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ABSTRACT

In this article, we study discrete multi-Galerkin and iterated discrete multi-Galerkin methods

for solving the derivative-dependent nonlinear Hammerstein type Fredholm integral equations,

where the nonlinear function within the integration is dependent on the derivative, and the ker-

nel function is of Green’s type. We achieve the error bounds by substituting all integrals in the

multi-Galerkin method with numerical quadrature and obtain the superconvergence results for

derivative-dependent Fredholm-Hammerstein integral equations using piecewise polynomials as ba-

sis functions. By applying the numerical quadrature rule, we prove that the iterated discrete multi-

Galerkin method provides superior convergence rates over the discrete multi-Galerkin method with

O(hmin(d+1, m+2m1, m+2m2)), where h represents the norm of the partitions. Numerical results are

presented to validate the theoretical findings, with figures illustrating a comparison of the error

analysis between the proposed methods and those discussed in [22].
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1. Introduction

Nonlinear BVPs arising in ordinary differential equations are prevalent across various fields such

as mathematical models [1], diffusion problems [5], chemical reactions [9], Stellar Structure [12],

engineering [14], nuclear physics [16], heat conduction [23], physiology [24], etc.
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This paper deals with the following two-point boundary value problems (BVPs):

(z′(t))′ = ψ(t, z(t), z′(t)), (1.1)

with the boundary conditions

z(0) = δ1, µ1z(1) + λ1z
′(1) = ξ1. (1.2)

The reformulated integral equation is expressed as follows:

z(t) = δ1 +
(ξ1 − δ1λ1)t

µ1 + λ1
+

∫ 1

0
K(t, s)ψ(s, z(s), z′(s))ds, ∀ t ∈ [0, 1], (1.3)

with kernel

K(t, s) =

{
t(1− µ1s

µ1+λ1
), 0 ≤ t ≤ s,

s(1− µ1t
µ1+λ1

), s ≤ t ≤ 1,

where δ1, µ1 > 0, λ1 and ξ1 are constants.

In most cases, BVPs are often difficult to solve analytically. Therefore, we need to use some nu-

merical approximate methods for their solution. The numerical methods to solve the BVPs, such

as the decomposition, Adomian decomposition, and modified decomposition methods are well doc-

umented in the literature (see [2,9,10,18,19,39]), in which the researchers considered the BVP (1.1)

with nonlinear function ψ independent of derivatives. Although these numerical methods provide

several advantages, they require substantial computational effort mainly due to the calculation of

indeterminate coefficients in more complex transcendental or nonlinear algebraic equations, which

adds to the overall computational work (see [16,24,25]). Moreover, in some cases, the undetermined

coefficients may not have a unique solution. This is a significant drawback of using these meth-

ods for addressing nonlinear BVPs. Hence instead of directly solving BVPs, it is feasible to solve

an equivalent integral equation that leads to a derivative-dependent nonlinear Hammerstein type

Fredholm integral equation:

z(t) = g(t) +

∫ 1

0
K(t, s)ψ(s, z(s), z′(s)) ds, (1.4)

where the functions g(.), Green’s kernel K(., .) and ψ(., z, z′) are known, while z(·) is the unknown

function to be determined in the Banach space X.
In general, integral equation (1.4) represents the regenerate form of nonlinear BVPs. Several authors

have discussed Hammerstein type second kind Fredholm integral equations, where the nonlinear

function ψ is independent of derivative (see [20,26,27,29,32]). Atkinson et al. [6–8] explored the

spectral and iterated spectral methods for solving Fredholm-Hammerstein integral equations with

certain classes of kernels. Recently researchers studied the Volterra-Fredholm and systems of inte-

gral partial differential equations using hybrid functions [37,38]. They also investigated the solutions

of various types of partial integro-differential equations [33–36]. Chakraborty et al. [11] introduced
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the spectral methods for solving Volterra-Hammerstein integral equations of the second kind. In

[31], Nigam et al. developed discrete spectral methods for Fredholm-Hammerstein integral equa-

tions. Meanwhile, Allouch et al. [4] proposed spectral methods to address the derivative-dependent

nonlinear Hammerstein type integral equations with Green’s kernels.

In [28], Mandal et al. studied the Galerkin method and its iterated version to solve derivative-

dependent Fredholm-Hammerstein integral equations, utilizing piecewise polynomials as basis func-

tions, and they achieved convergence results in infinity norm. However, the authors excluded con-

siderations of errors arising from the inner product and integral operators. To address these types

of errors, Kant et al. [22] presented the discrete Galerkin method and its iterated version for solv-

ing derivative-dependent Hammerstein type Fredholm integral equation with Green’s kernel and

achieved better convergence. Hence the primary objective of choosing these methods in this article

is to obtain superconvergence results, including better convergence rates and improved accuracy by

accounting for errors arising from integrals and inner products. These improvements are made in

comparison to the discrete Galerkin and iterated discrete Galerkin methods presented in [22] and

studied with collocation and multi-collocation methods [30].

The main motivation of this article is to achieve superconvergence results by addressing errors aris-

ing from integrals and inner products in derivative-dependent nonlinear Hammerstein type integral

equations. Recently in [21], the authors obtained superconvergence results for derivative-dependent

Fredholm-Hammerstein integral equations of the second kind using modified Galerkin and iterated

modified Galerkin methods, which demonstrated enhanced performance compared to the Galerkin

and iterated Galerkin methods. Motivated by this, our aim is to achieve a higher rate of conver-

gence with reduced computational complexity for the same, thereby improving upon the discrete

Galerkin and iterated discrete Galerkin methods discussed in [22].

In this article, we study the discrete multi-Galerkin method and its iterated version using piecewise

polynomials to solve derivative-dependent nonlinear Hammerstein type Fredholm integral equations

with Green’s kernel defined by (1.4). We achieved order of convergence O(hmin(d+1, m+m1, m+m2))

and O(hmin(d+1, m+2m1, m+2m2)), respectively, where h represents the norm of the partitions and d is

the degree of precision of the quadrature rule. Further, m = min{r+1, k1}, m1 = min{r+1, k1, µ+

2}, m2 = min{r + 1, k1 − 1, µ + 1}, where r represents the degree of the piecewise polynomials,

k1 is the smoothness of the solution, and k1 ≥ µ ≥ −1. Hence, it shows that the iterated discrete

multi-Galerkin method exhibits superior convergence rates compared to the discrete multi-Galerkin

method.

