0),

∂j

∂lj
v2(z, 0)

〉
ℵ(Θ)
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+

∫ τ

0

∫ 1

0

∂3

∂z3
∂3

∂l3
v1(z, l)

∂3

∂z3
∂3

∂l3
v2(z, l)dxdt.

The norm is given by:

‖v1‖ℵ(Θ) =
√
〈v1, v1〉ℵ(Θ). (21)

For further details on the inner product and norm, refer to [30,35].

Theorem 2.3. The Function space ℵ(Θ) is a Hilbert space. The RKF of ℵ(Θ) is given

by [35]:

Ky,s(z, l) = my(z)ps(l), (22)

where

• my(z) is the RKF in S1[0, 1].

• ps(l) is the RKF in S2[0, τ ].

Proof. We have〈
v(z, l), K(y,s)(z, l)

〉
ℵ(Θ)

= 〈v(z, l),my(z)ps(l)〉ℵ(Θ)

=
2∑
i=0

∫ τ

0

∂3

∂l3
∂i

∂zi
v(0, l)

∂3

∂t3
ps(l)

∂i

∂zi
my(0)dl

+

∫ τ

0

∫ 1

0

∂3

∂l3
∂3

∂z3
v(z, l)

∂3

∂z3
my(z)

∂3

∂l3
ps(l)dzdl

+
2∑
j=0

〈
∂j

∂lj
v(z, 0),

∂j

∂lj
my(z)Ps(0)

〉
S1[0,1]

=

∫ τ

0

[{
2∑
i=0

∂3

∂l3
∂i

∂zi
v(0, l)

∂3

∂l3
ps(l)

∂i

∂zi
my(0)

+

∫ 1

0

∂3

∂z3
∂3

∂l3
v(z, l)

∂3

∂z3
my(z)

∂3

∂l3
ps(l)dz

}]
dl

+
2∑
j=0

∂j

∂lj
v(y, 0)

∂j

∂lj
ps(0)

=

∫ τ

0

∂3

∂l3
ps(l)

∂3

∂l3

[∫ 1

0

∂3

∂z3
v(z, l)

∂3

∂z3
my(z)dz

+
2∑
i=0

∂i

∂zi
v(0, l)

∂i

∂zi
my(0)dz

]
dl

12



+
2∑
j=0

∂j

∂lj
v(y, 0)

∂j

∂lj
ps(0)

=

∫ τ

0

∂3

∂l3
ps(l)

∂3

∂l3
〈v(z, l),my(z)〉S1[0,1]

dl +
2∑
j=0

∂i

∂li
v(y, 0)

∂i

∂li
ps(0)

=

∫ τ

0

∂3

∂l3
ps(l)

∂3

∂l3
v(y, l)dl +

2∑
j=0

∂j

∂lj
v(y, 0)

∂j

∂lj
ps(0)

= 〈ps(l), v(y, l)〉V2[0,τ ]
=v(y, s).

Thus, the proof is complete.

4. The function space m0(Θ) is defined as [35]:

m0(Θ) = {v(z, l)|v(z, l) is continoues in Θ and v(z, l) ∈ L2(Θ)}.
Here, m0(Θ) is a subspace of L2(Θ).

3 Application of the RKHSM

We aim to determine the solution of equation (1.8) within the RKHS ℵ(Θ). To achieve this, we

define a linear operator } : ℵ(Θ) −→ m0(Θ) as follows [18]:

}v(z, l) =
∂2v

∂l2
− α∂

2v

∂z2
− β ∂3v

∂l∂z2
. (23)

Thus, problem (1.8) is transformed into the following operator form:

}v(z, l) = H(z, l), (z, l) ∈ (0, 1)× (0, τ ],

vl(z, 0) = 0, 0 < z < 1,

v(z, 0) = 0, 0 < z < 1,∫ 1

0
v(z, l)dz = 0, 0 < l ≤ τ,∫ 1

0
zv(z, l)dz = 0, 0 < l ≤ τ.

(24)

Lemma 3.1. The operator } is a bounded linear operator from ℵ(Θ) to m0(Θ).

Proof. To prove that } is a bounded operator, we show that

‖}v‖m0 ≤ J ‖ v ‖ℵ(Θ),

13



where J > 0 is a positive constant.

