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Abstract. This article focuses on the stability of periodic solution of a delayed nonautonomous

reaction-diffusion predator-prey model. The fine combination of upper and lower solution meth-

ods and Lyapunov stability theory is used to transform the study of the stability problem of

delayed reaction-diffusion equations into the stability problem of their corresponding delayed or-

dinary differential equations. Some sufficient conditions are given to ensure the globally asymp-

totically stability of the periodic solution for this model. Unlike existing results, the stable

solution which are obtained in this article is a time-periodic solution rather than a constant

periodic solution or a solution for a steady-state system. We extend a stability theorem on

predator-prey model introduced by V. Ortega and C. Rebelo in 2023 to nonautonomous delayed

reaction-diffusion model. Finally, in order to show the application of the theoretical result-

s, the proposed conditions are numerically validated over a 2-periodic delayed nonautonomous

reaction-diffusion predator-prey model.

1. Introduction4

The study of the properties of reaction-diffusion equations (RDEs) can be used to describe5

many phenomena in the population and epidemic system, which has attracted increasing attention6

from scholars [1–7]. Especially, the research on predator-prey RDEs has recently achieved many7

excellent results. For example, in 2013, Ko and Ahn [8] studied RDEs with two competing preda-8

tors and one prey and obtained some sufficient conditions to ensure the persistence and global9

attractiveness for solutions of the system. In 2015, Yang et al. [9] studied RDEs with Leslie-Gower10

functional response and gained sufficient conditions to guarantee the coexistence state and attrac-11

tor existence of the model by using fixed point index theory. In 2017, Wang [10] studied RDEs with12

Neumann boundary conditions and Holling Type III functional response and obtained sufficient13

conditions to guarantee the existence of periodic orbits by using coincidence theory and bifurcation14

methods. In 2020, Wu and Zhao [11] studied RDEs with the Allee effect and threshold hunting and15

analyzed the asymptotic stability of the equilibrium point of the model by constructing a Jacobian16

matrix. In 2021, Bentout et al. [12] studied an age-structured predator-prey infection model, and17

explored the impact of predator maturity on interspecies interactions and infectious disease spread.18

The findings reveal that the minimum maturation time of predators can influence the behavior19

of the system’s solutions. In the same year, Djilali and Cattani [13] analyzed a superdiffusive20

predator-prey system with a hunting cooperation functional response. The presence of superdiffu-21

sion represents the fear effect of the prey and the organized hunting strategy of the predator. The22

study indicates that superdiffusion leads to complex dynamical behaviors of the system’s solutions23

and can influence the stability of certain equilibria. In 2022, Yan and Zhang [14] studied RDEs24

with a Beddington-DeAngelis functional response and obtained stability and instability criteria25

for the positive constant equilibrium point of the model. In 2023, Chen and Wu [15] studied the26

spatiotemporal behavior of RDEs with a Beddington-DeAngelis functional response function by27

using the Leray-Schauder degree theory and Poincare inequality. It is worth mentioning that the28

above models are autonomous RDEs. Due to the fact that the birth rate, the death rate and the29

interaction between population are not invariable, nonautonomous RDEs can better simulate the30

interactions among species in predator-prey models. However, the methods used in the previous31

literature are difficult to study multi-species nonautonomous predator-prey RDEs. More recently,32

Jia et al. [16] has considered a 3-species nonautonomous predator-prey RDEs and has obtained33
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some judgment criteria to ensure the globally asymptotically stability of strictly positive homoge-34

nous periodic solution for the system by using the upper and lower solutions method and Lyapunov35

stability theory.36

In a large amount of the real world, the state of a system is influenced not only by its current37

state, but also often by their past state. Even in some phenomena, if you ignore the impact of38

the system’s past state on its future state, the entire research is meaningless. Therefore, when39

describe the impact of the interaction between time delayed feedback and spatial transfer on the40

system state, scientists have proposed a new type of mathematical model-delayed reaction-diffusion41

equations (DRDEs). Using these equations, many real natural phenomena are described and well42

explained. In recent years, the research on DRDEs has attracted more and more attention of43

scholars. Early research on DRDEs was mostly included in academic works [17,18]. In recent years,44

some excellent achievements have been achieved in the study of periodic solutions to DRDEs. For45

example, in 2016, Chen and Yu [19] considered a DRDEs with nonlocal delay effect and Dirichlet46

boundary condition and obtained stability criteria for the positive equilibrium point of the model.47

In 2017, Shi et al. [20] studied a DRDEs with distributed delay and Dirichlet boundary condition48

and obtained stability conditions of the positive steady state for the model. In 2018, Yuan and49

Guo [21] studied a nonlocal DRDE and achieved the the existence and stability of solutions for50

the model with the help of monotone iteration methods. In 2019, Shen and Wei [22] studied a51

mussel-algae DRDEs with Neumann boundary conditions and obtained the stability conditions for52

the positive constant steady state. In 2021, Zuo and Shi [23] researched a general DRDEs with53

spatiotemporal nonlocal delay effect and Dirichlet boundary conditions and obtained some criteria54

to ensure the existence and stability of positive steady-state solutions for the system. In 2022,55