This paper is structured in the following manner: In Sec 2, we develop the mathematical formula-

tion of the discrete multi-Galerkin method and its iterated version for solving derivative-dependent

nonlinear Hammerstein type Fredholm integral equations defined by (1.4). In Sec 3, we analyze the

superconvergence results obtained by discrete multi-Galerkin and iterated discrete multi-Galerkin

methods. In Sec 4, we provide numerical examples to confirm the theoretical findings. For the rest

of the paper, we will use C as a generic constant.
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2. Discrete Multi-Galerkin Methods: Derivative-dependent nonlinear Hammerstein

type Fredholm integral equations

Consider the derivative-dependent nonlinear Hammerstein type Fredholm integral equations

z(t) = g(t) +

∫ 1

0
K(t, s)ψ(s, z(s), z′(s)) ds, (2.1)

where g(.), K(., .) and ψ(., z, z′) are known sufficiently smooth functions, whereas z(·) is the un-

known function to be found in the Banach space X = L∞[0, 1].

Take a certain t ∈ [0, 1], consider

K1t(s) = Kt(s), ∀ t ∈ [0, s], (2.2)

K2t(s) = Kt(s), ∀ t ∈ [s, 1]. (2.3)

For each t ∈ [0, 1], we assume K1t ∈ Ck1 [0, t], K2t ∈ Ck1 [t, 1] and Kt(s) = K(t, s) ∈ Ck1(0, t) ∩
Ck1(t, 1) ∩ Cµ(0, 1), where k1 ≥ 1 and k1 ≥ µ ≥ −1. In general, consider g ∈ Ck1 [0, 1]. From
Atkinson et al. ([7], Theorem 4.1 and Corollary 4.2), implies that z ∈ Ck1([0, 1]). The Green’s

kernel, in the context of two-point BVP of (1.1) defined by

K(t, s) =

{
t(1− µ1s

µ1+λ1
), 0 ≤ t ≤ s,

s(1− µ1t
µ1+λ1

), s ≤ t ≤ 1,

with µ = 0 and k1 ≥ 1.

Denote

∥z∥k1,∞ = max{∥z(m)∥∞ : 0 ≤ m ≤ k1},

where z(m) represents the mth - order derivative of z.

In this paper, we assume the following conditions for g(t), K(t, s), and ψ(s, z(s), z′(s)):

(i) g ∈ Ck1 [0, 1].

(ii) K(t, s) ∈ Ck1([0, 1]× [0, 1]).

(iii) A1 = sup
t,s∈[0,1]

|K(t, s)| <∞, A2 = sup
t,s∈[0,1]

|l(t, s)| <∞.

(iv) The nonlinear function ψ(s, z, z′) is Lipschitz continuous in z and z′, i.e., for each

z1, z2, z
′
1, z

′
2 ∈ X, ∃ a constant C1 > 0 such that

|ψ(s, z1, z′1)− ψ(s, z2, z
′
2)| ≤ C1{|z1(s)− z2(s)|+ |z′1(s)− z′2(s)|},∀ s ∈ [0, 1].

(v) The partial derivatives ψ(0,1,0)(s, z, z′) ∈ C([0, 1]×X×X), ψ(0,0,1)(s, z, z′) ∈ C([0, 1]×X×X)
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of ψ exists and Lipschitz continuous w.r.t the second and third variables, i.e., for each z1, z2, z
′
1, z

′
2 ∈

X, ∃ constants C2, C3 > 0 such that

|ψ(0,1,0)(s, z1, z
′
1)− ψ(0,1,0)(s, z2, z

′
2)| ≤ C2{|z1(s)− z2(s)|+ |z′1(s)− z′2(s)|},

|ψ(0,0,1)(s, z1, z
′
1)− ψ(0,0,1)(s, z2, z

′
2)| ≤ C3{|z1(s)− z2(s)|+ |z′1(s)− z′2(s)|},

where ∀ s ∈ [0, 1].

(vi) Let A = A1 +A2 and C1 hold the properties such that AC1 < 1.

For each z ∈ X and t ∈ [0, 1], let

Kz(t) =
∫ 1

0
K(t, s)z(s) ds,

and

Lz(t) =
d

dt
(Kz)(t) =

∫ 1

0
l(t, s)z(s) ds,

where lt(s) = l(t, s) = ∂
∂tK(t, s) satisfies l(t, s) ∈ Ck1−1(0, t) ∩ Ck1−1(t, 1) ∩ Cµ−1(0, 1).

We consider

∥K∥∞ ≤ A1 and ∥L∥∞ ≤ A2, (2.4)

where K and L are compact operators.

To approximate Eq. (2.1), we use the approximation approach proposed by Kumar and Sloan [27].

To begin, we let

η(s) = ψ(s, z(s), z′(s)), s ∈ [0, 1]. (2.5)

Let if ψ(., ., .) ∈ Ck1([0, 1]× [0, 1]× [0, 1]), then applying the product rule of differentiation implies

that η ∈ Ck1 [0, 1].
Then the Eq. (2.1) can be expressed in the following as

z(t) = g(t) +

∫ 1

0
K(t, s)η(s) ds, t ∈ [0, 1]. (2.6)

Consider the operator K : X → X defined by

Kη(s) =
∫ 1

0
K(t, s)η(s)ds. (2.7)

The Eq. (2.6) is reduced in operator form as

z = g +Kη. (2.8)
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Further, introduce the nonlinear operator Ω : X → X defined by

Ω(z)(s) = ψ(s, z(s), z′(s)). (2.9)

Hence the Eq. (2.5) becomes

η = Ω(g +Kη). (2.10)

Now assuming that T(z) = Ω(g +Kz), z ∈ X, from Eq. (2.10), we have

η = Tη. (2.11)

Using the assumption, we have AC1 < 1 such that the operator T is a contraction mapping on the

Banach space X, then using the principle of the Banach contraction theorem, it proves that the Eq.

