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Abstract

The study of the existence and distribution of limit cycles for generalized Abel equations
comes from the famous Small-Pugh problem, which has been extended to non-smooth case.
In this paper, we consider a kind of piecewise smooth generalized Abel equation with the
separation line t = 0. We are interested in its number of nontrivial limit cycles which
are bifurcated from the periodic annulus of unperturbed equation. Under the first order
Melnikov analysis, we show that the upper bound of this kind nontrivial limit cycles is
2(m+ 1) if p is odd, and m+ 1 if p is even. The upper bound in both cases can be reached
separately.
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1. Introduction and main result

Many practical problems can be modeled as following scalar differential equation

ẋ :=
dx

dt
=

k∑
i=0

ai(t)x
i, (1.1)

where ai(t) ∈ C∞([0, 1]), i = 0, 1, · · · , k, such as relativistic dissipative cosmological model
in [13], harvesting model in [2], tracking control problem in [4], glioblastoma growth in [12],
etc. This kind equation is usually called generalized Abel equation.
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Let u(t; ρ) be the solution of (1.1) determined by u(0; ρ) = ρ, then it is periodic if
u(1; ρ) = ρ. An isolated periodic solution is called a limit cycle. Determining upper bounds of
limit cycles for generalized Abel equations is famous Smale-Pugh problem, see [26]. Although
this problem is the one in low dimensional dynamical systems, it is still open so far, see
problems 5− 7 in [5].

For equation (1.1), when k = 1, it is a linear equation and it has 1 limit cycle, see [20, 22].
When k = 2, it is well-known Ricatti equation, and it has 2 limit cycles, see [20, 23, 24]. In
the case of k = 3, it is called Abel equation, and in [20, 25], Lins-Neto and Panov showed
that the number of Abel equation is not bounded. Under condition k ≥ 3, the number of
limit cycles may become bounded if some additional constraints are added to the coefficients
ai(t), i = 0, 1, · · · , k, see [1, 6, 8, 15, 18, 14].

In addition to its own importance, the generalized Abel equation can be used to study a
class of planar polynomial differential systems in the following:

ẋ = ax− y + Pn(x, y),

ẏ = x+ ay +Qn(x, y),
(1.2)

where Pn and Qn are homogeneous polynomials of degree n ≥ 2, and a ∈ R. By a similar-
to-polar change of coordinates, which was first introduced by Cherkas in [3], (1.2) can be
reduced to (1.1). Some papers found the limit cycles of (1.2) by studying the limit cycles
of generalized Abel equation, see [15] and the references therein. In recent years, there have
been many other interesting results concerning smooth or piecewise smooth generalized
equations, see [10, 9, 13, 30, 16, 27, 21, 17, 29, 28] and the references therein.

In this paper, we focus on the following type of generalized Abel equation:

dx

dt
=


xp

p− 1
+G−(x, t), −1 ≤ t ≤ 0, x ∈ R,

− xp

p− 1
+G+(x, t), 0 ≤ t ≤ 1, x ∈ R,

where p ∈ Z+\ {1}, |ε| ≪ 1, G−(x, t) =
∑+∞

i=1 ε
i(A−

i (t)x
p + B−

i (t)x
2p−1), G+(x, t) =∑+∞

i=1 ε
i(A+

i (t)x
p + B+

i (t)x
2p−1), A±

i (t) =
∑n

j=0 a
±
ijt

j, B±
i (t) =

∑m
j=0 b

±
ijt

j, i = 1, 2, 3, · · · .
Notice that (1.3) is non-smooth at time t = 0. Let xε(t; ρ) be the solution of (1.3) deter-
mined by xε(0; ρ) = ρ. When t > 0, the flow xε(t; ρ) starts from point B(0, ρ) and goes to
C(1, xε(1; ρ)), and when t < 0, it starts from B and goes backwards to A(−1, xε(−1; ρ)).
Hence, xε(t; ρ) defines a map A → B → C, see Figure 2.