Xu et al. [24] analyzed a general DRDEs with predator maturation delay and obtained global56

asymptotic stability of the positive constant steady state. In 2023, Yuan and Guo [25] studied57

a class of DRDEs with spatial nonlocality and achieved some criteria to ensure the stability of58

positive steady-state solutions. In the same year, Djilali et al. [26] studied a class of spatially59

heterogeneous DRDEs. By employing the Kuratowski measure of noncompactness, the existence60

of a global compact attractor for the system is demonstrated. Furthermore, sufficient conditions61

for the uniform persistence of solutions and the asymptotic stability of equilibrium solutions are62

obtained. In 2024, Kumar [27] investigated a prey-predator DRDEs with Leslie-Gower functional63

response and Smith growth functions and established sufficient conditions of the global stability64

for the positive constant steady state. It is worth mentioning that the issues studied in the65

above literatures are the stability of constant equilibrium solutions or steady-state solutions of66

autonomous DRDEs. Moreover, the research methods in the previous papers, such as eigenvalues,67

which cannot be used to study nonautonomous DRDEs. To the best of our knowledge, the results68

about the stability of periodic solution to nonautonomous DRDEs rarely occurred.69

Due to the fact that nonautonomous DRDEs can better simulate the interactions between species70

in predator-prey models and the study of its dynamic properties has very important practical71

significance. In this article, we focus on the following nonautonomous periodic DRDEs72 {
∂u1(x, t)/∂t− d1(t)∆u1(x, t) = u1(x, t)[r1(t)− a11(t)u1(x, t− τ1)− a12(t)u2(x, t)],

∂u2(x, t)/∂t− d2(t)∆u2(x, t) = u2(x, t)[−r2(t)− a22(t)u2(x, t− τ2) + a21(t)u1(x, t− τ1)],

(1.1)

with the Neumman boundary and initial conditions73

∂ui(x, t)/∂n = 0, (x, t) ∈ ∂Ω× R+, ui(x, t) = ηi0(x, t) > 0, (x, t) ∈ Ω× [−τ, 0], i = 1, 2. (1.2)

Here Ω is a bounded smooth domain in Rn with boundary ∂Ω, ∆ is a Laplace operator on Ω,74

∂/∂n denotes the outward normal derivation on ∂Ω, ui(x, t) represents the density of i-th species75

at location x = (x1, x2, · · · , xn) and the time t. τ1 and τ2 are two constants representing delay and76

τ = max{τ1, τ2}. d1(t) and d2(t) denote the diffusion rates of the prey and the predator species77

at time t respectively. aii(t) represent the interaction within i-th species, a12(t) is the capturing78

rate of the predator, and a21(t) is the effective conversion rate of predator. r1(t) and r2(t) are79

the reproduction rate of prey (in the absence of predator) and the natural death rate of predator.80

All the coefficients of the model (1.1)-(1.2) are continuous and positive ω-periodic functions. The81

model (1.1)-(1.2) is an extension of the classic Lotka-Volterra model, and its degenerate model82
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has been extensively studied, for example see [28–30]. Amine and Ortega [28] obtained a stability83

criterion on non-constant periodic solutions for the following model84 {
du1(t)
dt = u1(t)(a(t)− b(t)u1(t)− c(t)u2(t)),

du2(t)
dt = u2(t)(d(t)− e(t)u2(t) + f(t)u1(t)),

(1.3)

in terms of the L∞ norm of the coefficients of a planar linear system associated to the model (1.3).85

Ortega [29] gave another stability criteria in terms of the L1 norm and Ortega and Rebelo [30]86

obtained a new stability criterion which establishes a bridge between the stability criteria in [28]87

and [29] in terms of Lp norm.88

The stability on time-periodic solution for nonautonomous DRDEs has not been studied before.89

In this article, we intend to study the time-periodic solutions for the predator-prey Lotka-Volterra90

models governed by nonautonomous DRDEs and generalize the stability result on (1.3) obtained91

in [30]. Meanwhile, the methods obtained in this article can also be used to extend the permanent92

result obtained in [31] to nonautonomous cooperative DRDEs.93

The article organization are showed as follows. In Section 2, we will investigate the existence94

of the time-periodic solution of the nonautonomous predator-prey DRDEs. In Section 3, we pay95

more attention to the globally asymptotically stability of the time-periodic solution. In Section 4,96

we will give a numerical example to show the application of the theoretical findings obtained in97

this article.98

Remark 1.1. The innovations and achievements of this article are listed as follows: (1) By99

introducing the time delays and the variable coefficient into the known population models, a new100