(2.11) has an isolated solution η0 in X.
Let Xh be the approximation subspaces defined by

Xh = Pm,△ = {z : z|[tj−1, tj ] ∈ Pm, j = 1, 2, ..., n}, (2.12)

where the space Pm includes all polynomials of degree not exceedm (m ≥ 1). Consider the partition

of [0, 1] as Πn : 0 = t0 < t1 < · · · < tn = 1, and h = maxhj , represents the norm of partition defined

as hj = {tj − tj−1, j = 1, 2, .., n}. Let △j = {[tj−1, tj ] : 1 ≤ j ≤ n}, and define C△ =
n∏
j=1

C(△j),

where C△ constitutes a Banach space in the uniform norm, represented as ∥z∥△,∞ = max
j

∥zj∥∞.

Further, we define useful notations as

L = {1, 2, . . . ,M}, Γ = {t1, t2, . . . , tM}. (2.13)

Then there exists integer p > 0 such that

τ ≤ p ≤ 2τ, (2.14)

where τ represents total number of quadrature points in [0, 1].

The introduction of index sets can be expressed as the form:

Hj = j + (i− 1)τ, where 1 ≤ i ≤ m, 1 ≤ j ≤ τ. (2.15)

Consider the collection {Γi}mi=1 ⊆ Γ satisfying the following condition

tj ∈ Γi = {t1i , t2i , . . . , t
p
i }, ∀ j ∈ Hi,

max{|t− tj |; t ∈ Γi, j ∈ Hj} ≤ sh,

here s is a provided constant (typically s ≤ 2).

Now introduce the notation lqi for q = 1, 2, . . . , p, denotes the elementary Lagrange-polynomials
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corresponding to the nodes in Γi.

Hence we have

(Liy)(t) =

p∑
q=1

y(tqi )l
q
i (t), (2.16)

denotes as Lagrange-interpolation polynomial for the function y at these nodes.

Define the collection of indices {Bi}mi=1 such that

Hi ⊂ Bi = {i1, i2, . . . , ip} ⊂ H, Hi = {tq : q ∈ Bi},
tqi = tiq , i = 1, 2, . . . ,m, and q = 1, . . . , p.

Then Eq. (2.16) can be expressed in the form of Newton interpolation polynomial:

[Li(y)](t) =

p−1∑
q=1

y[t1i , . . . , t
q+1
i ](t− t1i ) . . . (t− tqi ). (2.17)

Now use nested multiplication for the evaluation process. To do this, we use Eq. (2.17) to create

Kh and Lh as discrete analogues of K and L, respectively.
Defining some functions in the following manner:

π
(1)
i (t) =


0, t ≤ Γi−1

t− Γi−1, Γi−1 ≤ t ≤ Γi

fi, Γi ≤ t

, (2.18)

π
(2)
i (t) =


fi, t ≤ Γi−1

Γi − t, Γi−1 ≤ t ≤ Γi

0, Γi ≤ t

, (2.19)

s1ij(t) = Γi−1 + π
(1)
i (t)t̂j ,

s2ij(t) = Γi + π
(2)
i (t)t̂j − 1,

where 1 ≤ i ≤ m and 1 ≤ j ≤ τ .

As introduced earlier notations, the discrete operators Kh : C[0, 1] → C[0, 1] and Lh : C[0, 1] →
C[0, 1] defined as

(Khη)(t) =

2∑
ν=1

m∑
i=1

π
(p)
i (t)

τ∑
j=1

ŵjK(t, sνij(t))(Liη)(s
ν
ij(t)), (2.20)
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and

(Lhη)(t) =
2∑

ν=1

m∑
i=1

π
(p)
i (t)

τ∑
j=1

ŵj l(t, s
ν
ij(t))(Liη)(s

ν
ij(t)). (2.21)

For ease of computation, simplify the definition for t ∈ Λi as follows:

(Khη)(t) =

2∑
ν=1

(Liη)A
ν
i (t) +

m∑
η=1,η ̸=i

∑
j∈Hη

K(t, tj)η(tj), (2.22)

where

Aνi (t) = π
(ν)
i (t)

τ∑
j=1

ŵjK(t, sνij(t))(Liη)(s
ν
ij(t)). (2.23)

Proposition 1. Consider η0 ∈ Cd+1[0, 1] as the unique solution of nonlinear Fredholm integral

equations defined in (2.8), then there hold:

∥(Kh −K)η0∥∞ = O(hd+1),

∥(Lh − L)η0∥∞ = O(hd+1),

here h represents the norm of partitions and d is the degree of precision.

Now define the inner product in discrete form as:

(α, β)h =

m∑
i=1

τ∑
j=1

wjiα(y
j
i )β(y

j
i ). (2.24)

Consider r = j+(i−1)τ , for each 1 ≤ i ≤ m, 1 ≤ j ≤ τ , also tr=j+(i−1)τ = yji and wr=j+(i−1)τ = wji ,

and set M = mτ.

We define

(α, β)h =

M∑
r=1

wrα(yr)β(yr). (2.25)

Discrete Orthogonal Projection Operator:- Consider Q : X → CΛi
as the discrete orthogonal

projection operator such that

Qx =

τ∑
j=1

⟨x, ej⟩Λi,h
ej , (2.26)
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where

⟨α, β⟩Λi,h
=

τ∑
j=1

wijα(x
i
j)β(x

i
j). (2.27)

For convenient, define discrete projection operator Q : X → CΛ by

Qhz = (Qz1,Qz2, . . . ,Qzn), (2.28)

where Qzi denotes the discrete orthogonal projection operator that projects zi ∈ C(Λi) onto the

subspace of polynomials with degree at most r defined on Λi.

We can also define the above operator Qh : X → Xh as

Qhz =

M∑
j=1

⟨z, ej⟩Mej , z ∈ X, (2.29)

where

Qhz = (Qz1,Qz2, . . . ,Qzn), (2.30)

and Qh satisfies such that

⟨Qhz, zh⟩M = ⟨z, zh⟩M , z ∈ X, zh ∈ Xh. (2.31)

Lemma 1. Let η0 ∈ Cd+1[0, 1] be a unique solution of nonlinear Fredholm integral equations defined

in (2.8), the following result hold

∥Kh(I−Qh)∥∞ = O(hm1) and ∥Lh(I−Qh)∥∞ = O(hm2),

where h represents the norm of partitions, m1 = min{r + 1, k1, µ + 2} and m2 = min{r + 1, k1 −
1, µ+ 1}.

