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Abstract

In this paper, a numerical method based on Haar wavelet with Caputo derivative

is developed for the solution of a system of fractional integro-differential equations

(FIDEs). The solution of these equations is difficult due to the non-local nature

of fractional derivatives and integrals. Different numerical and analytical methods

have been developed to overcome these challenges. We develop numerical scheme

for solution of different types of systems of FIDEs. The proposed method is then

applied to different test problems to demonstrate its robustness and effectiveness.

The experiential error analysis is carried out for all test problems. These experiments

involve the calculation and analysis of different error norms, such as the maximum

absolute error and root mean square error. The numerical experiment shows that

increasing the collocation points the errors reduces significantly. The results show

that the present numerical scheme is a precise and efficient technique for solving such

systems of FIDEs.
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1. Introduction

Fractional integro-differential equations (FIDEs) have gained increasing attention

in recent years due to their applications in various fields, such as physics, biology,

economics, and engineering. FIDEs are a differential equation (DE) type that in-

volves fractional-order derivatives and function integrals. They can be expressed as

a combination of integer-order DEs and fractional-order DEs, where the fractional-

order derivatives are noninteger powers of the differential operator. The integrals

in the equations add another layer of complexity, making them difficult to solve an-

alytically. These equations have applications in physics, engineering, biology, and

finance, to name a few [1]. A system of FIDEs is a set of multiple DEs containing

fractional-order derivatives and integrals. The equations in a system are typically

interconnected, meaning that the solution for one equation depends on the solutions

of the other equations in the system. These equations are used to model complex dy-

namic systems, such as those found in physics, engineering, and biology. A system of

FIDEs, as FIDEs itself, has many applications in engineering [2], quantum mechanics

[3], and many other fields of science [4].

Fractional differential equations (FDEs) with non-integer order can describe many

physical phenomena. Applications of FDEs can be found in physics, chemistry, biol-

ogy, engineering, and finance [4]. One of the main advantages of using FDEs is that

they can provide a more accurate description of real-world phenomena than ordinary

differential equations (ODEs). For example, modeling of viscoelastic materials, dif-

fusion phenomena in porous media, and control systems with delay can be improved

through FDEs. Solving FDEs is more challenging than solving ODEs, and analytical

solutions for FDEs are available for only a few of them. Fractional calculus and FDEs

have many applications in various fields, and their study is still a very active area

of research in mathematics and other sciences. Many definitions are found in the

literature of FD, such as Riemann-Liouvlle FD, Caputo FD, etc. [1].

Solving a system of FIDEs can be challenging and often requires advanced math-

ematical techniques, such as numerical simulations and iterative methods. Several

numerical schemes have been developed in the last decade to solve FDEs. Momani
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and Qaralleh [5] used a domain decomposition method (ADM) to solve a FIDE sys-

tem. The ADM is used for both linear and non-linear IDEs. Mahdy [6] used the least

squares method to solve FIDEs. Li and Sun used the block pulse matrix [7] to exam-

ine the iterative solution of the FDEs.Mohammed [8] solved FIDEs by shifting the

Chebyshev polynomial scheme and using the least squares approach. Two methods

for approximating a function by a polynomial that minimizes the sum of the squares

of the difference between the function and the polynomial are the least squares ap-

proach and the shifted Chebyshev polynomial. Shifted Chebyshev polynomials are

the orthogonal polynomials often used in this method for functions with singularities

and nonuniform data. In order to determine the numerical solution of FIDEs, Ali et

al. [9] worked on hybrid Bernstein and block pulse wavelet approaches.

For the solution of FIDEs, Baofeng Li [10] employed a generalized hat function

approach. Weakly singular kernels were used together with the Chebyshev wavelet

approach by Bargamadi et al. [11] to obtain the solution of FIDEs. Asgari [18]

used operational matrices of triangular function. They also checked the order of

convergence and stability of the method. Derakhshan [19] used operational matrices

for the solution of coupled systems of FIDEs. They reduced the given FIDEs to

algebraic equations to obtainthe Chebyshev unknown coefficients.

