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solutions was obtained using Banach fixed point theorem and operator semigroup
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1 Introduction

As a significant and autonomous field within modern engineering research, the study
of elastic beams finds extensive applications across various disciplines including mechanics,
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material sciences, physics, and geology. Moreover, in specific contexts, these beams play an
almost irreplaceable role. Consequently, the investigation of beam vibration equations has
increasingly garnered substantial attention and keen interest among scholars across these
fields.

In 1744, Leonhard Euler conducted a study on the lateral vibrations of beams and pre-
sented the vibration functions and frequency equations under In 1751, while addressing a
similar issue, Daniel Bernoulli formulated the vibration equation for beams, which became
known as the Euler-Bernoulli beam equation

ρ(x)
∂2y(x, t)

∂t2
+

∂2

∂x2

(
EI(x)

∂2y(x, t)

∂x2

)
= 0, 0 < x < 1, t > 0.

The equation at hand represents the fundamental vibration equation for beams, where ρ(x)

denotes the mass density of the beam, E stands for the modulus of elasticity, and I(x) repre-
sents the moment of inertia of the beam’s cross-section. Over the ensuing decades, numerous
scholars have conducted extensive research on the vibration equations of elastic beams. With
the advancement of science and technology, coupled with the rapid development of aerospace
engineering, the vibration equations of spacecraft beams, modeled mathematically through
structural damping, have gradually come into focus. Beginning in 1981, Chen and Russel [16]
were the first to introduce the damped elastic systems ü(t) + ρBu̇(t) +Au(t) = 0,

u(0) = u0, u̇(0) = u1,

where A : D(A) ⊂ E → E, B : D(B) ⊂ E → E are densely defined closed linear operators
on Banach space E, ρ > 0 is a constant.

This issue has garnered significant attention and interest among scholars, becoming one
of the quintessential research subjects in the field of evolution equations. Last several years,
numerous scholars have employed nonlinear analysis methods and techniques, for example
operator semigroup theory, fixed point theorems, and monotone iterative methods, to conduct
thorough research on certain nonlinear structural damping elastic beam systems. These
investigations have yielded meaningful results, as detailed in [16, 18, 25–30, 34, 39, 40, 43, 44,
53,54,58,84,85] and their references.

In 1960, Kalman [36] introduced the concept of controllability for the first time. This
notion is fundamental in the study and design of control systems, where many dynamic
systems are engineered to allow control to affect only certain parts of the system state.
However, in practical industrial operations, it is often the case that only a small subset of the
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dynamic system’s full state is observable. Consequently, assessing the feasibility of controlling
the entire state of a dynamic system is of critical importance. This has led to the emergence
of the concepts of exact and approximate controllability.

Controllability is one of the fundamental concepts in mathematical control theory, which
is extensively applied across numerous fields of science and technology. In finite-dimensional
spaces, the controllability of linear and nonlinear systems, represented by ordinary differential
equations, has been extensively studied by various authors. In Banach spaces, the concept of
infinite-dimensional systems has been somewhat broadened, irrespective of whether common
impulsive effects are included. For a thorough investigation of this matter, readers are referred
to the pertinent literature [1–8,10–15,19–24,35,47–52,55–57,59,63,64,67,68,74–83,87,89].

It is widely believed that achieving precise controllability of abstract semilinear control
systems in infinite dimensional space is challenging, because it requires the controllability
operator to be surjective. Therefore, it is necessary to explore a weaker concept of control-
lability, namely approximate controllability. Mathematical control theory forms a part of
application oriented mathematics that deals with the basic principles underlying the analysis
and design of control systems. Roughly speaking, there have been two main lines of work in
control theory, which sometimes seemed to proceed in very different directions, but which
are, in fact, complementary. One of these is based on the idea that a good model of the object
to be controlled is available and that one wants to somehow optimize its behavior. The other
main line of work is based on the constraints imposed by uncertainty about the model or
about the environment in which the object operates. In 1983, Zhou [88] established suffi-
cient conditions for approximate controllability of semi linear abstract equations, applicable
to infinite and finite dimensions. Subsequently, Mahmudov [60, 62] studied the approximate
controllability of abstract semilinear deterministic and stochastic control systems under the
natural assumption of approximate controllability of related linear control systems. In 2008,
Mahmudov [60, 62] studied the approximate controllability of abstract evolution equations
in Hilbert space. Recently, the author discussed the existence and exact controllability of
semilinear measure driven equations in [14,15,17].

Currently, there are two methods to explore approximate controllability issues. On the
one hand, multiple authors have constructed controls through conjugation problems and
achieved controllable results, as detailed in [31–33,46] and their references. Currently, in [45],
the author has constructed control through conjugation problems and obtained controllability
results for Volterra-Fredholm type systems in Banach spaces.