We have

‖}v‖2m0
=

∫∫
Θ

|(}v)(z, l)|2 dzdl

=

∫∫
Θ

∣∣∣∣∂2v∂l2 − α∂2v∂z2
− β ∂3v

∂l∂z2

∣∣∣∣2 dzdl
≤
∫∫

Θ

[∣∣∣∣∂2v∂l2 | +α | ∂2v∂z2
| +β | ∂3v

∂l∂z2

∣∣∣∣]2 dzdl
≤
∫∫

Θ

|∂
2v

∂l2
|2 +α2 | ∂

2v

∂z2
|2 +β2 | ∂3v

∂l∂z2
|2 +2α|∂

2v

∂l2
| . | ∂

2v

∂z2
| +2β|∂

2v

∂l2
| . | ∂3v

∂l∂z2
|

+ 2αβ|∂
2v

∂z2
| . | ∂3v

∂l∂z2
| dzdl.

Since

v(z, l) = 〈v(ξ, %),E(z,l)(ξ, %〉ℵ(Θ),

we obtain:

| ∂
m+n

∂zm∂ln
v(z, l)| = 〈v(ξ, %),

∂m+n

∂zm∂ln
E(z,l)(ξ, %)〉.

By the Cauchy-Schwarz inequality and the continuity of the RKF E(z,l)(ξ, %), we get:∣∣∣∣ ∂m+n

∂zm∂ln
v(z, l)

∣∣∣∣ ≤ Bm,n‖v‖ℵ(Θ),m = 0, 1, 2, n = 0, 1, 2.

Setting:

B = max{Bm,n,m = 0, 1, 2, n = 0, 1, 2},

we obtain:

‖}v‖2m0
≤ (1 + (α + β)2 + 2(α + β))τB2‖v‖2ℵ(Θ).

Thus,

‖}v‖m0 ≤ J‖v‖ℵ(Θ),

where

J =
√

(1 + (α + β)2 + 2(α + β))τB2,

and J is a positive real number .

This completes the proof.
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We select a countable dense subsetM = {(zi, li)}∞i=1 ⊂ Θ and define Ψi(z, l) as follows:

Ψi(z, l) = (}(y,s))E(y,s)(z, l)|(y,s)=(zi,li)

=
∂2E(y,s)(z, l)

∂s2
− α

∂2E(y,s)(z, l)

∂y2
− β

∂3E(y,s)(z, l)

∂s∂y2

∣∣∣∣
(y,s)=(zi,li)

, i = 1, 2, . . . , (25)

where E(y,s)(z, l) is the RKF in ℵ(Θ).

Lemma 3.2. Ψi(z, l) ∈ ℵ(Θ).

Proof. By the definition of ℵ(Θ), we need to prove the following conditions:

(i) ∂6Ψi(z,l)
∂z3∂l3

∈ L2(Θ).

(ii) ∂4Ψi(z,l)
∂z2∂l2

is completely continuous in Θ.

( iii) Ψi(z, 0) = ∂
∂l
Ψi(z, 0) =

∫ 1

0
Ψi(z, l)dz =

∫ 1

0
zΨi(z, l)dz = 0.

Using equations (22) and (25), we write:

Ψi(z, l) = ∂2

∂s2
ps(l).my(z)− α ∂2

∂y2
my(z).ps(l)− β ∂2

∂y2
my(z). ∂

∂s
ps(l).

Differentiating, we obtain:

∂6

∂z3∂l3
Ψi(z, l) = ∂5

∂s2∂l3
ps(l).

∂3

∂z3
my(z)− α ∂5

∂y2∂z3
my(z). ∂

3

∂l3
ps(l)− β ∂5

∂y2∂z3
my(z). ∂4

∂s∂l3
ps(l).

Similarly,

∂4

∂z2∂l2
Ψi(z, l) = ∂4

∂s2∂l2
ps(l).

∂2

∂z2
my(z)− α ∂4

∂y2∂z2
my(z). ∂

2

∂l2
ps(l)− β ∂4

∂y2∂z2
my(z). ∂3

∂s∂l2
ps(l).

1. Proof of ∂6Ψi(z,l)
∂z3∂l3

∈ L2(Θ) :

By the definition of S2[0, τ ] and the expression of ps(l), we have:

∂3

∂l3
ps(l) ∈ L2[0, τ ], with respect to l.

Since ∂5

∂l3∂s2
ps(l) is piecewise continuous in [0, τ ] with respect to l, we conclude:

∂5

∂l3∂s2
ps(l) ∈ L2[0, τ ].
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Similarly,

∂4

∂l3∂s
ps(l) is continuous with respect to l, ⇒ ∂4

∂l3∂s
ps(l) ∈ L2[0, τ ].