This is the structure of the remaining portion of the paper. The paper fundamental

ideas are presented in Section 2. Section 3 illustrates the detailed numerical scheme

for the FIDE system. Section 4 accomplishes the application of the proposed scheme

on various test problems, demonstrating the effectiveness of the method. Finally,

Section 5 presents the concluding remarks regarding the study.

2. Preliminaries

The Caputo FD with order α for f(t) is [1]:

Dαw(t) =
1

Γ(n− α)

∫ t

0

f (n)(η)d

η
(t− η)1−n+α, α > 0, (1)

where n ∈ N, n− 1 < α < n, t > 0.
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2.1. Haar Wavelet

For Haar family, the scaling function on [0, 1) is H1(x) = 1.

In this series, the other terms are written as [12]:

Hi(x) =


1 for x ∈ [ρ1, ρ2),

− 1 for x ∈ [ρ2, ρ3),

0 elsewhere,

(2)

where ρ1 = ζ
d
, ρ2 = 1/2+ζ

d
, and ρ3 = 1+ζ

d
, d = 2j, j = 0, 1, . . . , J , ζ = 0, 1, . . . , d −

1. Formula i = d + ζ + 1 is used to obtain the value of the index i. References

[13, 14, 15, 16] include recent research based on the HWC technique.

2.2. Function approximation

The sum of the Haar series in the interval can represent any function f(x) in

L2[a, b] because the Haar wavelet functions are orthogonal to one another.

f(x) =
∞∑
i=1

ai hi(x),

such that the coefficients ai are constant, hi(x) is a Haar function. For approximation,

the aforementioned up to a limited number of terms, an infinite series is ended. using

the formula

f(x) =
N∑
i=1

aihi(x),

We use the symbol Ri,1 for integration of the Haar function.

Ri,1(x) =

∫ 1

0

hi(x)dx. (3)

Furthermore,

Ri,1(t) =


x− ρ1, at x ∈ [ρ1, ρ2)

ρ3 − x, at x ∈ [ρ2, ρ3),

0 elsewhere.

(4)
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3. Numerical scheme for the systems of fractional IDEs

The forthcoming section elaborates on the Haar wavelet collocation method (HWCM)

that is developed for solution of systems of fractional IDEs. To proceeds let us con-

sider the following system of fractional IDEs

DαW(t) = a(t)w(t) +

∫ t

0

Kij(t, ζ)w(ζ)dζ +

∫ 1

0

Mij(t, ζ)w(ζ)dζ + F (t), (5)

with initial conditions (ICs) w1(0) = λ1, w2(0) = λ2, w3(0) = λ3,

where

W(t) =


w1(t)

w2(t)

w3(t)

 ,

is vector function, K = [kij]3× 3 and M = [mij]3× 3 are smooth function and

F (t) =


f1

f2

f3

 ,

putting the values in equation (5), which become
Dαw1(t)

Dβw2(t)

Dγw3(t)

 = a(t)


w1(t)

w2(t)

w3(t)

+


∫ t

0
k11(t, ζ)

∫ t
0
k12(t, ζ)

∫ t
0
k13(t, ζ)∫ t

0
k21(t, ζ)

∫ t
0
k22(t, ζ)

∫ t
0
k23(t, ζ)∫ t

0
k31(t, ζ)

∫ t
0
k32(t, ζ)

∫ t
0
k33(t, ζ)




w1(ζ)

w2(ζ)

w3(ζ)

 dζ

+


∫ t

0
m11(t, ζ)

∫ t
0
m12(t, ζ)

∫ t
0
m13(t, ζ)∫ t

0
m21(t, ζ)

∫ t
0
m22(t, ζ)

∫ t
0
m23(t, ζ)∫ t

0
m31(t, ζ)

∫ t
0
m32(t, ζ)

∫ t
0
m33(t, ζ)




w1(ζ)

w2(ζ)

w3(ζ)

 dζ +


f1(t)

f2(t)

f3(t)

 .