Lotka-Volterra predator-prey model (nonautonomous predator-prey DRDEs) that can more truly101

depict the interaction among populations is proposed. (2) By considering of the upper and lower102

solution methods and Lyapunov stability theory as well as fixed point theory, some new theories and103

methods have been creatively developed, the existence and stability of the positive time-dependent104

periodic solution of the new predator-prey DRDEs are obtained only a set of simplify verified105

conditions are needed. (3) The technique of constructing Lyapunov functions for delayed differential106

equations step by step can be used to study related problems, which will provide an effective method107

to study the stability of solutions to delayed partial differential equations. (4) Compared with the108

existing results, the stable solution obtained in this article is a time-periodic solution rather than a109

constant periodic solution or a solution for a steady-state system, which will be more in line with110

the objective law of seasonal cyclical changes in species density.111

2. Existence of spatial homogeneous periodic solutions112

Set ϕ(t) be a ω -periodic function in R+. We denote113

ϕm = sup{ϕ(t), t ∈ R+}, ϕl = inf {ϕ(t), t ∈ R+} .

Next, we study the functional differential equations corresponding to the model (1.1)114 {
du1(t)
dt = u1(t)[r1(t)− a11(t)u1(t− τ1)− a12(t)u2(t)],

du2(t)
dt = u2(t)[−r2(t)− a22(t)u2(t− τ2) + a21(t)u1(t− τ1)],

(2.1)

with the initial conditions115

ui(t) = ηi0(t) > 0, t ∈ [−τ, 0], i = 1, 2. (2.2)

Theorem 2.1. For any positive initial conditions, the solution of the models (2.1-(2.2) is positive.116

Proof. Due to the continuity of the functions on the right-hand side of model (2.1) and its satisfac-117

tion of the local Lipschitz condition, models (2.1)-(2.2) possesses a unique local solution, denoted118

as u1(t) and u2(t), on a small interval [0, T ) according to the existence and uniqueness theorem for119

solutions of functional differential equations. Next, we prove that for any positive initial values,120

this local solution remains positive and can be extended to the entire positive time axis.121

According to the first equation of model (2.1), when u1(t) > 0 and u2(t) > 0, the sign of the122

right-hand side of the equation depends on r1(t) − a11(t)u1(t − τ1) − a12(t)u2(t) , Λ1(t). If the123

initial value results in Λ1(t) > 0, then the rate of change of u1(t) is positive, and since the initial124

value η10(t) is positive, u1(t) will remain positive. If the initial values result in Λ1(t) < 0, then125
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the rate of change of u1(t) is negative, and due to the positive initial value, the prey population126

u1(t) will decrease. Based on the interaction mechanisms among populations in ecosystems and the127

continuity of population dynamics. Subsequently, the predator population u2(t) will also decrease128

due to insufficient food. Since r1(t) > 0, as the populations of u1(t) and u2(t) decrease, eventually129

Λ1(t) will become positive, causing the population of u1(t) to increase before reaching zero. In130

summary, regardless of whether the initial values make Λ1(t) > 0 or Λ1(t) < 0, u1(t) remains131

positive.132

Similarly, according to the second equation of model (2.1), when u1(t) > 0 and u2(t) > 0, the133

sign of the right-hand side of the equation depends on −r2(t)−a22(t)u2(t−τ2)+a21(t)u1(t−τ1) ,134

Λ2(t). If the initial values result in Λ2(t) > 0, then the rate of change of u2(t) is positive, and135

since the initial value η20(t) is positive, u2(t) will remain positive. If the initial values result in136

Λ2(t) < 0, then the rate of change of u2(t) is negative, and due to the positive initial value, the137

predator population u2(t) will continuously decrease. Based on the interaction mechanisms among138

populations in ecosystems and the continuity of population dynamics. Simultaneously, the prey139

population u1(t) will increase due to the reduction in predators. As u2(t) decreases and u1(t)140

increases, eventually Λ2(t) will become positive (since a12(t) > 0 ), causing the population of u2(t)141

to increase before decreasing to zero. In summary, regardless of whether the initial values make142

Λ2(t) > 0 or Λ2(t) < 0, u2(t) remains positive.143

Furthermore, since the local solution is unique and positive, we can utilize the continuous144

dependence theorem for solutions of functional differential equations to extend the local solution to145

the entire positive time axis while maintaining its positivity. Therefore, given the initial conditions146

η10(t) > 0 and η20(t) > 0, the solutions of the predator-prey models (2.1)-(2.2) remain positive on147

the entire positive time axis. �148

For the model (2.1), set149

M1 =
rm1
al11

exp {rm1 τ1} ,M2 =
am21M1 − rl2

al22

exp
{

(am21M1 − rl2)τ2
}
,

150

m1 =
rm1 − am12M2

am11

exp
{

(rl1 − am12M2 − am11M1)τ1
}
,

151

m2 =
al21m1 − rm2

am22

exp
{

(al21m1 − rm2 − am22M2)τ2
}
.

Theorem 2.2. Assume the following conditions satisfy152

(H1) al21m1 > rm2 ,
153

(H2) rl1 > am12M2.