Also, using the expression of my(z) and the definition of S1[0, 1], we coclude:

∂5

∂z3∂y2
my(z) ∈ L2[0, 1], and

∂3

∂y3
my(z) ∈ L2[0, 1], with respect to z.

Therefore, ∂6

∂z3∂l3
Ψi(z, l) ∈ L2(Θ).

2. Proof that ∂4Ψi(z,l)
∂z2∂l2

is completely continuous in Θ:

For E(y,s)(z, l) ∈ ℵ(Θ) according to the proof in [15-28]:

∂i+f

∂zi∂yf
m(y)(z).

∂j+t

∂lj∂st
p(s)(l) =

∂i+j+f+t

∂zi∂lj∂yf∂st
E(y,s)(z, l),

which is completely continuous when 0 ≤ i + f ≤ 4 and 0 ≤ j + t ≤ 4. By (25), we

conclude that Ψi(z, l) is completely continuous in Θ.

3. Proof that Ψi(z, 0) satisfies the boundary conditions:

Since my(z) ∈ S1[0, 1], we have:∫ 1

0

my(z)dz =

∫ 1

0

zmy(z)dz = 0. (26)

Since ps(l) ∈ S2[0, τ ], we obtain:

ps(0) =
∂

∂l
ps(0) = 0. (27)

Using the expression of my(z), we also have:∫ 1

0

∂2

∂y2
my(z)dz =

∫ 1

0

∂2

∂y2
zmy(z)dz = 0. (28)

Similarly, using the expression of ps(l), we have:

∂2

∂s2
ps(0) =

∂

∂s
ps(0) = 0, and

∂

∂l
ps(0) =

∂3

∂s2∂l
ps(0) =

∂2

∂s∂l
ps(0) = 0. (29)

From equations (26)-(29), it follows that:

Ψi(z, 0) =
∂

∂l
Ψi(z, 0) =

∫ 1

0

Ψi(z, l)dz =

∫ 1

0

zΨi(z, l)dz = 0.

Thus, we conclude that:

Ψi(z, l) ∈ ℵ(Θ).

This completes the proof.
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Lemma 3.3. The function system {Ψ1(z, l),Ψ2(z, l),Ψ3(z, l), . . . } forms a complete system in

ℵ(Θ) [44].

The orthonormal system {Ψ̃(z, l)}∞i=1 in ℵ(Θ), obtained from the Gram-Schmidt orthogo-

nalization process of {Ψ(z, l)}∞i=1, is given by:

Ψ̃(z, l) =
i∑

k=1

γikΨi(z, l), (30)

where γik are the orthogonal coefficients [44].

Theorem 3.1. If v(z, l) is the exact solution of equation (24), then:

v(z, l) =
+∞∑
i=1

i∑
k=1

γikH(zk, lk)Ψ̃(z, l). (31)

An approximate solution of equation (24) is given by :

vn(z, l) =
n∑
i=1

i∑
k=1

γikH(zk, lk)Ψ̃(z, l). (32)

The exact solution of equations (1)-(5) is

u(z, l) = v(z, l)−S(z, l), (33)

where S(z, l) is defined in equation (7).

Proof. We prove formulas (31)-(32). From equation (24) and the fact that v(z, l) ∈ ℵ(Θ), we

have

v(z, l) =
+∞∑
i=1

〈v(z, l), Ψ̃i(z, l)〉ℵ(Θ)Ψ̃i(z, l)

=
+∞∑
i=1

〈v(z, l),
i∑

k=1

γikΨi(z, l)〉ℵ(Θ)Ψ̃i(z, l)

=
+∞∑
i=1

i∑
k=1

γik〈v(z, l), }(y,s)E(y,s)(z, l)|(y,s)=(zk,lk)〉ℵ(Θ)Ψ̃i(z, l)

=
+∞∑
i=1

i∑
k=1

γik[}(y,s)〈v(z, l),E(y,s)(z, l)〉ℵ(Θ)|(y,s)=(zk,lk)Ψ̃i(z, l)
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=
+∞∑
i=1

i∑
k=1

γik
[
}(y,s)v(y, s)

]
|(y,s)=(zk,lk)Ψ̃i(z, l)

=
+∞∑
i=1

i∑
k=1

γikH(zk, lk)Ψ̃i(z, l).

4 Convergence in ℵ(Θ)

Theorem 4.1. [34,36]

1. For each v(z, l) ∈ ℵ(Θ), let ε2n = ‖vn(z, l)− v(z, l)‖2. Then, the sequence εn is monoton-

ically decreasing, and εn → 0 as n→∞.