After some simplification, we have

Dαw1(t) = a(t)w1(t) +

∫ t

0

k11(t, ϑ)w1(ζ)dζ +

∫ t

0

k12(t, ζ)w2(ζ)dζ+
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∫ t

0

k13(t, ζ)w3(ζ)dζ +

∫ 1

0

m11(t, ζ)w1(ζ)dζ +

∫ 1

0

m12(t, ζ)w1(ζ)dζ+

∫ 1

0

m13(t, ζ)w1(ζ)dζ + f1(t), (6)

Dβw2(t) = a(t)w1(t) +

∫ t

0

k21(t, ζ)w1(ζ)dζ +

∫ t

0

k22(t, ζ)w2(ζ)dζ+

∫ t

0

k23(t, ζ)w3(ζ)dζ +

∫ 1

0

m21(t, ζ)w1(ζ)dζ +

∫ 1

0

m22(t, ζ)w2(ζ)dζ+

∫ 1

0

m23(t, ζ)w3(ζ)dζ + f2(t), (7)

Dγw3(t) = a(t)w1(t) +

∫ t

0

k31(t, ζ)w1(ζ)dζ +

∫ t

0

k32(t, ζ)w2(ζ)dζ+

∫ t

0

k33(t, ζ)w3(ζ)dζ +

∫ 1

0

m31(t, ζ)y2(ζ)dζ +

∫ 1

0

m31(t, ζ)y2(ζ)dζ+

∫ 1

0

m31(t, ζ)y2(ζ)dζ + f3(t), (8)

where Dα is FD in Caputo sense, w1(t), w2(t), w3(t) is unknown function, ax(t),

f1, f2, f3, are known functions and the initial condition are w1(0) = λ1 w2(0) = λ2

and w3(0) = λ3.

Applying Caputo definition to Eq. (5), we have

1

Γ(n− α)

∫ t

0

w
(n)
1 (ζ)dζ

(t− ϑ)α−n+1
= a(t)w1(t) +

∫ t

0

k11(t, ζ)w1(ζ)dζ +

∫ t

0

k12(t, ζ)w2(ζ)dζ

+

∫ t

0

k13(t, ζ)w3(ζ)dζ +

∫ 1

0

m11(t, ζ)w1(ζ)dζ+

∫ 1

0

m12(t, ζ)w1(ζ)dζ +

∫ 1

0

m13(t, ζ)w1(ζ)dζ + f1(t),

if we take 0 < α < 1 then n = 1 similarly if we take 1 < α < 2 then n = 2. The

numerical scheme is derived for the case when n = 1, so Eq. (7) becomes,

1

Γ(1− α)

∫ t

0

w
′
1(ζ)dζ

(t− ϑ)α−1+1
= a(t)w1(t) +

∫ t

0

k11(t, ζ)w1(ζ)dζ +

∫ t

0

k12(t, ζ)w2(ζ)dζ
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+

∫ t

0

k13(t, ζ)w3(ζ)dζ +

∫ 1

0

m11(t, ζ)w1(ζ)dζ+

∫ 1

0

m12(t, ζ)w1(ζ)dζ +

∫ 1

0

m13(t, ζ)w1(ζ)dζ + f1(t),

After simplification, we get

1

Γ(1− α)

∫ t

0

w
′
1(ζ)dζ

(t− ϑ)α
= a(t)w1(t) +

∫ t

0

k11(t, ζ)w1(ζ)dζ +

∫ t

0

k12(t, ζ)w2(ζ)dζ

+

∫ t

0

k13(t, ζ)w3(ζ)dζ +

∫ 1

0

m11(t, ζ)w1(ζ)dζ+

∫ 1

0

m12(t, ζ)w1(ζ)dζ +

∫ 1

0

m13(t, ζ)w1(ζ)dζ + f1(t),

Now let

w′1(t) =
N∑
i=1

ξihi(t), w′2(t) =
N∑
i=1

ρihi(t), w′3(t) =
N∑
i=1

ϕihi(t). (9)