On the other hand, some researchers have used sequence methods to verify the approx-
imate controllability of semilinear differential systems. Zhou [88] established the sufficient
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conditions for existence and approximate controllability of solutions to semilinear abstract
equations without time delay using sequence method. Recently, Shukla et al. [71] combined
the strong cosine family with the sine family to study the approximate controllability of semi-
linear systems with state delays, using the sequence method. After that, the authors of [69]
used the same approach to investigate the approximate controllability of differential equation
involving neutral function and delay. The authors of [65] investigated the approximate con-
trollability of nonlinear differential systems of second order involving stochastic differential
systems and of McKean-Vlasov type by using the sequence approach. In application, the
authors of [90] studied the collision dynamics of three-solitons in an optical communication
system with third-order dispersion and nonlinearity. In [71], the authors derived necessary re-
quirements for the approximate controllability of semilinear delay differential systems. They
explored the approximate controllability results for the given system using the sequential
method. For more details, see the articles [37,41,42,46,71,88] and references therein.

However, to the best of our knowledge, there is no result on approximate controllability of
damped elastic beam systems, using techniques as in [37,46,71,88]. Inspired by the ideas and
methods of the above approaches, this paper aims to exploring the existence and approximate
controllability of mild solutions for damped elastic beam systems ü(t) + ρAu̇(t) +A2u(t) = F (t, u(t), (Gu)(t), (Hu)(t)) +Bv(t), t ∈ [0, a],

u(0) = u0, u̇(0) = u1,
(1.1)

where u′′ and u′ are the first and second order partial derivatives of u with respect to t,
ρ ≥ 2 is the damping coefficient, J = [0, a], a > 0, A : D(A) ⊂ E → E and B : D(B) ⊂
E → E are densely defined closed (possibly unbounded) linear operators on a Banach space
E. The control function v takes its values in the space L2(J, U) where U is a Banach space.
Additionally, B is a linear bounded operator from U to E. The functions F : J×E×E×E →
E, f : J × J ×E → E and g : J × J ×E → E are nonlinear. Also, the functions F, f , and g

are Carathéodory continuous. The operator G and H are specified by

(Gu)(t) =

∫ t

0
f(t, s, u(s))ds,

(Hu)(t) =

∫ a

0
g(t, s, u(s))ds.

The intention of the current manuscript is to explore the approximate controllability of
damped elastic beam systems involving Volterra-Fredholm type integro-differential systems.
Meanwhile, the existence and uniqueness of mild solutions of the given system is verified by
employing the Banach fixed point theorem combined with semigroup operators. No one has
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used the sequence method to study the approximate controllability of the damped elastic
beam systems involving Volterra-Fredholm type integro-differential system, so we have used
the sequence method here.

The primary contributions of this paper are as follows:

1. This article explores the approximate controllability of damped elastic beam systems,
without the assumption of corresponding linear systems being approximately control-
lability. Furthermore, by integrating the Banach fixed point theorem with semigroup
operators, it verifies the existence and uniqueness of mild solutions for the system.

2. The merit of the approximate sequence method lies in its flexibility. It does not require
the corresponding linear control system to be approximately controllable, nor does it
require defining a Gammer control function to transform the control problem into a
fixed-point problem for the operator.

3. Due to the previous research on the approximate controllability of Volterra-Fredholm
type damping elastic beam systems without using sequential methods, we adopt this
method in our current study, which differs from the results in [13].

The structure of this paper is as follows: The second section presents preliminary details;
the third section utilizes the Banach fixed point theorem to elucidate the existence and
uniqueness of mild solutions for system (1.1). The fourth section demonstrates our results on
the approximate controllability of system (1.1) through a sequence method. The final section
illustrates the application of the obtained results through practical examples. The conclusion
section provides a summary of this paper.

2 Preliminaries

Let E and U be two real Banach spaces, with norms ∥ · ∥ and ∥ · ∥U respectively. Denote
by C(J,E) the Banach space of all continuous functions from the interval J to E with norm

∥u∥C = sup
t∈J

∥u(t)∥, u ∈ C(J,E),

Furthermore, let L2(J, U) be the Banach space of all U -valued Bochner square integrable
functions defined on J with norm

∥u∥L2(J,U) =
(∫ a

0
∥u(t)∥2Udt

) 1
2
, u ∈ L2(J, U).

Throughout the article, we assume that the following conditions:
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(A1) Suppose that A : D(A) ⊂ E → E is a closed linear operator and −A generates a C0

semigroup T (t)(t ≥ 0) in E.

In accordance with Definition 3 and Lemma 2.2 from [25, 30, 53], we delineate the mild
solution to problem (1.1) as follows.