Similar to (1.1), we call that xε(t; ρ) is periodic if xε(−1; ρ) = xε(1; ρ). The isolated
periodic solution of equation (1.3) is defined as its limit cycle. Further more, if a limit cycle
is not equal to zero, then it is defined as a nontrivial limit cycle. The origin is called a center
if there is a periodic annulus around it.
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When ε = 0, we get x0(t; ρ) by direct calculation

x0(t; ρ) =



(
1

−t+ 1
ρp−1

) 1
p−1

, −1 ≤ t ≤ 0, ρ ̸= 0,(
1

t+ 1
ρp−1

) 1
p−1

, 0 ≤ t ≤ 1, ρ ̸= 0,

0, ρ = 0.

(1.3)

(a) Graph of x0(t; 4) when p = 3. (b) Graph of x0(t; 2) when p = 8.

Figure 1: Graphs of x0(t; ρ) with different ρ and p.

Figure 2: Illustration of flow xε(t; ρ) (A → B → C).

If p is odd (resp. even), there exists an interval ρ ∈ (−∞,+∞) (resp. ρ ∈ (−1,+∞))
such that x0(−1; ρ) = x0(1; ρ). In other words, the unperturbed equation of (1.3) has a
periodic annulus U1 when p is odd, and U2 when even, where

U1 = [−1, 1]× (−∞,+∞),
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U2 = [−1, 1]× (−1,+∞).

Obviously, the origin is a center whether p is odd or even.
When ε ̸= 0, let

∆(t; ρ) = xε(1; ρ)− xε(−1; ρ).

Obviously, the solution xε(t; ρ) is a limit cycle if and only if ∆(t; ρ) = 0. Expand xε(t; ρ) at
ε = 0:

xε(t; ρ) =
+∞∑
i=0

1

i!

∂ixε

∂εi

∣∣∣∣
ε=0

εi =
+∞∑
i=0

Si(t; ρ)ε
i,

where 1
i!
∂ixε

∂εi

∣∣
ε=0

≜ Si(t; ρ). Define

Mi(ρ) = Si(1; ρ)− Si(−1; ρ),

where i = 1, 2, 3, · · · . Then,

∆(t; ρ) = xε(1; ρ)− ε(−1; ρ)

= x0(1; ρ)− x0(−1; ρ) +
+∞∑
i=1

[Si(1; ρ)− Si(−1; ρ)] εi

=
+∞∑
i=1

Mi(ρ)ε
i.

We call Mi(ρ) the i-th order Melnikov function of equation (1.3).
It is worth noticing that, based on Theorem 3.3 in [11], when M1(ρ) ̸≡ 0, the number of

limit cycles of (1.3) is determined by the number of zeros of M1(ρ).
By studying the first order Melnikov function and using the properties of Chebyshev

systems, we get the main result:

Theorem 1.1. For equation (1.3), if M1(ρ) ̸≡ 0, then the maximum number of nontrivial
limit cycles bifurcated from U1 is 2(m+ 1) if p is odd, and bifurcated from U2 is m+ 1 if p
is even. The upper bound in both cases can be reached separately.

The paper is organized as follows: some preliminaries are presented in Section 2, and the
main result is proved in Section 3.

2. Preliminaries

In this section, firstly, we show the definition of ECT-system and also one of its properties,
more details see [16, 7, 19]. Secondly, two ECT-systems are proved.

Definition 2.1. Let Φ0,Φ1, · · · ,Φn be analytic functions on an open interval I of R. The
order set (Φ0,Φ1, · · · ,Φn) is an extended complete Chebyshev system (ECT-system)
on I, if for all k = 0, 1, · · · , n, any non-trivial linear combination

λ0Φ0 + λ1Φ1 + · · ·+ λkΦk

has at most k isolated zeros on I counted with multiplicities and such upper bound is sharp.
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From the Proposition in [19], we can get the following Lemma easily:

Lemma 2.1. The order set of functions (1,Φ1,Φ2, · · · ,Φn) is an ECT-system on an interval
I, if and only if (Φ′

1,Φ
′
2, · · · ,Φ

′
n) is an ECT-system on I.

We obtain the next Lemma based on the main result in [7]:

Lemma 2.2. The family of analytic functions

Ik(y) :=

∫ 1

0

tk

(1− yt)2
dt,

for k = 0, 1, 2, · · · , n, is an ECT-system both on (−∞, 1) and (−∞, 0) respectively.