From Sloan [41] and Chatelin [13], we present some essential properties of Qh, which are indis-

pensable for our convergence analysis.

(i.) ∀ z ∈ X,

⟨z −Qhz, z −Qhz⟩M = min
s∈Xh

⟨z − s, z − s⟩M . (2.32)

(ii.) ∀ z ∈ X, ∃ a constant ρ > 0 such that

∥Qh∥∞ ≤ ρ <∞, (2.33)
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and

∥Qhz − z∥∞ ≤ inf
ψ∈Xh

∥z − ψ∥∞ → 0 as h→ 0. (2.34)

(iii.) In general, z ∈ Cr[0, 1],

∥Qhz − z∥∞ ≤ Chr∥zr∥∞, (2.35)

here C represents a generic constant independent of h.

To solve Eq. (2.10), using the discrete multi-Galerkin approximation, we aim to achieve the ap-

proximate solution ηMh ∈ X such that

ηMh = TMh (ηMh ), (2.36)

where the operator TMh : X → X defined by (see [15,17])

TMh (u) = QhΩ(g +Khu) + (I−Qh)Ω(g +KhQhu). (2.37)

The iterated discrete multi-Galerkin method approximates as follows:

η̃Mh = Ω(g +Khη
M
h ). (2.38)

From Eq. (2.8), corresponding approximate solutions zMh and z̃Mh of z defined as:

zMh =g +Kh(η
M
h ), (2.39)

z̃Mh =g +Kh(η̃
M
h ). (2.40)

Now applying Qh and (I−Qh) to the Eq. (2.36), we have

Qhη
M
h = QhΩ(g +Khη

M
h ), (2.41)

(I−Qh)η
M
h = (I−Qh)Ω(g +KhQhη

M
h ). (2.42)

Eq. (2.42) can be expressed as

ηMh = Qhη
M
h + (I−Qh)Ω(g +KhQhη

M
h ). (2.43)

From Eqs. (2.41) and (2.43), we obtain

Qhη
M
h = QhΩ(g +Kh(Qhη

M
h + (I−Qh)Ω(g +KhQhη

M
h ))). (2.44)

Let MM
h = Qhη

M
h , we find MM

h ∈ Xh, then above equation becomes

MM
h = QhΩ(g +Kh(MM

h + (I−Qh)Ω(g +KhMM
h ))). (2.45)
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Now find ηMh from the Eq. (2.43) as

ηMh = MM
h + (I−Qh)Ω(g +KhMM

h ). (2.46)

Note that Fréchet derivative of TMh at η0 is defined as

TM ′

h (η0) = QhΩ
(0,1,0)(g +Khη0)Kh + (I−Qh)Ω

(0,1,0)(g +KhQhη0)KhQh

+QhΩ
(0,0,1)(g +Khη0)Lh + (I−Qh)Ω

(0,0,1)(g +KhQhη0)LhQh. (2.47)

3. Superconvergence results

This section focuses on the study of the existence of the discrete multi-Galerkin technique and its

iterated version for addressing derivative-dependent nonlinear Hammerstein type Fredholm integral

equations given by (2.1) and achieves their superconvergence results. For this, we will commence

with the theorem from [42], which provides conditions that if one equation is solvable, then another

related equation must also be solvable.

Theorem 1. ([42]) Let χ̂ and χ̃ be the continuous operators and Φ be the open set in the Banach

space X. Let η̃0 ∈ Φ be the isolated solution of η = χ̃η. Then the given condition holds

(a) The operator χ̂ is Fréchet differentiable in a neighborhood of the point η̃0, and the linear

operator (I− χ̂′(η̃o)) is continuously differentiable.

(b) Consider some δ > 0 and constant 0 < q < 1, the given conditions hold (assuming δ is sufficiently

small such that ∥η − η̃0∥≤ δ contained in Φ)

sup
∥η−η̃0∥≤δ

∥(I− χ̂′(η̃o))
−1(χ̂′(η)− χ̂′(η̃o))∥ ≤ q, (3.1)

β = ∥(I− χ̂′(η̃o))
−1(χ̂(η̃o)− χ̃(η̃o))∥ ≤ δ(1− q). (3.2)

Then the equation η = χ̂η possesses an exact solution η̂0 within ∥η − η̃0∥≤ δ. Furthermore, the

inequality

β

1 + q
≤ ∥η̂0 − η̃0∥ ≤ β

1− q
, (3.3)

holds.

Next, we will investigate the existence of discrete multi-Galerkin solutions and their convergence

analysis.

Lemma 2. Let η0 ∈ Ck1 [0, 1] be a unique solution of nonlinear Fredholm integral equations defined

in (2.8), then there hold:

∥(KhQh −K)η0∥∞ = O(hmin(d+1, m+m1)),
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and

∥(LhQh − L)η0∥∞ = O(hmin(d+1, m+m2)),

where d denotes the degree of precision and m = min{r + 1, k1}, m1 = min{r + 1, k1, µ + 2} and

m2 = min{r + 1, k1 − 1, µ+ 1}.

Proof. (p.9, [22]), follows the proof of this Lemma.

Theorem 2. Consider η0 ∈ Ck1 [0, 1] as the exact solution of (2.10) and TM ′

h (η0) be the fréchet

derivative of TMh at η0 given by (2.47). Assume that the operator TM ′

h (η0) do not have an eigenvalue.

Then for small h, the operator (I−TM ′

h (η0)) exists and uniformly bounded on X. Then there exists

a constant L > 0 such that

∥(I− TM ′

h (η0))
−1∥∞ ≤ L <∞.