Definition 2.1. Function u ∈ C(J,E) is referred to as a mild solution to problem (1.1) if
u(·) satisfies

u(t) = T2(t)u0 +
∫ t

0
T2(t− s)T1(s)u1ds+

∫ t

0

∫ s

0
T2(t− s)T1(s− τ)

× [F (τ, u(τ), (Gu)(τ), (Hu)(τ)) + (Bv)(τ)]dτds, t ∈ J, (2.1)

where C0-semigroups Ti(t)(t ≥ 0)(i = 1, 2) satisfy

Ti(t) = T (σit)(i = 1, 2), t ≥ 0, (2.2)

σ1 + σ2 = ρ, σ1σ2 = 1, 0 < σ1 ≤ σ2, ρ ≥ 2. (2.3)

In view of lemma 2.7 in [86], if T (t)(t ≥ 0) is a C0-semigroup, then Ti(t)(t ≥ 0)(i = 1, 2)

are also C0-semigroup for t > 0, such that

∥ Ti(t) ∥L(E)≤ Meσit(i = 1, 2). (2.4)

From (2.4), we know that
Mi = sup

t∈R+

∥Ti(t)∥L(E) (2.5)

is a finite number.

3 Mild solutions

In this section, we employ the Banach fixed point theorem to demonstrate the existence
and uniqueness of mild solutions for system (1.1). Throughout the paper, we impose the
following hypotheses:

(A2) Function F : J ×E ×E ×E → E be continuous, ∃ P1 > 0, for ∀ vi, yi, zi ∈ E, i = 1, 2,
t ∈ J such that

∥F (t, v1, y1, z1)− F (t, v2, y2, z2)∥ ≤ P1

(
∥v1 − v2∥+ ∥y1 − y2∥+ ∥z1 − z2∥

)
.

Moreover, ∃ P2 > 0 such that

sup
t∈J

∥F (t, 0, 0, 0)∥ ≤ P2.
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(A3) The function f satisfies the condition that ∃ L,Lf > 0, ∀u, v ∈ E, t ∈ J such that

∥f(t, s, u)− f(t, s, v)∥ ≤ L∥u− v∥,

sup
t,s∈J

∥f(t, s, 0)∥ ≤ Lf .

(A4) The function g satisfies the condition that ∃ N,Ng > 0, ∀u, v ∈ E, t ∈ J such that

∥g(t, s, u)− g(t, s, v)∥ ≤ N∥u− v∥,

sup
t,s∈J

∥g(t, s, 0)∥ ≤ Ng.

Theorem 3.1. Assuming that conditions (A1)-(A4) are satisfied, then the system (1.1)
possesses a unique mild solution on J provided that M1M2P1a

2(1 + La+Na) < 1.

Proof. Define the operator Q : C(J,E) → C(J,E), which is given

(Qu)(t) = T2(t)u0 +
∫ t

0
T2(t− s)T1(s)u1ds+

∫ t

0

∫ s

0
T2(t− s)T1(s− τ)

× [F (τ, u(τ), (Gu)(τ), (Hu)(τ)) + (Bv)(τ)]dτds, t ∈ J. (3.1)

Through direct calculation, we know that Q is clearly defined on C(J,E). According
to Definition 2.1, it can be easily seen that the mild solution of the system (1.1) on J is
equivalent to the fixed point of the operator Q defined by (3.1). Next, we will use the Banach
fixed point theorem to prove that the operator Q has a fixed point.

Let BR = {u ∈ C(J,E) : ∥u∥ ≤ R, t ∈ J}, where R is a positive constant.
Step 1. we prove that QBR ⊆ BR. To prove this, then, for each u ∈ BR, according to
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(A3)-(A5), it can be concluded that