2. The approximate solution vn(z, l) uniformly converges to the exact solution v(z, l).

3. The derivatives ∂i+jz,l vn(z, l), for i = 0, 1, 2 and j = 0, 1, uniformly converge to ∂i+jz,l v(z, l),

for i = 0, 1, 2 and j = 0, 1 .

For the proof, refer to references [34] and [36].

5 Numerical Experiments

This section demonstrates the effectiveness of the proposed method through numerical exam-

ples. We apply it to various pseudo-hyperbolic equations subject to purely integral conditions.

hese examples illustrate the extensive applicability of the method in solving such differential

equations.

Example 5.1. Considering the pseudo-hyperbolic equation [18]:

∂2u
∂l2
− ∂2u

∂z2
− ∂3u

∂l∂z2
= g(z, l), 0 < z < 1, 0 < l < 1,

u(z, 0) = sech2(z), ∂u(z,0)
∂l

= −2 tanh(z)sech2(z), 0 < z < 1,∫ 1

0
u(z, l)dz = tanh(l + 1)− tanh(l), 0 < l ≤ 1,∫ 1

0
zu(z, l)dz = tanh(l) + sinh(1)sech(l)sech(l + 1) + ln(cosh(l)sech(l + 1)), 0 < l ≤ 1,

(34)
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where g(z, l) = 4(cosh(2(l + z))− 5) tanh(l + z)sech4(l + z).

The exact solution to (34) is:

u(z, l) =
1

cosh2(z + l)
. (35)

In Example 5.1, we apply the RKHSM, as discussed earlier. By selecting p× q = n = 15×15 =

225 collocation points with zi = i
p
for i = 1, 2, . . . , p and lj = j

q
for j = 1, 2, . . . , q, we obtain the

approximate solution using the RKHSM. We compared the new solution with the exact solution.

The results displayed in Table 1 illustrate the absolute error across the domain [0, 1] × [0, 1].

Figure 1 shows the RKHSM solution alongside the exact solution at t = 0.3. Figure 2 presents

the absolute error between the RKHSM solution and the exact solution at t = 0.3. Figure 3

is a 3D plot of the RKHSM solution, while Figure 4 depicts a 3D plot of the exact solution.

Finally, Figure 5 illustrates the 3D plot of the absolute error between the RKHSM solution and

the exact solution. These visualizations confirm that the RKHSM consistently produces results

closely resembling the exact solution, demonstrating its effectiveness.

Figure 1: RKHSM and Exact solutions for Example 5.1 when t = 0.3.
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z l Exact Solution RKHSM Absolute Error

0.2 0.2 0.8556387858 0.8556281433 1.1× 10−5

0.4 0.7115777629 0.7115533559 2.4× 10−5

0.6 0.5590551680 0.5589741860 8.1× 10−5

0.8 0.4199743415 0.4197860550 1.9× 10−4

1.0 0.9610429822 0.9610429820 2.0× 10−10

0.4 0.2 0.7115777629 0.7116031528 2.5× 10−5

0.4 0.5590551680 0.5589891901 6.6× 10−5

0.6 0.4199743415 0.4198159681 1.6× 10−4

0.8 0.3050199963 0.3048046490 2.2× 10−4

1.0 0.8556387858 0.8556387859 1.0× 10−10

0.6 0.2 0.5590551680 0.5590904141 3.5× 10−5

0.4 0.4199743415 0.4199959892 2.2× 10−5

0.6 0.3050199963 0.3050961129 7.6× 10−5

0.8 0.2161524591 0.2163801540 2.3× 10−4

1.0 0.7115777629 0.7115777626 3.0× 10−10

0.8 0.2 0.4199743415 0.4199684418 5.9× 10−6

0.4 0.3050199963 0.3050605976 4.1× 10−5

0.6 0.2161524591 0.2162606510 1.1× 10−4

0.8 0.1505270758 0.1507121439 1.9× 10−4

1.0 0.5590551680 0.5590551680 0.0

1.0 0.2 0.3050199963 0.3049664090 5.4× 10−5

0.4 0.2161524591 0.2160943939 5.8× 10−5

0.6 0.1505270758 0.1503328150 1.9× 10−4

0.8 0.1035583741 0.1030522690 5.1× 10−4

1.0 0.4199743415 0.4199743410 5.0× 10−10

Table 1: Numerical results of Example 5.1.