Proof. From the Eqs. (2.11) and (2.47), we obtain

∥TM ′

h (η0)− T′(η0)∥∞
= ∥QhΩ

(0,1,0)(g +Khη0)Kh + (I−Qh)Ω
(0,1,0)(g +KhQhη0)KhQh

+QhΩ
(0,0,1)(g +Khη0)Lh + (I−Qh)Ω

(0,0,1)(g +KhQhη0)LhQh

− Ω(0,1,0)(g +Kη0)K− Ω(0,0,1)(g +Kη0)L∥∞. (3.4)

From Eq. (3.4), we obtain

{Ω(0,1,0)(g +Khη0)Kh} = {Ω(0,1,0)(g +Khη0)Kh − Ω(0,1,0)(g +Kη0)Kh +Ω(0,1,0)(g +Kη0)Kh}
≤ C2[{(Kh −K)η0}Kh + {(Lh − L)η0}Kh] + Ω(0,1,0)(g +Kη0)Kh, (3.5)

similarly,

{Ω(0,0,1)(g +Khη0)Lh} ≤ C3[{(Kh −K)η0}Lh + {(Lh − L)η0}Lh] + Ω(0,0,1)(g +Kη0)Lh. (3.6)

Also, we have

{Ω(0,1,0)(g +KhQhη0)KhQh} ={Ω(0,1,0)(g +KhQhη0)KhQh − Ω(0,1,0)(g +Kη0)KhQh

+Ω(0,1,0)(g +Kη0)KhQh}
≤ C2[{(KhQh −K)η0}KhQh + {(LhQh − L)η0}KhQh]

+ Ω(0,1,0)(g +Kη0)KhQh, (3.7)

similarly,

{Ω(0,0,1)(g +KhQhη0)LhQh} ≤ C3[{(KhQh −K)η0}LhQh + {(LhQh − L)η0}LhQh]

+ Ω(0,0,1)(g +Kη0)LhQh. (3.8)
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Substituting estimates (3.5)-(3.8) in Eq. (3.4), we obtain

∥TM ′

h (η0)− T′(η0)∥∞ ≤ ρ(C2A1 + C3A2)[∥(Kh −K)η0∥∞ + ∥(Lh − L)η0∥∞]

+ ρ(1 + ρ)(C2A1 + C3A2)[∥(KhQh −K)η0∥∞ + ∥(LhQh − L)η0∥∞]

+ ∥Ω(0,1,0)(g +Kη0)(Kh −K)∥∞ + ∥Ω(0,0,1)(g +Kη0)(Lh − L)∥∞
+ ∥Ω(0,1,0)(g +Kη0)KhQh∥∞ + ∥Ω(0,0,1)(g +Kη0)LhQh∥∞.

Next, using boundedness of ∥Ω(0,1,0)(g +Kη0)∥∞, ∥Ω(0,0,1)(g +Kη0)∥∞, Proposition 1 and Lemma

2, we obtain

∥TM ′

h (η0)− T′(η0)∥∞ → 0 as h→ 0. (3.9)

This implies TM ′

h (η0) is norm convergent to T′(η0). According to Ahues et al. [3], (I− TM ′

h (η0))
−1

is invertible and uniformly bounded for small h, i.e., ∃ a positive constant L independent of h such

that ∥(I− TM ′

h (η0))
−1∥∞ ≤ L <∞.

Hence Proved the Theorem.

Theorem 3. Let η0 ∈ Ck1 [0, 1] be the unique solution of derivative-dependent Hammerstein Fred-

holm integral equations defined by Eq. (2.10). Assume that the linear operator TM ′

h do not have

an eigenvalue 1, where TM ′

h represents the Fréchet derivative of TMh , then for sufficiently small

h and parameter δ > 0, the Eq. (2.36) possesses isolated discrete multi-Galerkin approximation

ηMh ∈ B(η0, δ) = {η : ∥η − η0∥∞ < δ}. Additionally, there exists a constant 0 < q < 1, independent

of h, such that

βh
1 + q

≤ ∥ηMh − η0∥∞ ≤ βh
1− q

,

with βh = ∥(I− TM ′

h (η0))
−1(TMh (η0)− T(η0))∥∞.

Proof. For every η, η0, u ∈ X, we consider

∥[TM ′

h (η0)− TM ′

h (η)]u∥∞ = ∥[{QhΩ
(0,1,0)(g +Khη0)Kh + (I−Qh)Ω

(0,1,0)(g +KhQhη0)KhQh

+QhΩ
(0,0,1)(g +Khη0)Lh + (I−Qh)Ω

(0,0,1)(g +KhQhη0)LhQh}
− {QhΩ

(0,1,0)(g +Khη)Kh + (I−Qh)Ω
(0,1,0)(g +KhQhη)KhQh

+QhΩ
(0,0,1)(g +Khη)Lh + (I−Qh)Ω

(0,0,1)(g +KhQhη)LhQh}u]∥∞
≤ ∥Qh[Ω

(0,1,0)(g +Khη0)− Ω(0,1,0)(g +Khη)]Khu∥∞
+ ∥(I−Qh)[Ω

(0,1,0)(g +KhQhη0)− Ω(0,1,0)(g +KhQhη)]KhQhu∥∞
+ ∥Qh[Ω

(0,0,1)(g +Khη0)− Ω(0,0,1)(g +Khη)]Lhu∥∞
+ ∥(I−Qh)[Ω

(0,0,1)(g +KhQhη0)− Ω(0,0,1)(g +KhQhη)]LhQhu∥∞.
(3.10)
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From Eqs. (2.4) and (2.33), we get

∥Khη∥∞ ≤ A1∥η∥∞, (3.11)

∥Lhη∥∞ ≤ A2∥η∥∞. (3.12)

Also

∥KhQhη∥∞ ≤ A1ρ∥η∥∞, (3.13)

∥LhQhη∥∞ ≤ A2ρ∥η∥∞. (3.14)

Then using the estimates (3.11)-(3.14) in the Eq. (3.10), we get

∥[TM ′

h (η0)− TM ′

h (η)]u∥∞ ≤ ρC2[{∥Kh(η0 − η)∥∞ + ∥Lh(η0 − η)∥∞}∥Khu∥∞]

+ (1 + ρ)C2[{∥KhQh(η0 − η)∥∞ + ∥LhQh(η0 − η)∥∞}∥KhQhu∥∞]

+ ρC3[{∥Kh(η0 − η)∥∞ + ∥Lh(η0 − η)∥∞}∥Lhu∥∞]

+ (1 + ρ)C3[{∥KhQh(η0 − η)∥∞ + ∥LhQh(η0 − η)∥∞}∥LhQhu∥∞]

≤ ρ(C2 + C3)(A1 +A2)
2∥η0 − η∥∞∥u∥∞

+ (1 + ρ)ρ2(C2 + C3)(A1 +A2)
2∥η0 − η∥∞∥u∥∞

= [ρ(C2 + C3)(A1 +A2)
2 + (1 + ρ)ρ2(C2 + C3)(A1 +A2)