Further, integrating and make use of the ICs, we get

w1(t) = λ1 +
N∑
i=1

ξiR(i,1)(t), (10)

w2(t) = λ2 +
N∑
i=1

ρiR(i,1)(t), w3(t) = λ3 +
N∑
i=1

ρiR(i,1)(t),

1

Γ(1− α)

∫ t

0

∑N
i=1 ξihi(ζ)dζ

(t− ϑ)α
= a(t)(λ1 + a(t)ξihi(t)) +

∫ t

0

k11(t, ζ)(λ1 + ξihi(ζ))dζ

+

∫ t

0

k12(t, ζ)(λ2 + ρihi(ζ))dζ +

∫ t

0

k13(t, ζ)(λ3 + ϕihi(ζ))dζ

+

∫ 1

0

m11(t, ζ)(λ1 + ξihi(ζ))dζ +

∫ 1

0

m12(t, ζ)(λ2 + ρihi(ζ))dζ+

∫ 1

0

m13(t, ζ)(λ3 + ϕihi(ζ))dζ +

∫ 1

0

m13(t, ζ)ϕihi(ζ)dζ + f1(t).

After simplification, we obtain

1

Γ(1− α)

∫ t

0

∑N
i=1 aihi(ζ)dζ

(t− ϑ)α
= a(t)λ1 + a(t)ξihi(t) +

∫ t

0

k11(t, ζ)λ1dζ +

∫ t

0

k11(t, ζ)ξihi(ζ)dζ
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+

∫ t

0

k12(t, ζ)λ2dζ +

∫ t

0

k12(t, ζ)ρihi(ζ)dζ +

∫ t

0

k13(t, ζ)λ3dζ

+

∫ t

0

k13(t, ζ)ϕihi(ζ)dζ +

∫ 1

0

m11(t, ζ)λ1dζ +

∫ 1

0

m11(t, ζ)ξihi(ζ)dζ

+

∫ 1

0

m12(t, ζ)λ2dζ +

∫ 1

0

m12(t, ζ)ρihi(ζ)dζ +

∫ 1

0

m13(t, ζ)λ3

+

∫ 1

0

m13(t, ζ)ϕihi(ζ)dζ + f1(t),

Now taking common
∑N

i=1 ξi, we have

N∑
i=1

ξi(
1

Γ(1− α)

∫ t

0

hi(ζ)dζ

(t− ϑ)α
−a(t)R(i,1)(t)+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ+

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ)

= a(t)λ1+

∫ t

0

k11(t, ζ)dζ+

∫ t

0

k12(t, ζ)λ2dζ+

∫ t

0

k12(t, ζ)
N∑
i=1

ρihi(ζ))dζ+

∫ t

0

k13(t, ζ)λ3dζ

+

∫ t

0

k13(t, ζ)
N∑
i=1

ϕiR(i,1)(ζ)dζ +

∫ 1

0

m11(t, ζ)λ1dζ +

∫ 1

0

m12(t, ζ)dζ +

∫ 1

0

m12(t, ζ)dζ

+
N∑
i=1

ρiR(i,1)(ζ)dζ +

∫ 1

0

m13(t, ζ)λ3dζ +

∫ 1

0

m13(t, ζ)dζ
N∑
i=1

ϕiR(i,1)(ζ)dζ + f1(t)