Example 5.2. Considering the pseudo-hyperbolic equation [52]:

∂2u
∂l2
− ∂2u

∂z2
− ∂3u

∂l∂z2
= g(z, l), 0 < z < 1, 0 < l < 1,

u(z, 0) = ez, ∂u(z,0)
∂l

= 0, 0 < z < 1,∫ 1

0
u(z, l)dz = (e− 1) cosh(l), 0 < l ≤ 1,∫ 1

0
zu(z, l)dz = cosh(l), 0 < l ≤ 1,

(36)
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Figure 2: Absolute error of the RKHSM for Example 5.1 when t = 0.3.

Figure 3: 3D Visualization of the RKHSM’s solution for Example 5.1.

where g(z, l) = −ez sinh(l).

The exact solution to (36) is:

u(z, l) = ez cosh(l). (37)
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Figure 4: 3D Visualization of the exact solution solution for Example 5.1.

Figure 5: 3D Visualization of the absolute error for Example 5.1.

In Example 5.2, we apply the RKHSM, as discussed earlier. By selecting p× q = n = 15×15 =

225 collocation points with zi = i
p
for i = 1, 2, . . . , p and lj = j

q
for j = 1, 2, . . . , q, we obtain the

approximate solution using the RKHSM. We compared the new solution with the exact solution.

The results displayed in Table 2 illustrate the absolute error across the domain [0, 1] × [0, 1].

Figure 6 shows the RKHSM solution alongside the exact solution at t = 0.1. Figure 7 presents

the absolute error between the RKHSM solution and the exact solution at t = 0.1. Figure 8
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is a 3D plot of the RKHSM solution, while Figure 9 depicts a 3D plot of the exact solution.

Finally, Figure 10 illustrates the 3D plot of the absolute error between the RKHSM solution and

the exact solution. These visualizations confirm that the RKHSM consistently produces results

closely resembling the exact solution, demonstrating its effectiveness.

Figure 6: RKHSM and Exact solutions for Example 5.2 when t = 0.1.

Example 5.3. Considering the pseudo-hyperbolic equation [18]:

∂2u
∂l2
− ∂2u

∂z2
− ∂3u

∂l∂z2
= g(z, l), 0 < z < 1, 0 < l < 1,

u(z, 0) = tanh2(z), ∂u(z,0)
∂l

= 2 tanh(z)sech2(z), 0 < z < 1,∫ 1

0
u(z, l)dz = tanh(l)− tanh(l + 1) + 1, 0 < l ≤ 1,∫ 1

0
zu(z, l)dz = − tanh(l) + ln(sech(l)) + ln(cosh(l + 1))

− sinh(1)sech(l)sech(l + 1) + 1
2
, 0 < l ≤ 1,

(38)

where g(z, l) = −2(sinh(3(l + z))− 11 sinh(l + z))sech5(l + z).

The exact solution to (38) is:

u(z, l) =
1

coth2(l + z)
. (39)

In Example 5.3, we apply the RKHSM, as discussed earlier. By selecting p× q = n = 15×15 =

225 collocation points with zi = i
p
for i = 1, 2, . . . , p and lj = j

q
for j = 1, 2, . . . , q, we obtain the

23



z l Exact Solution RKHSM Absolute Error

0.2 0.2 1.245912349 1.245912402 5.3× 10−8

0.4 1.320424777 1.320424496 2.8× 10−7

0.6 1.447930487 1.447929590 9.0× 10−7

0.8 1.633546732 1.633544905 1.8× 10−6

1.0 1.221402758 1.221402756 2.0× 10−9

0.4 0.2 1.521760780 1.521760588 1.9× 10−7

0.4 1.612770465 1.612770801 3.4× 10−7

0.6 1.768506291 1.768507574 1.3× 10−6

0.8 1.995218484 1.995221356 2.9× 10−6

1.0 1.491824698 1.491824698 0.0

0.6 0.2 1.858682813 1.858682776 3.7× 10−8

0.4 1.969842293 1.969843208 9.2× 10−7

0.6 2.160058460 2.160061014 2.6× 10−6

0.8 2.436965359 2.436970457 5.1× 10−6

1.0 1.822118800 1.822118800 0.0

0.8 0.2 2.270200315 2.270200528 2.1× 10−7

0.4 2.405970810 2.405971061 2.5× 10−7

0.6 2.638301361 2.638301603 2.4× 10−7

0.8 2.976516211 2.976516369 1.6× 10−7

1.0 2.225540928 2.225540928 0.0

1.0 0.2 2.772828926 2.772828489 4.4× 10−7

0.4 2.938659384 2.938657212 2.2× 10−6

0.6 3.222428560 3.222423442 5.1× 10−6

0.8 3.635525110 3.635515629 9.5× 10−6

1.0 2.718281828 2.718281828 0.0

Table 2: Numerical results of Example 5.2.

approximate solution using the RKHSM. We compared the new solution with the exact solution.