∥(Qu)(t)∥ ≤ ∥T2(t)u0∥+
∫ t

0
∥T2(t− s)T1(s)u1∥ds

+

∫ t

0

∫ s

0
∥T2(t− s)T1(s− τ)∥ · ∥[Bv(τ) + F (τ, u(τ)), (Gu)(τ), (Hu)(τ)]∥dτds

≤ M2∥u0∥+ aM1M2∥u1∥+M1M2

∫ t

0

∫ s

0
∥(Bv)(s)∥dτds

+M1M2

∫ t

0

∫ s

0
{∥F (τ, u(τ), (Gu)(τ), (Hu)(τ))− F (τ, 0, 0, 0)∥

+ ∥F (τ, 0, 0, 0)∥}dτds

≤ M2∥u0∥+ aM1M2∥u1∥+M1M2

√
a3∥Bv∥L2(J,E) +M1M2P2a

2

+M1M2P1

∫ t

0

∫ s

0

{
∥u(τ)∥+

∫ τ

0
∥f(τ, η, u(η))∥dη +

∫ a

0
∥g(τ, η, u(η))∥dη

}
dτds

≤ M2∥u0∥+ aM1M2∥u1∥+M1M2

√
a3∥Bv∥L2(J,E) +M1M2P2a

2

+M1M2P1

∫ t

0

∫ s

0

{
∥u(τ)∥+

∫ τ

0
(∥f(τ, η, u(η))− f(τ, η, 0)∥+ ∥f(τ, η, 0)∥)dη

+

∫ a

0
(∥g(τ, η, u(η))− g(τ, η, 0)∥+ ∥g(τ, η, 0)∥)dη

}
dτds

≤ M2∥u0∥+ aM1M2∥u1∥+M1M2

√
a3∥Bv∥L2(J,E) +M1M2P2a

2

+M1M2P1

∫ t

0

∫ s

0

{
∥u(τ)∥+ La∥u(η)∥+ Lfa+Na∥u(η)∥+Nga

}
dτds

≤ M2∥u0∥+ aM1M2∥u1∥+M1M2

√
a3∥Bv∥L2(J,E) +M1M2P2a

2

+M1M2P1a
3(Lf +Ng) +M1M2P1a

2(1 + La+Na)R ≤ R,

if we choose

R ≥ [M2∥u0∥+ aM1M2∥u1∥+M1M2

√
a3∥Bv∥L2(J,E) +M1M2P2a

2

+M1M2P1a
3(Lf +Ng)]× [1−M1M2P1a

2(1 + La+Na)]−1,

then it means that QBR ⊆ BR.
Step 2. We show that Q : BR → BR is a contraction. In fact, u1, u2 ∈ BR, ∀t ∈ J , we
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obtain

∥(Qu1)(t)− (Qu2)(t)∥ ≤
∫ t

0

∫ s

0
∥T2(t− s)T1(s− τ)∥

× ∥F (τ, u1(τ), (Gu1)(τ), (Hu1)(τ))

− F (τ, u2(τ), (Gu2)(τ), (Hu2)(τ))∥dτds

≤ M1M2

∫ t

0

∫ s

0
∥F (τ, u1(τ), (Gu1)(τ), (Hu1)(τ))

− F (τ, u2(τ), (Gu2)(τ), (Hu2)(τ))∥dτds

≤ M1M2P1

∫ t

0

∫ s

0

{
∥u1(s)− u2(s)∥

+ ∥
∫ τ

0
[f(s, η, u1(η))− f(τ, η, u(τ))]dη∥

+ ∥
∫ a

0
[g(τ, η, u1(η))− g(τ, η, u2(η))]dη∥

}
dτds

≤ M1M2P1(1 + La+Na)

∫ t

0

∫ s

0
∥u1 − u2∥dτds

≤ M1M2P1(1 + La+Na)a2

2
∥u1 − u2∥. (3.2)

In view of (3.1), (3.2), and induction on n, we have

∥(Qnu1)(t)− (Qnu2)(t)∥ ≤

[
M1M2P1(1 + La+Na)a2

]n
(2n)!

∥u1 − u2∥.

Hence

∥Qnu1 −Qnu2∥ ≤

[
M1M2P1(1 + La+Na)a2

]n
(2n)!

∥u1 − u2∥.

Since [
M1M2P1(1 + La+Na)a2

]n
(2n)!

−→ 0, as n −→ ∞.

Therefore, for n large enough

[
M1M2P1(1+La+Na)a2

]n

(2n)! < 1, according to the Banach fixed
point theorem, the operator Q has a unique fixed point u ∈ BR, which is the mild solution
of the system (1.1) in J . 2

4 Approximate controllability

For any u ∈ C(J,E), the last stages of u is mentioned as ξa = u(a) at time a.
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We define a continuous linear bounded operator L from L2(J,E) into E as

Lp =

∫ a

0

∫ s

0
T2(a− s)T1(s− τ)p(τ)dτds

for p(·) ∈ L2(J,E).

Definition 4.1. Let u(t;F, v) be a mild solution of the system (1.1) related to F and v ∈
L2(J, U). Then the set

La(F ) = {(u(a); v) : v ∈ L2(J, U)} ⊂ E.

Definition 4.2. If La(F ) is dense in E, then system (1.1) is considered approximately
controllable on interval J , meaning La(F ) = E. That is, for ∀ ϵ > 0, ξa ∈ D(A), ∃ v ∈
L2(J, U), we have∥∥∥ξa − T2(a)u0 −

∫ a

0
T2(a− s)T1(s)u1ds− LF (·, uϵ(·), (Guϵ)(·), (Huϵ)(·))− LBvϵ

∥∥∥ < ϵ.

To this purpose, we need the following hypothesis:

(A5) For each p(·) ∈ L2(J,E), ∃ q ∈ R(B) with Lp = Lq. For ∀ ϵ > 0, p(·) ∈ L2(J,E),
∃ v(·) ∈ L2(J, U) such that

∥Lp− LBv∥ < ϵ.

(A6) ∥Bv(·)∥L2(J,E) ≤ λ∥p(·)∥L2(J,E), λ is a positive constant independent of p(·).

Lemma 4.1. If the hypothesis (A1)-(A4) hold, then the (φv)(·) with

∥(φv)(t)∥ ≤ KeM1M2P1a2(1+La+Na),

and K = M2[∥u0∥+ aM1∥u1∥+M1

√
a3∥Bv∥L2(J,E) +M1P1a(Lfa+Nga) +M1P2a

2].
Let v1(·) and v1(·) be in L2(J, U), then we have

∥u1 − u2∥L2(J,E) ≤ M1M2a
2eM1M2P1a2(1+La+Na)∥Bu1 −Bu2∥L2(J,E),

where un(t) = (φvn)(t), n = 1, 2.