(11)

putting collocation point in the above equation, we get

N∑
i=1

ξiG(i, j) = a(tj)λ1 +

∫ t

0

k11(t, ζ)dζ +

∫ t

0

k12t, ϑλ2dζ +

∫ t

0

k12(t, ζ)
N∑
i=1

ρihi(ζ))dζ

+

∫ t

0

k13(t, ζ)λ3dζ +

∫ t

0

k13(t, ζ)
N∑
i=1

ϕiR(i,1)(ζ)dζ +

∫ 1

0

m11(t, ζ)λ1dζ

+

∫ 1

0

m12t, ζdζ +

∫ 1

0

m12(t, ζ)dζ +
N∑
i=1

ρiR(i,1)(ζ)dζ +

∫ 1

0

m13(t, ζ)λ3dζ

+

∫ 1

0

m13(t, ζ)dζ
N∑
i=1

ϕiR(i,1)(ζ)dζ + f1(t). (12)

where,

G(i, j) = (
1

Γ(1− α)

∫ t

0

hi(ζ)dζ

(t− ϑ)α
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ
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+

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ).

3.1. Evaluation of G(i, j) via Lepik approach

Now, to find the value of G(i, j), we use the method of Lepik [17]. We will discuss

the following cases.

Case-1 For tj < 0, Since hi(tj)=R(i,1)(tj)=0. G(i, j) = 0.

Case-2 For tj ∈ [α, β), then Eq. (15) becomes

G(i, j) =
1

Γ(1− α)

(∫ α

0

hi(ζ)dζ

(tj − ϑ)α
+

∫ tj

α

hi(ζ)dζ

(tj − ϑ)α

)
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ).

After applying the value of hi(tj) and simplifying, we get

G(i, j) =
1

Γ(1− α)

(∫ tj

α

dr

(tj − ϑ)α

)
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ

+

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ

=
1

Γ(1− α)

(tj − α)1−α

1− α
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ

+

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ.

Case-3 For tj ∈ [β, γ), then Eq. (15) becomes

G(i, j) =
1

Γ(1− α)
(

∫ α

0

hi(ζ)dζ

(tj − ϑ)α
+

∫ β

α

hi(ζ)dζ

(tj − ϑ)α
+

∫ tj

β

hi(ζ)dζ

(tj − ϑ)α
− a(t)R(i,1)(t)

+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ). (13)

After applying the value of hi(tj) and simplifying, we get

G(i, j) =
1

Γ(1− α)
(

∫ β

α

dr

(tj − ϑ)α
−
∫ tj

β

dr

(tj − ϑ)α
− a(t)R(i,1)(t)

+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ). (14)
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simplification, we obtain the expression

G(i, j) =
1

Γ(1− α)
(
(tj − α)1−α

1− α
− (tj − β)1−α

1− α
− (tj − β)1−α

1− α
− a(t)R(i,1)(t)+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ)

=
1

Γ(1− α)
(
(tj − α)1−α

1− α
− 2(tj − β)1−α

1− α
− a(t)R(i,1)(t)+

∫ t
0
k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ). (15)

Case-4 For tj ∈ [γ, 1), then Eq. (15) becomes

G(i, j) =
1

Γ(1− α)

(∫ α

0

hi(ζ)dζ

(tj − ϑ)α
+

∫ β

α

hi(ζ)dζ

(tj − ϑ)α
+

∫ γ

β

hi(ζ)dζ

(tj − ϑ)α
+

∫ tj

γ

hi(ζ)dζ

(tj − ϑ)α

)
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ).

After applying the value of hi(tj) and simplifying, we get

G(i, j) =
1

Γ(1− α)

(∫ β

α

dr

(tj − ϑ)α
−
∫ γ

β

dr

(tj − ϑ)α

)
−a(t)R(i,1)(t)+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ

+

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ). (16)

simplification, we obtain the expression

G(i, j) =
1

Γ(1− α)

(
(tj − α)1−α

1− α
− (tj − β)1−α

1− α
− (tj − β)1−α

1− α
+

(tj − γ)1−α

1− α

)
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ).