Theorem 2.3. Let

ϕ0(y) = 1, ϕ1(y) = y

∫ 1

0

1

1− yt
dt, ϕ2(y) = y

∫ 1

0

t

1− yt
dt, · · · , ϕm+1(y) = y

∫ 1

0

tm

1− yt
dt,

then (ϕ0(y), ϕ1(y), · · · , ϕm+1(y)) is an ECT-system both on (−∞, 1) and (−∞, 0) respec-
tively.

Proof. By direct calculation, we get that

dϕk+1(y)

dy
=

∫ 1

0

tk

1− yt
dt+ y

∫ 1

0

tk+1

(1− yt)2
dt = Ik(y),

where k = 0, 1, 2, · · · ,m. Based on Lemma 2.1 and 2.2, the Theorem holds.

3. Proof of Theorem 1.1

When −1 ≤ t ≤ 0,

∂tS1(t; ρ) = ∂t∂εxε(t; ρ) |ε=0= ∂ε∂txε(t; ρ) |ε=0

=∂ε

(
xp
ε(t; ρ)

p− 1
+

+∞∑
i=0

εi
[
A−

i (t)x
p
ε(t; ρ) +B−

i (t)x
2p−1
ε (t; ρ)

])
ε=0

=
p

p− 1
xp−1
0 (t; ρ)S1(t; ρ) + A−

1 (t)x
p
0(t; ρ) +B−

1 (t)x
2p−1
0 (t; ρ).

Also because

∂t

(
S1(t; ρ)

xp
0(t; ρ)

)
=

∂tS1(t; ρ)

xp
0(t; ρ)

− p

p− 1

S1(t; ρ)

x0(t; ρ)
,

we get

∂t

(
S1(t; ρ)

xp
0(t; ρ)

)
= A−

1 (t) +B−
1 (t)x

p−1
0 (t; ρ).
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Furthermore,

S1(−1; ρ) = xp
0(−1; ρ)

∫ −1

0

(
A−

1 (t) +B−
1 (t)x

p−1
0 (t; ρ)

)
dt.

When 0 ≤ t ≤ 1, we get S1(1; ρ) similarly:

S1(1; ρ) = xp
0(1; ρ)

∫ 1

0

(
A+

1 (t) +B+
1 (t)x

p−1
0 (t; ρ)

)
dt.

Let y = −ρp−1, a+1i + (−1)ia−1i = ai, b+1j + (−1)jb−1j = bj, i = 0, 1, · · · , n, j = 0, 1, · · · ,m,
then,

M1(ρ) = S1(1; ρ)− S1(−1; ρ)

= xp
0(1; ρ)

∫ 1

0

[[
A+

1 (t) + A−
1 (−t)

]
+
[
B+

1 (t) +B−
1 (−t)

] 1

t− 1
y

]
dt

= xp
0(1; ρ)

[
n+1∑
i=0

ai
i+ 1

− y

∫ 1

0

(b0 + b1t+ b2t+ · · ·+ bmt
m)

1

1− yt
dt

]

= xp
0(1; ρ)

[
n+1∑
i=0

ai
i+ 1

− b0ϕ1(y)− b1ϕ2(y)− · · · − bmϕm+1(y)

]
,

Based on Theorem 2.3, (ϕ0(y), ϕ1(y), · · · , ϕm+1(y)) is an ECT-system both on (−∞, 1) and
(−∞, 0) respectively. Furthermore, obviously,

∑n+1
i=0

ai
i+1

, −b0, −b1, · · · , −bm are indepen-
dent. So, the number of zeros of M1(y) is at most m+ 1 both on (−∞, 1) and (−∞, 0).

If p is odd, then y = −ρp−1 < 0, the number of zeros of M1(ρ) is at most 2(m + 1) on
(−∞,+∞), which can be reached. If p is even, then y = −ρp−1 ∈ (−∞, 1), the number of
zeros of M1(ρ) is at most m+ 1 on (−1,+∞), which can be reached, too.

According to Theorem 3.3 in [11], we get that Theorem 1.1 holds.
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