2]∥η0 − η∥∞∥u∥∞
= [ρ(C2 + C3)A

2 + (1 + ρ)ρ2(C2 + C3)A
2]∥η0 − η∥∞∥u∥∞

= [ρ(C2 + C3)A
2(1 + ρ+ ρ2)]∥η0 − η∥∞∥u∥∞. (3.15)

Hence

∥TM ′

h (η0)− TM ′

h (η)∥∞ ≤ [ρ(C2 + C3)A
2(1 + ρ+ ρ2)]∥η0 − η∥∞. (3.16)

From the Theorem 2, we obtain

sup
∥η−ηo∥≤δ

∥(I− TM ′

h (η0))
−1(TM ′

h (η0)− TM ′

h (η)∥∞ ≤ L[ρ(C2 + C3)A
2(1 + ρ+ ρ2)]δ ≤ q,

now we take δ such that 0 < q < 1, ensures the validation of (3.1) according to Vainikko’s Theorem

1 of [42].
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Consider

βh = ∥(I− TM ′

h (η0))
−1(TMh (η0)− T(η0))∥∞

≤ L∥TMh (η0)− T(η0)∥∞
= L∥QhΩ(g +Khη0) + (I−Qh)Ω(g +KhQhη0)− Ω(g +Kη0)∥∞
= L∥QhΩ(g +Khη0) + Ω(g +KhQhη0)−QhΩ(g +KhQhη0)− Ω(g +Kη0)∥∞
= L∥{Ω(g +KhQhη0)− Ω(g +Kη0)} − {QhΩ(g +KhQhη0)−QhΩ(g +Khη0)}∥∞
≤ LC1∥{(KhQh −K)η0 + (LhQh − L)η0} −Qh{(KhQh −Kh)η0 + (LhQh − Lh)η0}∥∞
≤ LC1∥(I−Qh){(KhQh −K)η0 + (LhQh − L)η0}+Qh{(Kh −K)η0 + (Lh − L)η0}∥∞. (3.17)

Using Proposition 1 and Lemma 2 in above equation, we obtain

βh ≤ LC1(1 + ρ){∥(KhQh −K)η0∥∞+∥(LhQh − L)η0∥∞}
+ LC1ρ{∥(Kh −K)η0∥∞+∥(Lh − L)η0∥∞} → 0 as h→ 0. (3.18)

Taking sufficiently small h such that βh ≤ δ(1 − q), ensures the validation of (3.2) according to

Vainikko’s Theorem 1 of [42] hold.

Hence from Theorem 1, we have

βh
1 + q

≤ ∥ηMh − η0∥∞ ≤ βh
1− q

,

with βh = ∥(I− TM ′

h (η0))
−1(TMh (η0)− T(η0))∥∞.

Hence proved the Theorem.

Theorem 4. Let η0 ∈ Ck1 [0, 1] be the unique solution of equation defined by (2.10) and assume that

the linear operator TM ′

h do not have an eigenvalue 1, where TM ′

h represents the Fréchet derivative

of TMh . Let Qh : X → Xh be the discrete orthogonal projection operator defined by (2.29) and ηMh
be the discrete multi-Galerkin approximation of η0. Then there holds

∥ηMh − η0∥∞ = O(hmin(d+1, m+m1, m+m2)),

and if zMh is the corresponding approximation of z0, Then the following holds

∥zMh − z0∥∞ = O(hmin(d+1, m+m1, m+m2)),

where d denotes the degree of precision and m = min{r + 1, k1}, m1 = min{r + 1, k1, µ + 2} and

m2 = min{r + 1, k1 − 1, µ+ 1}.

Proof. By using the Theorem 3, we have

βh
1 + q

≤ ∥ηMh − η0∥∞ ≤ βh
1− q

,
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with βh = ∥(I− TM ′

h (η0))
−1(TMh (η0)− T(η0))∥∞.

Consider

∥ηMh − η0∥∞ ≤ βh
1− q

≤ 1

1− q
∥(I− TM ′

h (η0))
−1(TMh (η0)− T(η0))∥∞

≤ C∥(I− TM ′

h (η0))
−1∥∞∥(TMh (η0)− T(η0))∥∞

= CL∥QhΩ(g +Khη0) + (I−Qh)Ω(g +KhQhη0)− Ω(g +Kη0)∥∞
= CL∥QhΩ(g +Khη0) + Ω(g +KhQhη0)−QhΩ(g +KhQhη0)− Ω(g +Kη0)∥∞
= CL∥{Ω(g +KhQhη0)− Ω(g +Kη0)} − {QhΩ(g +KhQhη0)−QhΩ(g +Khη0)}∥∞
≤ CLC1∥{(KhQh −K)η0 + (LhQh − L)η0} −Qh{(KhQh −Kh)η0 + (LhQh − Lh)η0}∥∞
≤ CLC1∥(I−Qh){(KhQh −K)η0 + (LhQh − L)η0}+Qh{(Kh −K)η0 + (Lh − L)η0}∥∞
≤ CLC1(1 + ρ){∥(KhQh −K)η0∥∞+∥(LhQh − L)η0∥∞}
+ CLC1ρ{∥(Kh −K)η0∥∞+∥(Lh − L)η0∥∞}. (3.19)

Now using the result of Proposition 1 and Lemma 2, we obtain

∥ηMh − η0∥∞ = {O(hmin(d+1, m+m1)) +O(hmin(d+1, m+m2))}+ {O(hd+1) +O(hd+1)}
= O(hmin(d+1, m+m1, m+m2)). (3.20)

From Eqs. (2.8) and (2.40), we have

∥zMh − z0∥∞ = ∥Khη
M
h −Kη0∥∞

≤ ∥Khη
M
h −Khη0 +Khη0 −Kη0∥∞

≤ ∥Kh(η
M
h − η0)∥∞ + ∥(Kh −K)η0∥∞

≤ A1∥ηMh − η0∥∞ + ∥(Kh −K)η0∥∞
= O(hmin(d+1, m+m1, m+m2)) +O(hd+1)

= O(hmin(d+1, m+m1, m+m2)). (3.21)

Hence Proved the Theorem.

Next, we will investigate the superconvergence analysis for iterated discrete multi-Galerkin ap-

proximation.