Then the model (2.1-(2.2) is permanent.154

Proof. By the first equation of model (2.1), it follows that155

du1(t)
dt = u1(t)[r1(t)− a11(t)u1(t− τ1)− a12(t)u2(t)] ≤ u1(t)[rm1 − al11u1(t− τ1)]. (2.3)

From the Lemma 2.2 in [31], one has156

lim sup
t→+∞

u1(t) ≤ rm1
al11

exp {rm1 τ1} = M1. (2.4)

Moreover, from the second equation of model (2.1), it holds that157

du2(t)
dt ≤ u2(t)[−r2(t)− a22(t)u2(t− τ2) + a21(t)u1(t− τ1)]

≤ u2(t)[−rl2 − al22u2(t− τ2) + am21M1].

By (H1), we have am21M1 > rl2. Thus, by Lemma 2.2 in [31],158

lim sup
t→+∞

u2(t) ≤ am21M1 − rl2
al22

exp
{

(am21M1 − rl2)τ2
}

= M2. (2.5)

On the other hand, by (2.1),159

du1(t)
dt ≥ u1(t)[rl1 − am11u1(t− τ1)− am12M2] = u1(t)[rl1 − am12M2 − am11u1(t− τ1)].

王涵晞
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By (H2) and Lemma 2.3 in [31],160

lim inf
t→+∞

u1(t) ≥ rl1 − am12M2

am11

exp[(rl1 − am12M2 − am11M1)τ1] = m1. (2.6)

Similarly, by the second equation in model (2.1), we have161

du2(t)
dt = u2(t)[−r2(t)− a22(t)u2(t− τ2) + a21(t)u1(t− τ1)] ≥ u2(t)[−rm2 − am22u2(t− τ2) + al21m1]

= u2(t)[al21m1 − rm2 − am22u2(t− τ2)].

By (H1) and Lemma 2.3 in [31],162

lim inf
t→+∞

u2(t) ≥ al21m1 − rm2
am22

exp[(al21m1 − rm2 − am22M2)τ2] = m2. (2.7)

By (2.4)-(2.7), we see that the model (2.1)-(2.2) is permanent, see [Definition 2.1, [32]] for the163

definition of permanent property. �164

Theorem 2.3. Assume that (H1)−(H2) hold. Then there is a strictly positive spatial homogeneity165

ω-periodic solution of (1.1)-(1.2).166

Proof. Let V = C([−τ,+∞),R2
+) be a Banach space consisting of continuous, bounded, ω-periodic167

and positive functions defined on [−τ,+∞), equipped with the infinite norm. Based on the exis-168

tence and uniqueness theorem of solutions of the functional differential equations, see [Theorem169

2.3, page 42 of [33]], we define a Poincaré mapping ψ : V → V in the following form170

ψ(U0) = U(t, ω, U0),

where U(t, ω, U0) = (u1(t), u2(t)) is a positive solution of the functional differential equations (2.1)171

subject to the initial conditions U0 = (η10(t), η20(t)), t ∈ [−τ, 0].172

It easy to see that ψ is continuous mapping by using the continuity of solution of the functional173

differential equations (2.1) with regard to the above initial conditions, see [Theorem 4.1, page 46174

of [33]]. Assume that K is any bounded set in V . For any U0 ∈ K, and let L =
√
M2

1 +M2
2 .175

From the permanence of solutions to models (2.1)-(2.2), we have ‖ψ(U0)‖ = ‖U(t, ω, U0)‖ =176

‖(u1(t), u2(t))‖ =
√
u1(t)2 + u2(t)2 ≤

√
M2

1 +M2
2 = L. Hence, ψ(K) is uniformly bounded.177

Furthermore, according to Theorem 2.2, the derivative of the mapping ψ is also bounded, which178

can then be used to prove that the ψ(K) is equicontinuous. The Arzela-Ascoli theorem implies179

that ψ is completely continuous.180

We define181

S = {(u1(t), u2(t)) ∈ V | mi 6 ui(t) 6Mi, i = 1, 2} , (2.8)

then it is obvious that S is a closed bounded convex subset of the Banach space V . By Theorem182

2.2 we have that ψ is a mapping from S to S. Thus, by Schauder fixed-point theorem, see [Lemma183

2.4, page 40 of [33]], the mapping ψ has a fixed point (u∗1(t), u∗2(t)). That is, the equations (2.1)-184

(2.2) have a positive ω-periodic solution (u∗1(t), u∗2(t)) which is the spatial homogeneity ω-periodic185

solution for models (1.1)-(1.2), see [Definition 2.2, [34]]. �186

3. Stability of spatial homogeneity periodic solution187

In this section, we provide some sufficient conditions to obtain the globally asymptotically stable188

of spatial homogeneity ω-periodic solution of (1.1) by using the method of upper and lower solutions189

for the delayed parabolic partial differential equations and Lyapunov stability theory.190

Theorem 3.1. Assume that (H1)− (H2) and the following assumptions hold.191

(H3) A1 = al11 − am11τ1[rm1 + am11M1 + am12M2]−M1(am11)2τ1 − am21(1 + am22M2τ2) > 0,
192

(H4) A2 = al22 − am22τ2[rm2 + am22M2 + am21M1]−M2(am22)2τ2 − (1 +M1a
m
11τ1)am12 > 0.