So that

G(i, j) =
1

Γ(1− α)

(
(tj − α)1−α

1− α
− 2(tj − β)1−α

1− α
+

(tj − γ)1−α

1− α

)
− a(t)R(i,1)(t)

+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ). (17)
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Thus

G(i, j) =



0 if tj < 0,

1
Γ(1−α)

(tj−α)1−α

1−α − a(t)R(i,1)(t) +
∫ t

0
k11(t, ζ)R(i,1)(ζ)dζ+∫ t

0
m11(t, ζ)R(i,1)(ζ)dζ)

if tj ∈ [α, β),

1
Γ(1−α)

(
(tj−α)1−α

1−α − 2(tj−β)1−α

1−α

)
− a(t)R(i,1)(t)+∫ t

0
k11(t, ζ)R(i,1)(ζ)dζ +

∫ t
0
m11(t, ζ)R(i,1)(ζ)dζ)

if tj ∈ [β, γ),

1
Γ(1−α)

(
(tj−α)1−α

1−α − 2(tj−β)1−α

1−α +
(tj−γ)1−α

1−α

)
−a(t)R(i,1)(t) +

∫ t
0
k11(t, ζ)R(i,1)(ζ)dζ +

∫ t
0
m11(t, ζ)R(i,1)(ζ)dζ)

if tj ∈ [γ, 1).

Now putting the value of G(i, j) in Eq. (15) results in N×N system of linear algebraic

equations. Furthermore, when solving this system by the Gauss elimination method,

we obtain the unknown ξ
′
is for i = 1, 2, 3...N Haar coefficients. Putting the values of

a
′
is for i = 1, 2, 3...N in Eq. (10) we obtain the approximate solution that is required

Eq. (5).

The following steps summarise the whole algorithm:

Algorithm 1: To evaluate the numerical solution of a system of fractional IDEs

1. Apply Caputo fractional derivative to system (5).

2. Approximate the highest order ordinary derivative by the Haar function, and

the integration method yields the expression for other order derivative.

3. Substituting collocation points to the system (5) , one obtains a system of

algebraic equations.

4. Gauss elimination scheme is used to find the unknown coefficients.

5. Solution at collocation points is obtained using these coefficients.

11



4. Numerical experiments

The section presents various numerical experiments that illustrate the precision

and importance of using the HWCM. Experimental error analysis is carried out,

and errors are tabulated for different collocation points. These experiments involve

the calculation and analysis of different error norms, one of which is the maximum

absolute error L∞, which is defined as

L∞ = ‖ŵ − w‖max = max
1≤i≤N

| ŵi − wi | .

Root mean square error(Mcp) is defined as,

Mcp =

√∑N
i=1(ŵi − wi)2

N
.

The application of the proposed scheme to different test problems is demonstrated

below.

Test problem 1

Consider the following linear FIDE system.

D
3
4y1(t) =

−1

20
− t

12
+

4t
1
4 (−32t2 + 15)

15Γ(0.25)
+

∫ 1

0

(t+ s)(y1(s) + y2(s))ds, (18)

D
3
4y2(t) =

−13
√
t

60
+

4

5Γ(0.24)
t
1
4 (−5 + 8t) +

∫ 1

0

√
ts2(y1(s)− y2(s))ds, (19)

where ICs are y1(0) = 0, y2(0) = 0, and y1(t) = t− t3 and y2(t) = t2− t are the exact

solutions.

The graphical comparison of exact and approximate solutions y1 and y2 for test

problem 1 is demonstrated in figures 1 and 2, respectively. It is observed that the

approximate solution is in excellent agreement with the exact solution. Moreover, the

MAE and Mcp for problem 1 are presented in tables 1 and 2, respectively. The errors

in both cases are observed to be reduced when the collocation points increase.