Proof. The solution mapping (φv)(t) = u(t) is described as

u(t) = T2(t)u0 +
∫ t

0
T2(t− s)T1(s)u1ds

+

∫ t

0

∫ s

0
T2(t− s)T1(s− τ)[F (τ, u(τ), (Gu)(τ), (Hu)(τ)) +Bv(τ)]dτds.
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For t ∈ J , we have

∥u(t)∥ ≤ ∥T2(t)u0∥+
∫ t

0
∥T2(t− s)T1(s)u1∥ds

+

∫ t

0

∫ s

0
∥T2(t− s)T1(s− τ)[Bv(τ) + F (τ, u(τ), (Gu)(τ), (Hu)(τ))]∥dτds

≤ M2∥u0∥+ aM1M2∥u1∥+
∫ t

0

∫ s

0
∥T2(t− s)T1(s− τ)∥ ·

∥∥∥Bv(t)
∥∥∥dτds

+

∫ t

0

∫ s

0
∥T2(t− s)T1(s− τ)∥ ·

∥∥∥F (τ, u(τ), (Gu)(τ), (Hu)(τ))

− F (τ, 0, 0, 0) + F (τ, 0, 0, 0)
∥∥∥dτds

≤ M2∥u0∥+ aM1M2∥u1∥+M1M2

√
a3∥Bv∥L2(J,E) +M1M2P2a

2

+M1M2P1

∫ t

0

∫ s

0

{
∥u(τ)∥+

∫ τ

0
∥f(τ, η, u(η))∥dη +

∫ a

0
∥g(τ, η, u(η))∥dη

}
dτds

≤ M2∥u0∥+ aM1M2∥u1∥+M1M2

√
a3∥Bv∥L2(J,E) +M1M2P2a

2

+M1M2P1

∫ t

0

∫ s

0

{
∥u(τ)∥+

∫ τ

0
(∥f(τ, η, u(η))− f(τ, η, 0)∥+ ∥f(τ, η, 0)∥)dη

+

∫ a

0
(∥g(τ, η, u(η))− g(τ, η, 0)∥+ ∥g(τ, η, 0)∥)dη

}
dτds

≤ M2∥u0∥+ aM1M2∥u1∥+M1M2

√
a3∥Bv∥L2(J,E) +M1M2P2a

2

+M1M2P1

∫ t

0

∫ s

0

{
∥u(τ)∥+ La∥u(η)∥+ Lfa+Na∥u(η)∥+Nga

}
dτds

≤ M2∥u0∥+ aM1M2∥u1∥+M1M2

√
a3∥Bv∥L2(J,E) +M1M2P2a

2

+M1M2P1a

∫ t

0

{
∥u(τ)∥+ La∥u(η)∥+ Lfa+Na∥u(η)∥+Nga

}
ds

≤ K +M1M2P1a(1 + La+Na)

∫ t

0
∥u(s)∥ds,

and K = M2[∥u0∥+ aM1∥u1∥+M1P1a
2(Lfa+Nga) +M1P2a

2 +M1

√
a3∥Bv∥L2(J,E)].

In view of Grömwall’s inequality, we get

∥(φv)(t)∥ = ∥u(t)∥ ≤ KeM1M2P1a2(1+La+Na).
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Taking u1(·), u2(·) ∈ E and v1(·), v2(·) ∈ L2(J, U), then

∥u1(t)− u2(t)∥ ≤
∫ t

0

∫ s

0
∥T2(t− s)T1(s− τ)∥ · ∥F (s, u1(s), (Gu1)(s), (Hu1)(s))

− F (s, u2(s), (Gu2)(s), (Hu2)(s))∥dτds

+

∫ t

0

∫ s

0
∥T2(t− s)T1(s− τ)∥ · ∥Bv1(s)−Bv2(s)∥ds

≤ M1M2P1

∫ t

0

∫ s

0

{
∥u1(s)− u2(s)∥

+ ∥
∫ τ

0
[f(τ, η, u1(η))− f(τ, η, u2(η))]dη∥

+ ∥
∫ a

0
[g(τ, η, u1(η))− g(τ, η, u2(η))]dη]∥

}
dηds

+M1M2

√
a3∥Bv1(s)−Bv2(s)∥L2(J,E)

≤ M1M2

√
a3∥Bv1(s)−Bv2(s)∥L2(J,E)

+M1M2P1a(1 + La+Na)

∫ t

0
∥u1(s)− u2(s)∥ds.

In view of Grönwall’s inequality, we get

∥u1(t)− u2(t)∥ ≤ M1M2

√
a3eM1M2P1a2(1+La+Na)∥Bv1 −Bv2∥L2(J,E).