Theorem 5. Let η0 ∈ Ck1 [0, 1] be the exact solution of equation (2.10) and assume that the linear

operator TM ′

h do not have an eigenvalue 1, where TM ′

h represents the Fréchet derivative of TMh . Let

Qh : X → Xh be the discrete orthogonal projection operator given by (2.29) and η̃Mh be the iterated

discrete multi-Galerkin approximation of η0. Then the following holds

∥η̃Mh − η0∥∞ = O(hmin(d+1, m+2m1, m+2m2)),
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and if z̃Mh is the corresponding approximation of z0, Then the following holds

∥z̃Mh − z0∥∞ = O(hmin(d+1, m+2m1, m+2m2)),

where d denotes the degree of precision and m = min{r + 1, k1}, m1 = min{r + 1, k1, µ + 2} and

m2 = min{r + 1, k1 − 1, µ+ 1}.

Proof. We consider

ηMh − η0 = TMh (ηMh )− T(η0)

= TMh (ηMh )− TMh (η0)− TM ′

h (η0)(η
M
h − η0) + TM ′

h (η0)(η
M
h − η0) + TMh (η0)− T(η0).

(3.22)

This implies that

(I− TM ′

h (η0))(η
M
h − η0) = TMh (ηMh )− TMh (η0)− TM ′

h (η0)(η
M
h − η0) + TMh (η0)− T(η0). (3.23)

Now applying the Mean Value Theorem, we obtain

ηMh − η0 = (I− TM ′

h (η0))
−1[TMh (ηMh )− TMh (η0)− TM ′

h (η0)(η
M
h − η0) + TMh (η0)− T(η0)]

= (I− TM ′

h (η0))
−1[TMh (ηMh )− TMh (η0)− TM ′

h (η0)(η
M
h − η0)]

+ (I− TM ′

h (η0))
−1[TMh (η0)− T(η0)]

= (I− TM ′

h (η0))
−1[TM ′

h (η0 + θ1(η
M
h − η0))− TM ′

h (η0)](η
M
h − η0)]

+ (I− TM ′

h (η0))
−1[TMh (η0)− T(η0)], (3.24)

where 0 < θ1 < 1.

Operating Kh on both side of Eq. (3.24), we have

∥Kh(η
M
h − η0)∥∞ = ∥Kh(I− TM ′

h (η0))
−1∥∞∥[TM ′

h (η0 + θ1(η
M
h − η0))− TM ′

h (η0)](η
M
h − η0)∥∞

+ ∥Kh(I− TM ′

h (η0))
−1[TMh (η0)− T(η0)]∥∞. (3.25)

From Theorem 2, we have

∥Kh(I− TM ′

h (η0))
−1u∥∞ ≤ A1∥(I− TM ′

h (η0))
−1u∥∞

≤ A1∥(I− TM ′

h (η0))
−1∥∞∥u∥∞

≤ A1L∥u∥∞. (3.26)

Now using the above estimate in Eq. (3.25), we obtain

∥Kh(η
M
h − η0)∥∞ = A1L∥[TM

′

h (η0 + θ1(η
M
h − η0))− TM ′

h (η0)](η
M
h − η0)∥∞

+ ∥Kh(I− TM ′

h (η0))
−1[TMh (η0)− T(η0)]∥∞. (3.27)

17



Using the identity (I−TM ′

h (η0))
−1 = I+(I−TM ′

h (η0))
−1TM ′

h (η0), in the second term of Eq. (3.27),

we get

∥Kh(I− TM ′

h (η0))
−1[TMh (η0)− T(η0)]∥∞

= ∥Kh{I+ (I− TM ′

h (η0))
−1TM ′

h (η0)}[TMh (η0)− T(η0)]∥∞
= ∥Kh[TMh (η0)− T(η0)]∥∞ + ∥Kh(I− TM ′

h (η0))
−1TM ′

h (η0)[TMh (η0)− T(η0)]∥∞
≤ ∥Kh[TMh (η0)− T(η0)]∥∞ +A1L∥TM

′

h (η0)[TMh (η0)− T(η0)]∥∞. (3.28)

Since

TMh (η0)− T(η0) = QhΩ(g +Khη0) + (I−Qh)Ω(g +KhQhη0)− Ω(g +Kη0),

and

TM ′

h (η0)[TMh (η0)− T(η0)]

= [QhΩ
(0,1,0)(g +Khη0)Kh + (I−Qh)Ω

(0,1,0)(g +KhQhη0)KhQh +QhΩ
(0,0,1)(g +Khη0)Lh

+ (I−Qh)Ω
(0,0,1)(g +KhQhη0)LhQh]× {QhΩ(g +Khη0) + (I−Qh)Ω(g +KhQhη0)− Ω(g +Kη0)}

= {Qh[Ω
(0,1,0)(g +Khη0)Kh +Ω(0,0,1)(g +Khη0)Lh] + (I−Qh)[Ω

(0,1,0)(g +KhQhη0)KhQh

+Ω(0,0,1)(g +KhQhη0)LhQh]× {[Ω(g +KhQhη0)− Ω(g +Kη0)]− [QhΩ(g +KhQhη0)−QhΩ(g +Khη0)]}
≤ [ρ{∥Ω(0,1,0)(g +Khη0)Kh +Ω(0,0,1)(g +Khη0)Lh∥∞}+ (1 + ρ){∥Ω(0,1,0)(g +KhQhη0)KhQh

+Ω(0,0,1)(g +KhQhη0)LhQh∥∞}]× [C1(1 + ρ){∥(KhQh −K)η0∥∞+∥(LhQh −K)η0∥∞}
+ C1ρ{∥(Kh −K)η0∥∞+∥(Lh − L)η0∥∞}]. (3.29)

Hence using the estimates (3.28)-(3.29) in Eq. (3.27), we obtain

∥Kh(η
M
h − η0)∥∞ = A1L∥[TM

′

h (η0 + θ1(η
M
h − η0))− TM ′

h (η0)](η
M
h − η0)∥∞

+ ∥Kh[TMh (η0)− T(η0)]∥∞ +A1L∥TM
′

h (η0)[TMh (η0)− T(η0)]∥∞
≤ CA1L∥ηMh − η0∥2∞ + ∥Kh(I−Qh)[(KhQh −K)η0 + (LhQh − L)η0]∥∞
+ ∥KhQh[(Kh −K)η0 + (Lh − L)η0]∥∞ +A1L∥{Qh[Ω