Then there exists a spatial homogeneity strictly positive and globally asymptotically stable ω-periodic193

solution (u∗1(t), u∗2(t)), that is, the solution (u1(x, t), u2(x, t)) of (1.1)-(1.2) with any positive initial194

values fulfills195

lim
t→∞

(ui(x, t)− u∗i (t)) = 0, uniformly for x ∈ Ω̄, i = 1, 2. (3.1)

王涵晞
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Proof. By Theorem 2.3, (1.1)-(1.2) has a spatial homogeneity strictly positive ω-periodic solution.196

We prove the stability of the solution. Because the solutions and coefficients of model (1.1) are197

positive, it is easy to see that the reaction functions of model (1.1) are mixed quasimonotone.198

Let li = min
x∈Ω̄, t∈[−τ, 0]

ηi0(x, t), ri = max
x∈Ω̄, t∈[−τ, 0]

ηi0(x, t). Then 0 < li ≤ ηi0(x, t) ≤ ri. Let199

(ũ1(t), ũ2(t)) and (û1(t), û2(t)) be the solutions of (2.1) subject to initial values (η10(t), η20(t)) =200

(r1, r2) and (η10(t), η20(t)) = (l1, l2) respectively, then there exist upper and lower solutions201

(ũ1(t), ũ2(t)) and (û1(t), û2(t)) of (1.1)-(1.2). By Theorem 2.1 in [35], (1.1)-(1.2) has a unique202

solution (u1(x, t), u2(x, t)), (x, t) ∈ Ω̄× [−τ, +∞), which satisfies203

(û1(t), û2(t)) ≤ (u1(x, t), u2(x, t)) ≤ (ũ1(t), ũ2(t)). (3.2)

We prove204

lim
t→∞

(ũi(t)− u∗i (t)) = lim
t→∞

(ûi(t)− u∗i (t)) = 0, (i = 1, 2). (3.3)

We first prove the solution (u1(t), u2(t)) for the functional differential equations (2.1) with any205

positive initial (u1(t), u2(t)) = (η10(t), η20(t)) satisfies206

lim
t→∞

(ui(t)− u∗i (t)) = 0, i = 1, 2. (3.4)

By Theorem 2.2, there exist five positive real numbers Mi, mi and T such that207

mi ≤ ui(t) ≤Mi when t > T .

Let208

V11(t) = |lnu1(t)− lnu∗1(t)| .
We denote by D+V11(t) the right-side derivative of V11(t), then

D+V11(t) = sgn(u1(t)− u∗1(t))[−a11(t)(u1(t− τ1)− u∗1(t− τ1))− a12(t)(u2(t)− u∗2(t))]

= sgn(u1(t)− u∗1(t))[−a11(t)(u1(t)− u∗1(t))− a12(t)(u2(t)− u∗2(t))

+a11(t)
∫ t
t−τ1 (u̇1(θ)− u̇∗1(θ))dθ]

= sgn(u1(t)− u∗1(t))[−a11(t)(u1(t)− u∗1(t))− a12(t)(u2(t)− u∗2(t))

+a11(t)
∫ t
t−τ1 {u1(θ)[r1(θ)− a11(θ)u1(θ − τ1)− a12(θ)u2(θ)]

−u∗1(θ)[r1(θ)− a11(θ)u∗1(θ − τ1)− a12(θ)u∗2(θ)]}dθ]
= sgn(u1(t)− u∗1(t))[−a11(t)(u1(t)− u∗1(t))− a12(t)(u2(t)− u∗2(t))

+a11(t)
∫ t
t−τ1 {(u1(θ)− u∗1(θ))[r1(θ)− a11(θ)u∗1(θ − τ1)− a12(θ)u∗2(θ)]

−u1(θ)[a11(θ)(u1(θ − τ1)− u∗1(θ − τ1)) + a12(θ)(u2(θ)− u∗2(θ))]}dθ]
≤ −a11(t) |u1(t)− u∗1(t)|+ a12(t) |u2(t)− u∗2(t)|

+a11(t)
∫ t
t−τ1 ([r1(θ) + a11(θ)u∗1(θ − τ1) + a12(θ)u∗2(θ)] |u1(θ)− u∗1(θ)|

+u1(θ)[a11(θ) |u1(θ − τ1)− u∗1(θ − τ1)|+ a12(θ) |u2(θ)− u∗2(θ)|])dθ.