Hence, we get

∥u1 − u2∥L2(J,E) =
(∫ a

0
∥u1(s)− u2(s)∥2ds

) 1
2

≤ M1M2a
2eM1M2P1a2(1+La+Na)∥Bv1 −Bv2∥L2(J,E).

The following assumptions are needed to prove our results:

(A7) The constant λ satisfies P1(1 + La+Na)M1M2λe
M1M2P1a2(1+La+Na)a2 < 1.

We aim to construct an approximation sequence to find an alternative equivalent condition
that postulates the linear system’s approximate controllability, focusing on the study of the
approximate controllability of mild solutions for damped elastic beam system (1.1).

Theorem 4.1. If the conditions (A1)-(A7) hold. Then the system (1.1) is approximately
controllable on J .

Proof. Step 1. We are verify to prove D(A) ⊂ Ka(F ). Since the field D(A) is dense in E.
To achieve this, we must prove that for ∀ ϵ > 0, ξa ∈ D(A), ∃ vϵ(·) ∈ L2(J, U), and∥∥∥ξa − T2(a)u0 −

∫ a

0
T2(a− s)T1(s)u1ds− LF (·, uϵ(·), (Guϵ)(·), (Huϵ)(·))− LBvϵ

∥∥∥ < ϵ.

12



where uϵ(t) = (φvϵ)(t) with

uϵ(t) = T2(a)u0 +
∫ a

0
T2(a− s)T1(s)u1ds+

∫ t

0

∫ s

0
T2(t− s)T1(s− τ)

× [Bvϵ(τ) + F (τ, uϵ(τ)), (Guϵ)(τ), (Huϵ)(τ)]dτds.

As ξa ∈ D(A), then ∃ p ∈ C1(J,E)) with

Lp = ξa − T2(a)u0 −
∫ a

0
T2(a− s)T1(s)u1ds.

Step 2.We establish a sequence recursively as follows:
For ∀ϵ > 0, v1(·) ∈ L2(J, U). By (A5), ∃ v2(·) ∈ L2(J, U), we have

∥L(p− F (·, u1(·; v1), (Gu1)(·; v1), (Hu1)(·; v1)))− LBv2∥ <
ϵ

22
.

Hence,

∥∥∥ξa − T2(a)u0 −
∫ a

0
T2(a− s)T1(s)u1ds

− LF (·, u1(·; v1), (Gu1)(·; v1), (Hu1)(·; v1)))− LBv2

∥∥∥ <
ϵ

22
, (4.1)

where u1(t) = (φv1(t)), t ∈ J. For v2(·) ∈ L2(J, U) thus obtained, we determine w2(·) ∈
L2(J, U) by hypotheses (A4) and (A5), we get

∥L(F (·, u2(·; v2), (Gu2)(·; v2), (Hu2)(·; v2)))

− F (·, u1(·; v1), (Gu1)(·; v1), (Hu1)(·; v1)))− LBw2∥ <
ϵ

23
, (4.2)

and the assumption (A6), we have

∥Bw2∥L2(J,E) ≤ λ∥F (·, u2(·), (Gu2)(·), (Hu2)(·))− F (·, u1(·), (Gu1)(·), (Hu1)(·))∥L2(J,E)

≤ λ
(∫ t

0
∥F (s, u2(s), (Gu2)(s), (Hu2)(s))− F (s, u1(s), (Gu1)(s), (Hu1)(s))∥2ds

) 1
2

≤ λP1(1 + La+Na)
(∫ t

0
∥u2(s)− u1(s)∥2ds

) 1
2

≤ λP1(1 + La+Na)∥v1 − v2∥L2(J,E).

Thus, and Lemma 4.1, we have

∥Bw2∥L2(J,E) ≤ λP1(1 + La+Na)M1M2a
2eM1M2P1a2(1+La+Na)∥Bu1 −Bu2∥L2(J,E),
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and un(t) = (φvn)(t), n = 1, 2. Now, we define v3 = v2 − w2, v3 ∈ L2(J, U), and which has
the following properties:

∥ξa − T2(a)u0 −
∫ a

0
T2(a− s)T1(s)u1ds− LF (·, u2(·; v2), (Gu2)(·; v2), (Hu2)(·; v2))− LBv3∥

≤ ∥ξa − T2(a)u0 −
∫ a

0
T2(a− s)T1(s)u1ds− LF (·, u1(·; v1), (Gu1)(·; v1), (Hu1)(·; v1))

− LBv2 + LBw2 − L[F (·, u2(·; v2), (Gu2)(·; v2), (Hu2)(·; v2))

− F (·, u1(·; v1), (Gu1)(·; v1), (Hu1)(·; v1))]∥

≤ ∥ξa − T2(a)u0 −
∫ a

0
T2(a− s)T1(s)u1ds− LF (·, u1(·; v1), (Gu1)(·; v1), (Hu1)(·; v1))

− LBv2∥+ ∥LBw2 − L[F (·, u2(·; v2), (Gu2)(·; v2), (Hu2)(·; v2))

− F (·, u1(·; v1), (Gu1)(·; v1), (Hu1)(·; v1))]∥.