12



Figure 1: A comparative analysis of y1 exact versus approximate solutions for the IDEs in test

problem 1 at N = 32

Figure 2: A comparative analysis of y2 exact versus approximate solutions for the IDEs in test

problem 1
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J N = 2J+1 L∞

y1(t) y2(t)

1 22 7.109728 ×10−03 1.004610 ×10−02

2 23 6.365602 ×10−03 6.478174 ×10−03

3 24 4.848868 ×10−03 3.225315 ×10−03

4 25 2.355479 ×10−03 1.469555 ×10−03

5 26 1.064701 ×10−03 6.438438 ×10−04

6 27 4.650564 ×10−04 2.767033 ×10−04

7 28 1.996172 ×10−04 1.177372 ×10−04

8 29 8.489205 ×10−05 4.983052 ×10−05

9 210 3.592118 ×10−05 2.102871 ×10−05

Table 1: MAE errors of test problem 1.

J N = 2J+1 Mcp

y1(t) y2(t)

1 22 4.143352 ×10−03 7.361072 ×10−03

2 23 3.978996 ×10−03 3.882518 ×10−03

3 24 2.289060 ×10−03 1.954836 ×10−03

4 25 1.109005 ×10−03 9.057392 ×10−04

5 26 5.009045 ×10−04 4.011089 ×10−04

6 27 2.188161 ×10−04 1.734762 ×10−04

7 28 9.395948 ×10−05 7.408489 ×10−05

8 29 3.997497 ×10−05 3.142193 ×10−05

9 210 1.692073 ×10−05 1.327657 ×10−05

Table 2: Root mean square error Mcp of test problem 1.
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Test problem 2

Consider system FIDEs.

D
4
5y1(t) =

67t

80
+

25y
6
5 (−11 + 5t)

33Γ(1
5
)

+

∫ 1

0

2yt(y1(s) + y2(s))ds, (20)

D
4
5y2(t) = − 83

160
+

15t

4
(15t

1
5 )− 17t

24
−
∫ 1

0

(t+ s)(y1(s)− y2(s))ds, (21)

where, ICs are y1(0) = 0, y2(0) = 0, and y1(t) = t3 − t2, y2(t) = 15
8
t2 are the exact

solutions.

The graphical comparison of exact and approximate solutions y1 and y2 for test

problem 2 is shown in figures 3 and 4, respectively. One can observe an excellent

agreement with the exact solution using the proposed scheme. The MAE and Mcp

for problem 2 are presented in tables 3 and 4, respectively. With the increase in

collocation points, the errors in both cases were reduced significantly.

Figure 3: A comparative analysis of y1 exact versus approximate solutions for the IDEs in test

problem 2 at N = 32
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Figure 4: A comparative analysis of y2 exact versus approximate solutions for the IDEs in test

problem 2 at N = 32

J N = 2J+1 L∞

y1(t) y2(t)

1 22 7.930871 ×10−03 1.953125 ×10−02

2 23 2.293442 ×10−03 1.098183 ×10−02

3 24 1.407094 ×10−03 5.878679 ×10−03

4 25 8.318226 ×10−04 2.810980 ×10−03

5 26 4.152454 ×10−04 1.281897 ×10−03

6 27 1.934644 ×10−04 5.715671 ×10−04

7 28 8.724058 ×10−05 2.519718 ×10−04

8 29 3.869604 ×10−05 1.104265 ×10−04

9 210 1.701606 ×10−05 4.824320 ×10−05

Table 3: MAE errors of test problem 2.
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J N = 2J+1 Mcp

y1(t) y2(t)

1 22 5.455769 ×10−03 1.254088 ×10−02

2 23 1.279855 ×10−03 6.432173 ×10−03

3 24 6.098773 ×10−04 3.468816 ×10−03

4 25 3.230182 ×10−04 1.693191 ×10−03

5 26 1.574979 ×10−04 7.821156 ×10−04

6 27 7.285949 ×10−05 3.512593 ×10−04

7 28 3.277316 ×10−05 1.554746 ×10−04

8 29 1.452330 ×10−05 6.828914 ×10−05

9 210 6.384297 ×10−06 2.987143 ×10−05

Table 4: Root mean squares errors Mcp of test problem 2.