(3.5)

Let209

V12(t) =
∫ t
t−τ1

∫ t
s
a11(s+ τ1)([r1(θ) + a11(θ)u∗1(θ − τ1) + a12(θ)u∗2(θ)] |u1(θ)− u∗1(θ)|

+u1(θ)[a11(θ) |u1(θ − τ1)− u∗1(θ − τ1)|+ a12(θ) |u2(θ)− u∗2(θ)|])dθds.
(3.6)

By (3.5) and (3.6),210

D+
2∑
i=1

V1i(t) ≤ −a11(t) |u1(t)− u∗1(t)|+ a12(t) |u2(t)− u∗2(t)|

+
∫ t
t−τ1 a11(s+ τ1)ds([r1(t) + a11(t)u∗1(t− τ1) + a12(t)u∗2(t)] |u1(t)− u∗1(t)|

+u1(t)[a11(t) |u1(t− τ1)− u∗1(t− τ1)|+ a12(t) |u2(t)− u∗2(t)|])
≤ −a11(t) |u1(t)− u∗1(t)|+ a12(t) |u2(t)− u∗2(t)|

+
∫ t
t−τ1 a11(s+ τ1)ds[r1(t) + a11(t)M1 + a12(t)M2] |u1(t)− u∗1(t)|

+M1

∫ t
t−τ1 a11(s+ τ1)ds[a11(t) |u1(t− τ1)− u∗1(t− τ1)|+ a12(t) |u2(t)− u∗2(t)|]

≤ (−al11 + am11τ1[rm1 + am11M1 + am12M2]) |u1(t)− u∗1(t)|
+M1(am11)2τ1 |u1(t− τ1)− u∗1(t− τ1)|+ am12(1 + am11M1τ1) |u2(t)− u∗2(t)| .

(3.7)

Let211

V13(t) = M1(am11)2τ1

∫ t

t−τ1
|(u1(w)− u∗1(w)| dw, (3.8)
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and212

V1(t) = V11(t) + V12(t) + V13(t). (3.9)

By (3.7) and (3.8), we have213

D+V1(t) ≤ (−al11 + am11τ1[rm1 + am11M1 + am12M2] +M1(am11)2τ1) |u1(t)− u∗1(t)|
+(1 +M1a

m
11τ1)am12 |u2(t)− u∗2(t)| .

(3.10)

Similarly, we define V21(t) = |lnu2(t)− lnu∗2(t)|, and we have214

D+V21(t) = sgn(u2(t)− u∗2(t))[−a22(t)(u2(t− τ2)− u∗2(t− τ2)) + a21(t)(u1(t− τ1)− u∗1(t− τ1))]

= sgn(u2(t)− u∗2(t))[−a22(t)(u2(t)− u∗2(t)) + a21(t)(u1(t− τ1)− u∗1(t− τ1))

+a22(t)
∫ t
t−τ2 (u̇2(θ)− u̇∗2(θ))dθ]

= sgn(u2(t)− u∗2(t))[−a22(t)(u2(t)− u∗2(t)) + a21(t)(u1(t− τ1)− u∗1(t− τ1))

+a22(t)
∫ t
t−τ2 {u2(θ)[−r2(θ)− a22(θ)u2(θ − τ2) + a21(θ)u1(θ − τ1)]

−u∗2(θ)[−r2(θ)− a22(θ)u∗2(θ − τ2) + a21(θ)u∗1(θ − τ1)]}dθ]
= sgn(u2(t)− u∗2(t))[−a22(t)(u2(t)− u∗2(t)) + a21(t)(u1(t− τ1)− u∗1(t− τ1))

+a22(t)
∫ t
t−τ2 {(u2(θ)− u∗2(θ))[−r2(θ)− a22(θ)u∗2(θ − τ2) + a21(θ)u∗1(θ − τ1)]

−u2(θ)[a22(θ)(u2(θ − τ2)− u∗2(θ − τ2))− a21(θ)(u1(θ − τ1)− u∗1(θ − τ1))]}dθ]
≤ −a22(t) |u2(t)− u∗2(t)|+ a21(t) |u1(t− τ1)− u∗1(t− τ1)|

+a22(t)
∫ t
t−τ2 ([r2(θ) + a22(θ)u∗2(θ − τ2) + a21(θ)u∗1(θ − τ1)] |u2(θ)− u∗2(θ)|

+u2(θ)[a22(θ) |u2(θ − τ2)− u∗2(θ − τ2)|+ a21(θ) |u1(θ − τ1)− u∗1(θ − τ1)|)dθ.
(3.11)

Let215

V22(t) =
∫ t
t−τ2

∫ t
s
a22(s+ τ2)([r2(θ) + a22(θ)u∗2(θ − τ2) + a21(θ)u∗1(θ − τ1)] |u2(θ)− u∗2(θ)|

+u2(θ)[a22(θ) |u2(θ − τ2)− u∗2(θ − τ2)|+ a21(θ) |u1(θ − τ1)− u∗1(θ − τ1)|])dθds.
(3.12)

By (3.11) and (3.12),216

D+
2∑
i=1

V2i(t) ≤ −a22(t) |u2(t)− u∗2(t)|+ a21(t) |u1(t− τ1)− u∗1(t− τ1)|

+
∫ t
t−τ2 a22(s+ τ2)ds([r2(t) + a22(t)u∗2(t− τ2) + a21(t)u∗1(t− τ1)] |u2(t)− u∗2(t)|