Combining (4.1) with (4.2), we get that∥∥∥ξa − T2(a)u0 −
∫ a

0
T2(a− s)T1(s)u1ds− LF (·, u2(·; v2), (Gu2)(·; v2), (Hu2)(·; v2))− LBv3

∥∥∥
<

( 1

22
+

1

23

)
ϵ.

The mathematical induction method means that ∃ vn(·) ∈ L2(J, U), we obtain∥∥∥ξa − T2(a)u0 −
∫ a

0
T2(a− s)T1(s)u1ds

− LF (·, un(·; vn), (Gun)(·; vn), (Hun)(·; vn))− LBvn+1

∥∥∥
<

( 1

22
+ · · ·+ 1

2n+1

)
ϵ, (4.3)

and un(t) = (φvn)(t), n = 1, 2, . . . , t ∈ J , we have

∥Bvn+1 −Bvn∥L2(J,E) = λP1(1 + La+Na)M1M2a
2eM1M2P1a2(1+La+Na)∥Bvn −Bvn−1∥L2(J,E).

Obviously, from (A7), the sequence {Bvn : n = 1, 2, . . .} is a Cauchy sequence in Banach
space L2(J,E) and ∃ v∗ ∈ L2(J,E), we have

lim
n→∞

Bvn = v∗ ∈ L2(J,E).

Thus, for ∀ ϵ > 0, ∃ N ∈ N such that

∥LBvN+1 − LBvN∥ <
ϵ

2
, (4.4)
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and hence ∥∥∥ξa − T2(a)u0 −
∫ a

0
T2(a− s)T1(s)u1ds

− LF (·, uN (·; vN ), (GuN )(·; vN ), (HuN )(·; vN ))− LBvN

∥∥∥
≤ ∥ξa − T2(a)u0 −

∫ a

0
T2(a− s)T1(s)u1ds

− LF (·, uN (·; vN ), (GuN )(·; vN ), (HuN )(·; vN ))− LBvN+1∥

+ ∥LBvN+1 − LBvN∥,

and uN (t) = (φvN )(t), t ∈ J . By (4.3), (4.4), we get that

∥ξa − T2(a)u0 −
∫ a

0
T2(a− s)T1(s)u1ds

− LF (·, uN (·; vN ), (GuN )(·; vN ), (HuN )(·; vN ))− LBvN∥

<
( 1

22
+ · · ·+ 1

2n+1

)
ϵ+

ϵ

2

≤ ϵ.

As N → ∞, we get ξa ∈ Ka(F ), the system (1.1) is approximately controllable on J . 2

Theorem 4.2. Assuming the range of operator B is dense in L2(J,E). Then, under as-
sumptions (A1)-(A4), the system (1.1) is approximate controllable.

Proof. Since the range of the operator B is dense in L2(J,E), for ∀ p(·) ∈ L2(J,E) and δ > 0,
∃ Bv(·) ∈ R(B), v(·) ∈ L2(J, U), we have

∥Bv(·)− p(·)∥L2(J,E) < δ∥p(·)∥L2(J,E). (4.5)

Now, we have

∥Lp− LBv∥ ≤ M1M2

∫ a

0

∫ s

0
∥p(τ)−Bv(τ)∥dτds

≤ M1M2

√
a3∥p(·)−Bv(·)∥L2(J,E)

≤ M1M2

√
a3δ∥p(·)∥L2(J,E)

< ϵ.

Thus, from Eq. (4.5), we have

∥Bv(·)∥L2(J,E) = ∥Bv(·)− p(·) + p(·)∥L2(J,E)

≤ ∥Bv(·)− p(·)∥L2(J,E) + ∥p(·)∥L2(J,E)

≤ δ∥p(·)∥L2(J,E) + ∥p(·)∥L2(J,E)

≤ (δ + 1)∥p(·)∥L2(J,E).
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This means that if we choose δ > 0 in a way that validates (A7), then conditions (A5)
and (A6) are satisfied. Then, the approximate controllability of system (1.1) is derived from
Theorem 4.1.

Remark 4.1. Currently, the majority of articles assume that the corresponding linear control
systems are approximately controllable. By defining the Gammer control function, the control
problem is transformed into an operator’s fixed point problem, which is then studied using
fixed point theorems to investigate the system’s approximate controllability. In this project,
we eschew these methods. Notably, the approximation sequence method has proven effective
in investigating other issues, particularly those of integer order.