Test problem 3

Consider system of mixed FIDEs

D
3
4y1(t) =

t4

4
+

32t
5
4

5Γ(1
4
)
− t

6
−
∫ t

0

(y2(t))dt+

∫ 1

0

2t(y1(t)− y2(t))dt, (22)

D
3
4y2(t) =

t3

3
+

384t
9
4

45Γ(0.25)
−
∫ t

0

y1(t)dt−
∫ 1

0

2t(y1(t) + y2(t))dt, (23)

where ICs are y1(0) = 0, y2(0) = 0, where y1(t) = t2, y2(t) = t3 are the exact solutions.

The graphical comparison of exact and approximate solutions y1 and y2 using the

present scheme for test problem 3 is depicted in figures 5 and 6, respectively. MAE

and Mcp errors for problem 3 are presented in tables 5 and 6, respectively. With the

increase in collocation points, the errors in both cases reduce significantly.

17



Figure 5: A comparative analysis of y1 exact versus approximate solutions for the IDEs in test

problem 3 at N = 32

Figure 6: A comparative analysis of y2 exact versus approximate solutions for the IDEs in test

problem 3 at N = 32
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J N = 2J+1 L∞

y1(t) y2(t)

1 22 1.004610 ×10−02 7.109728 ×10−03

2 23 6.478174 ×10−03 8.365602 ×10−03

3 24 3.225315 ×10−03 4.848868 ×10−03

4 25 1.469555 ×10−03 2.355479 ×10−03

5 26 6.438438 ×10−04 1.064701 ×10−03

6 27 2.767033 ×10−04 4.650564 ×10−04

7 28 1.996172 ×10−04 1.177372 ×10−04

8 29 4.983052 ×10−05 8.489205 ×10−05

9 210 3.592118 ×10−05 2.102871 ×10−05

Table 5: MAE errors of test problem 3.

J N = 2J+1 Mcp

y1(t) y2(t)

1 22 7.361072 ×10−03 4.143352 ×10−03

2 23 3.882518 ×10−03 3.978997 ×10−03

3 24 1.954836 ×10−03 2.289060 ×10−03

4 25 9.057392 ×10−04 1.109005 ×10−03

5 26 4.011010 ×10−04 5.009045 ×10−04

6 27 1.734762 ×10−04 2.188161 ×10−04

7 28 7.408489 ×10−05 9.395947 ×10−05

8 29 3.142193 ×10−05 3.997497 ×10−05

9 210 1.327657 ×10−05 1.692073 ×10−05

Table 6: Root mean squares errors Mcp of test problem 3.

5. Conclusion

The article discussed the effectiveness and accuracy of the HWCM for solving a

system of FIDEs. The study used numerical results to validate the efficiency of the
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HWCM and demonstrate its potential applicability in various scientific and engineer-

ing fields that involve fractional calculus. The article concluded that HWCM is an

effective and accurate technique for solving a system of FIDEs. This means that the

method can produce accurate solutions to FIDEs, which is a significant problem in

many scientific and engineering fields. The study also suggests that the HWCM can

be used as a viable alternative to solve complex FIDEs containing multiple variables.

The efficiency of the method was validated on the basis of numerical results obtained

through simulations. The simulations were conducted on various FIDEs with differ-

ent complexity levels and the results showed that the HWCM could produce accurate

solutions in all cases. This implies that the HWCM can be relied on to provide ac-

curate solutions to FIDEs regardless of their complexity level. We can extend the

proposed method for solution of nonlinear system of FIDEs and higher order FIDEs.

In summary, the article concludes that the Haar wavelet method HWCM is an ef-

fective and accurate technique for solving a system of FIDEs. The numerical results

validate its efficiency and demonstrate its potential applicability in various fields of

science and engineering that involve fractional calculus. The study also indicates that

the HWCM can be considered as a viable alternative for solving complex FIDEs that

contain multiple variables.
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