+u2(t)[a22(t) |u2(t− τ2)− u∗2(t− τ2)|+ a21(t) |u1(t− τ1)− u∗1(t− τ1)|])
≤ −a22(t) |u2(t)− u∗2(t)|+ a21(t) |u1(t− τ1)− u∗1(t− τ1)|+∫ t
t−τ2 a22(s+ τ2)ds[r2(t) + a22(t)M2 + a21(t)M1] |u2(t)− u∗2(t)|

≤ +M2

∫ t
t−τ2 a22(s+ τ2)ds[a22(t) |u2(t− τ2)− u∗2(t− τ2)|

+a21(t) |u1(t− τ1)− u∗1(t− τ1)|]
≤ (−al22 + am22τ2[rm2 + am22M2 + am21M1]) |u2(t)− u∗2(t)|
+M2(am22)2τ2 |u2(t− τ2)− u∗2(t− τ2)|+ am21(1 + am22M2τ2) |u1(t− τ1)− u∗1(t− τ1)| .

(3.13)

Let217

V23(t) = M2(am22)2τ2

∫ t

t−τ2
|(u2(w)− u∗2(w)| dw + am21(1 + am22M2τ2)

∫ t

t−τ1
|(u1(w)− u∗1(w)| dw,

(3.14)

and218

V2(t) = V21(t) + V22(t) + V23(t). (3.15)

By (3.13) and (3.14),219

D+V2(t) ≤ (−al22 + am22τ2[rm2 + am22M2 + am21M1] +M2(am22)2τ2) |u2(t)− u∗2(t)|
+am21(1 + am22M2τ2) |u1(t)− u∗1(t)| .

(3.16)

We define a Lyapunov function as follows220

V (t) = V1(t) + V2(t).

By (3.10) and (3.16), we get221

D+V (t) ≤ −A1 |u1(t)− u∗1(t)| −A2 |u2(t)− u∗2(t)| . (3.17)
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Integrating from ω to t on both sides of (3.17), we have222

V (t) + α

∫ t

ω

(|u1(s)− u∗1(s)|+ |u2(s)− u∗2(s)|])ds ≤ V (ω) < +∞, (3.18)

where α = min{A1, A2} > 0. Therefore, V (t) is bounded on [ω,+∞), and223 ∫ t

ω

(|u1(s)− u∗1(s)|+ |u2(s)− u∗2(s)|])ds ≤ V (ω)

α
< +∞. (3.19)

By (3.19), we have224

(|u1(t)− u∗1(t)|+ |u2(t)− u∗2(t)|) ∈ L1(T,+∞). (3.20)

From the uniform permanence of model (2.1), we have that |u1(t)− u∗1(t)| + |u2(t)− u∗2(t)|225

and its derivative are bounded. Thus, |u1(t)− u∗1(t)| + |u2(t)− u∗2(t)| is uniformly continuous on226

[ω,+∞). By Lemma 8.2 in [36], we get227

lim
t→+∞

|ui(t)− u∗i (t)| = 0, (i = 1, 2).

From (3.2) and the squeeze theorem, (3.1) holds true. That is, (1.1)-(1.2) have a spatial homo-228

geneity strictly positive and globally asymptotically stable ω-periodic solution (u∗1(t), u∗2(t)), see229

[Definition 2.3, [34]]. This completes the proof of Theorem 3.1. �230

Theorem 3.2. Suppose that the ω-periodic model (1.1) satisfies assumptions (H1) − (H4), then231

the model (1.1) is permanent, i.e., the solution (u1(x, t), u2(x, t)) of models (1.1)-(1.2) with any232

initial values fulfills233

mi ≤ ui(x, t) ≤Mi, uniformly for (x, t) ∈ Ω̄× [T,+∞), i = 1, 2. (3.21)

Proof. By means of Theorem 2.3, there exist four positive real numbers mi,Mi, (i = 1, 2) such234

that235

mi ≤ u∗i (t) = u∗i (t+ ω) ≤Mi, t ∈ [−τ,+∞). (3.22)

Moreover, from Theorem 3.1, one has236

lim
t→+∞

ui(x, t) = u∗i (t),uniformly for x ∈ Ω̄, i = 1, 2. (3.23)

Therefore, from (3.22) and (3.23), the model (1.1) is permanent. �237

4. Numerical simulations238

In this section, we provide a numerical example to show the application of Theorem 3.1. For the239

convenience of calculation and numerical simulation, we choose 2-period functions as the coefficients240

for the nonautonomous ω-periodic DRDEs (1.1)-(1.2).241

Example 4.1. Consider the following 2-species DRDEs. In view of the conditions (H1) − (H4)242

of Theorem 3.1, with the help of some calculations we choose some special values of parameters243

shown in models (4.1)-(4.2). It should be noted that, the selection of above parameters is not244

unique.245 
∂u1(x,t)

∂t −∆u1(x, t) = u1(x, t)[(24 + cosπt)− (6 + sinπt)u1(x, t− 0.001)