5 Example

Consider the following damped elastic beam system of the form

∂2u(x,t)
∂t2

+ 6∂3u(x,t)
∂x2∂t

+ ∂4u(x,t)
∂x4 = t2 sin(2πt)

4(1+|u(x,t)|) +
1
5e

−t sin
( ∫ t

0 (t− s)u(x, s)ds
)

+1
6e

−t cos
( ∫ 1

0 e−|t−s|u(x, s)ds
)
+ κv(x, t), (x, t) ∈ Ω × [0, 1],

u|∂Ω = 0, ∆u|∂Ω = 0, t ∈ [0, 1],

u(x, 0) = u0,

∂u(x,0)
∂t = u1, x ∈ Ω,

(5.1)

where Ω ⊂ Rn be a bounded domain with the smooth boundary ∂Ω and ∆ is the Laplace
operator.

Let Banach space E = L2(Ω) with L2−norm ∥ · ∥2. The operator A : D(A) ⊂ E → E by

Au = −∂2u

∂x2
, u ∈ D(A) = H2(Ω) ∩H1

0 (Ω).

From [9], we know that −A generates C0-semigroup T (t)(t ≥ 0), which satisfied

∥T (t)∥ ≤ e−δt, δ > 0, t ≥ 0.

Thus, −σ1A and −σ2A generate C0 semigroups T1(t)(≥ 0) and T2(t)(t ≥ 0) respectively,
which satisfy

∥Ti(t)∥ = ∥T (σit)∥ ≤ e−δσit, t ≥ 0, i = 1, 2,

where σ1 = 3 + 2
√
2, σ2 = 3− 2

√
2 defined by (2.3). Then we obtain that

Mi := sup
0≤s≤t≤1

∥Ti(t)∥L(E) = 1,
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then assumption (A1) holds.
For u ∈ L2(Ω), we set u(t) = u(·, t) and

f(t, s, u(s)) = (t− s)u(·, s), g(t, s, u(t, s)) = e−|t−s|u(·, s),

(Gu)(t) =

∫ t

0
(t− s)u(·, s)ds, (Hu)(t) =

∫ 1

0
e−|t−s|u(·, s)ds,

F (t, u(t), (Gu)(t), (Hu)(t)) =
t2 sin(2πt)

4(1 + |u(·, t)|)
+

1

5
e−t sin

(
(Gu)(t)

)
+

1

6
e−t cos

(
(Hu)(t)

)
.

Let B : U := E → E with Bv(t) = κv(·, t), system (5.1) can be transformed into system
(1.1).

Theorem 5.1. The system (5.1) has a mild solution u ∈ C(Ω × J,E).

Proof. In view of the nonlinear term F , we know that F (t, u, v, w) is continuous about the
variables u, v, w with constant P1 = max{1

4 ,
1
5 ,

1
6} = 1

4 . And we get that assumption (A2)
is satisfied with positive constant P2 = 1

4 . From the fact L = Lf = N = Ng = 1, one can
easily to verify that (A3)-(A4) holds. Thus, all the assumptions of Theorem 3.1 are satisfied.
Therefore, by Theorem 3.1, the conclusion holds. 2

Theorem 5.2. If the following conditions

(H5) For each p(·) ∈ L2(J,E), ∃ q ∈ R(B) with Lp = Lq. Hence it follows that for ∀ ϵ > 0

and p(·) ∈ L2(J,E), ∃ v(·) ∈ L2(J, U) such that

∥Lp− LBv∥ < ϵ,

where Lp =
∫ a
0

∫ s
0 T2(a− s)T1(s− τ)p(τ)dτds for p(·) ∈ L2(J,E).

(H6) ∥Bv(·)∥L2(J,E) ≤ λ∥p(·)∥L2(J,E), where λ is a positive constant independent of p(·).

(H7) The constant λ satisfies P1(1 + La+Na)M1M2λe
M1M2P1a2(1+La+Na)a2 < 1

hold, then the system (5.1) is approximate controllability.

Proof. In view of nonlinear term F , we know that F (t, u, v, w) is continuous about the
variables u, v, w with constant P1 = max{1

4 ,
1
5 ,

1
6} = 1

4 . Thus (A2) is satisfied with P2 = 1
4 .

From t L = Lf = N = Ng = 1, we verify that (A3)-(A4) holds. And combine with (A1),
(H5)-(H7) hold. In view of Theorem 4.1, our conclusion holds. 2
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6 Conclusions

This paper concentrated on the approximate controllability of damped elastic beam sys-
tems with initial conditions involving Volterra-Fredholm type integro-differential system.
Firstly, the existence of mild solutions for the proposed system was investigated by using
the Banach fixed point combined with semigroup operators. Also, by using the sequential
method, approximate control results were obtained. In future work, based on the results
of this paper, we will investigate the approximate controllability of Volterra-Fredholm type
integro-differential third order dispersion system involving non local conditions and and con-
trol delay. Moreover, we also study this class of problem related to mathematical control
problem such as controllability and optimal control. Especially, we will further consider
approximate controllability of Atangana-Baleanu fractional neutral delay integro-differential
stochastic systems and Atangana–Baleanuneutral fractional stochastic hemivariationaolf in-
equality by utilizing the sequential methods described in this article.
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