The results displayed in Table 3 illustrate the absolute error across the domain [0, 1] × [0, 1].

Figure 11 shows the RKHSM solution alongside the exact solution at t = 0.1. Figure 12 presents
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Figure 7: Absolute error of the RKHSM for Example 5.2 when t = 0.1.

Figure 8: 3D Visualization of the RKHSM’s solution for Example 5.2.

the absolute error between the RKHSM solution and the exact solution at t = 0.1. Figure 13

is a 3D plot of the RKHSM solution, while Figure 14 depicts a 3D plot of the exact solution.

Finally, Figure 15 illustrates the 3D plot of the absolute error between the RKHSM solution and
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Figure 9: 3D Visualization of the exact solution solution for Example 5.2.

Figure 10: 3D Visualization of the absolute error for Example 5.2.

the exact solution. These visualizations confirm that the RKHSM consistently produces results

closely resembling the exact solution, demonstrating its effectiveness.
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z l Exact Solution RKHSM Absolute Error

0.2 0.2 0.6407986834 0.6408327447 3.4× 10−5

0.4 0.7425668027 0.7425644140 2.4× 10−6

0.6 0.8192933610 0.8193033003 9.9× 10−6

0.8 0.8749901286 0.8750928380 1.0× 10−4

1.0 0.5130826389 0.5130826389 0.0

0.4 0.2 0.2884222375 0.2883968450 2.5× 10−5

0.4 0.4409448323 0.4410108100 6.6× 10−5

0.6 0.5800256579 0.5801840714 1.6× 10−4

0.8 0.6949800040 0.6951953661 2.2× 10−4

1.0 0.1443612139 0.1443612140 1.0× 10−10

0.6 0.2 0.4409448323 0.4409095888 3.5× 10−5

0.4 0.5800256579 0.5800040189 2.2× 10−5

0.6 0.6949800040 0.6949039051 7.6× 10−5

0.8 0.7838475416 0.7836199009 2.3× 10−4

1.0 0.2884222375 0.2884222374 1.0× 10−10

0.8 0.2 0.5800256579 0.5800315519 5.9× 10−6

0.4 0.6949800040 0.6949393916 4.1× 10−5

0.6 0.7838475416 0.7837393425 1.1× 10−4

0.8 0.8494729244 0.8492878571 1.9× 10−4

1.0 0.4409448323 0.4409448321 2.0× 10−10

1.0 0.2 0.6949800040 0.6950335947 5.4× 10−5

0.4 0.7838475416 0.7839055720 5.8× 10−5

0.6 0.8494729244 0.8496671540 1.9× 10−4

0.8 0.8964416253 0.8969477000 5.1× 10−4

1.0 0.5800256579 0.5800256580 1.0× 10−10

Table 3: Numerical results of Example 5.3.
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Figure 11: RKHSM and Exact solutions for Example 5.3 when t = 0.1.

Figure 12: Absolute error of the RKHSM for Example 5.3 when t = 0.1.

6 conclusion

This study employed the RKHS approach to solve pseudo-hyperbolic equations with purely in-

tegral conditions. The effectiveness of this method was demonstrated through three numerical
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Figure 13: 3D Visualization of the RKHSM’s solution for Example 5.3.

Figure 14: 3D Visualization of the exact solution solution for Example 5.3.

experiments, with results presented in tables and figures. The use of highly effective repro-

ducing kernel functions played a crucial role in achieving the desired outcomes. Our findings

suggest that this method is capable of addressing even more complex problems, leading us to

conclude that the proposed approach holds significant potential for application to more intricate

challenges.
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Figure 15: 3D Visualization of the absolute error for Example 5.3.

Regarding the applicability of the presented scheme to fractional derivatives, it is important

to note that the current study focuses on classical pseudo-hyperbolic equations with integral

conditions. To the best of our knowledge, this type of equation with fractional derivatives under

purely integral conditions has not yet been explored using RKHSM. Developing a fractional ex-

tension of this method would require further investigation into adapting the RKHS approach to

fractional-order operators. Future studies could focus on extending this approach to fractional

pseudo-hyperbolic equations, investigating its convergence properties, and comparing it with

other numerical schemes.
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