−(0.75 + 0.25 sinπt)u2(x, t)], 2π > x > 0, t > 0,
∂u2(x,t)

∂t −∆u2(x, t) = u2(x, t)[−(2 + cosπt)− (5 + sinπt)u2(x, t− 0.002)

+(1.2 + 0.2 sinπt)u1(x, t− 0.001)], 2π > x > 0, t > 0,

(4.1)

with the Neumman boundary and initial conditions246 
∂u1(x,t)
∂n = ∂u2(x,t)

∂n = 0, t > 0, x = 0, 2π,

u1(x, t) = (4 + 3t)[1− sin(x+ 0.5π)],

u2(x, t) = (0.6 + 5t)[1 + cos(x+ π)],

(x, t) ∈ (0, 2π)× [−0.002, 0].

(4.2)

By calculating, we have247

M1 =
rm1
al11

exp {rm1 τ1} ≈ 5.1266,

248

M2 =
am21M1 − rl2

al22

exp
{

(am21M1 − rl2)τ2
}
≈ 1.5635,
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249

m1 =
rm1 − am12M2

am11

exp
{

(rl1 − am12M2 − am11M1)τ1
}
≈ 3.0185,

250

m2 =
al21m1 − rm2

am22

exp
{

(al21m1 − rm2 − am22M2)τ2
}
≈ 0.0030,

251

al21m1 − rm2 ≈ 0.0185 > 0, rl1 − am12M2 ≈ 21.4365 > 0,
252

A1 = al11 − am11τ1[rm1 + am11M1 + am12M2]−M1(am11)2τ1 − am21(1 + am22M2τ2) ≈ 2.8854 > 0,
253

A2 = al22 − am22τ2[rm2 + am22M2 + am21M1]−M2(am22)2τ2 − (1 +M1a
m
11τ1)am12 ≈ 2.6166 > 0.

Based on the above calculation results, it is easy to see that that systems (4.1)-(4.2) satisfy the254

conditions of Theorem 3.1. From Theorem 3.1 it is easy to know that the systems (4.1)-(4.2) has255

a strictly positive spatial homogeneity 2-periodic solution (u1(x, t), u2(x, t)) which satisfies256

lim
t→+∞

|ui(t)− u∗i (t)| = 0, (i = 1, 2),uniformly for x ∈ (0, 2π).

By employing the software package MATLAB 7.1 and the finite differences method, we can obtain257

some numerical solutions of the model (4.1) with the boundary conditions and initial conditions258

(4.2) which are shown in Figure 4.1 to Figure 4.2. From Figures 4.1-4.2, it is not difficult to find that259

the model (4.1)-(4.2) have a strictly positive globally asymptotically stable spatial homogeneity 2-260

periodic solution. In model (4.1)-(4.2), the densities of prey and predator will oscillate periodically261

with a period of 2 and distribute homogeneously in space when the time is long enough. In order262

to verify that the periodic solution of the model (4.1)-(4.2) is globally asymptotically stable, we263

selected different initial values and conducted extensive numerical simulations. The results showed264

that the 2-periodic solution of the model (4.1)-(4.2) is asymptotically stable for any positive initial265

value. Please refer to Figure 4.3 for details.266

From the theoretical research in this article, we can clearly see the dynamic stability mechanism267

of the predator-prey system. When the birth rate of prey species and the post-predation nutrient268

absorption rates of predator species reach sufficient levels, predator and prey species can maintain a269

long-term stable survival state, effectively avoiding the risk of population extinction (see Theorem270

2.1 and 3.2). More interestingly, under the basic conditions mentioned above, if key factors such as271

population diffusion rate, interaction strength, and predator natural mortality rate can also meet272

specific criteria, then under minor time delays, the density of species in the predator-prey system273

will exhibit periodic changes. This further reveals the beauty of dynamic equilibrium within e-274

cosystems (see Theorem 3.1). This theoretical result has been thoroughly validated through precise275

numerical simulations, providing a solid theoretical foundation for our understanding, evaluation,276

and maintenance of ecosystem balance. It is worth noting that the sufficient conditions established277

in this article are both concise and easy to verify. Specifically, the conditions proposed here are278

formulated as a series of inequalities rather than strict equations, providing great convenience and279

flexibility for the application of these theoretical results in practical ecosystem management.280

Remark 4.1. The method obtained in this article can not only be used to study the dynamic281

properties of solutions for various delayed reaction-diffusion predator-prey models, but also to study282

corresponding cooperative and competition models. In addition, this method may also be used to283

study the dynamic properties of solutions for time-varying delayed reaction-diffusion population284

models and fractional-order delayed reaction-diffusion population models.285
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Figure 4.1. Evolution process of the density for the species u1(x, t) of model

(4.1)-(4.2)

Figure 4.2. Evolution process of the density for the species u2(x, t) of model

(4.1)-(4.2)

Figure 4.3. Evolution process of the densities for the species u1(x, t) and u2(x, t)

of model (4.1)-(4.2) with different positive initial values
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