(0,1,0)(g +Khη0)Kh

+Ω(0,0,1)(g +Khη0)Lh] + (I−Qh)[Ω
(0,1,0)(g +KhQhη0)KhQh

+Ω(0,0,1)(g +KhQhη0)LhQh]} × {[Ω(g +KhQhη0)− Ω(g +Kη0)]

− [QhΩ(g +KhQhη0)−QhΩ(g +Khη0)]}∥∞
≤ CA1L∥ηMh − η0∥2∞ + ∥Kh(I−Qh)∥∞∥[(KhQh −K)η0 + (LhQh − L)η0]∥∞
+ ∥KhQh[(Kh −K)η0 + (Lh − L)η0]∥∞ +A1Lρ∥[Ω(0,1,0)(g +Khη0)Kh

+Ω(0,0,1)(g +Khη0)Lh]∥∞ +A1L(1 + ρ)∥[Ω(0,1,0)(g +KhQhη0)KhQh

+Ω(0,0,1)(g +KhQhη0)LhQh]∥∞ × [C1(1 + ρ){∥(KhQh −K)η0∥∞+∥(LhQh − L)η0∥∞}
+ C1ρ{∥(Kh −K)η0∥∞+∥(Lh − L)η0∥∞}]. (3.30)
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Operating Lh on both side of Eq. (3.24), we have

∥Lh(ηMh − η0)∥∞ = ∥Lh(I− TM ′

h (η0))
−1∥∞∥[TM ′

h (η0 + θ1(η
M
h − η0))− TM ′

h (η0)](η
M
h − η0)∥∞

+ ∥Lh(I− TM ′

h (η0))
−1[TMh (η0)− T(η0)]∥∞. (3.31)

From Theorem 2, we have

∥Lh(I− TM ′

h (η0))
−1u∥∞ ≤ A2∥(I− TM ′

h (η0))
−1u∥∞

≤ A2∥(I− TM ′

h (η0))
−1∥∞∥u∥∞

≤ A2L∥u∥∞. (3.32)

Now using the above estimate in Eq. (3.31), we obtain

∥Lh(ηMh − η0)∥∞ = A2L∥[TM
′

h (η0 + θ1(η
M
h − η0))− TM ′

h (η0)](η
M
h − η0)∥∞

+ ∥Lh(I− TM ′

h (η0))
−1[TMh (η0)− T(η0)]∥∞. (3.33)

Now using the identity (I − TM ′

h (η0))
−1 = I + (I − TM ′

h (η0))
−1TM ′

h (η0), in the second part of Eq.

(3.33), we get

∥Lh(I− TM ′

h (η0))
−1[TMh (η0)− T(η0)]∥∞

= ∥Lh{I+ (I− TM ′

h (η0))
−1TM ′

h (η0)}[TMh (η0)− T(η0)]∥∞
= ∥Lh[TMh (η0)− T(η0)]∥∞ + ∥Lh(I− TM ′

h (η0))
−1TM ′

h (η0)}[TMh (η0)− T(η0)]∥∞
≤ ∥Lh[TMh (η0)− T(η0)]∥∞ +A2L∥TM

′

h (η0)[TMh (η0)− T(η0)]∥∞. (3.34)

Since we have

TMh (η0)− T(η0) = QhΩ(g +Khη0) + (I−Qh)Ω(g +KhQhη0)− Ω(g +Kη0),

and

TM ′

h (η0)[TMh (η0)− T(η0)]

≤ [ρ{∥Ω(0,1,0)(g +Khη0)Kh +Ω(0,0,1)(g +Khη0)Lh∥∞}+ (1 + ρ){∥Ω(0,1,0)(g +KhQhη0)KhQh

+Ω(0,0,1)(g +KhQhη0)LhQh∥∞}]× [C1(1 + ρ){∥(KhQh −K)η0∥∞+∥(LhQh −K)η0∥∞}
+ C1ρ{∥(Kh −K)η0∥∞+∥(Lh − L)η0∥∞}]. (3.35)
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Hence using the estimates (3.34) and (3.35) in Eq.(3.33), we obtain

∥Lh(ηMh − η0)∥∞ = A2L∥[TM
′

h (η0 + θ1(η
M
h − η0))− TM ′

h (η0)](η
M
h − η0)∥∞

+ ∥Lh[TMh (η0)− T(η0)]∥∞ +A2L∥TM
′

h (η0)[TMh (η0)− T(η0)]∥∞
≤ CA2L∥ηMh − η0∥2∞ + ∥Lh(I−Qh)[(KhQh −K)η0 + (LhQh − L)η0]∥∞
+ ∥LhQh[(Kh −K)η0 + (Lh − L)η0]∥∞ +A2L∥{Qh[Ω

(0,1,0)(g +Khη0)Kh

+Ω(0,0,1)(g +Khη0)Lh] + (I−Qh)[Ω
(0,1,0)(g +KhQhη0)KhQh

+Ω(0,0,1)(g +KhQhη0)LhQh]} × {[Ω(g +KhQhη0)− Ω(g +Kη0)]

− [QhΩ(g +KhQhη0)−QhΩ(g +Khη0)]}∥∞
≤ CA2L∥ηMh − η0∥2∞ + ∥Lh(I−Qh)∥∞∥[(KhQh −K)η0 + (LhQh − L)η0]∥∞
+ ∥LhQh[(Kh −K)η0 + (Lh − L)η0]∥∞ +A2Lρ∥[Ω(0,1,0)(g +Khη0)Kh

+Ω(0,0,1)(g +Khη0)Lh]∥∞ +A2L(1 + ρ)∥[Ω(0,1,0)(g +KhQhη0)KhQh

+Ω(0,0,1)(g +KhQhη0)LhQh]∥∞ × [C1(1 + ρ){∥(KhQh −K)η0∥∞+∥(LhQh − L)η0∥∞}
+ C1ρ{∥(Kh −K)η0∥∞+∥(Lh − L)η0∥∞}]. (3.36)

From the Eqs. (3.30) and (3.36), we get

∥η̃Mh − η0∥∞ = ∥Ω(g +Khη
M
h )− Ω(g +Kη0)∥∞

= ∥Ω(g +Khη
M
h )− Ω(g +Khη0) + Ω(g +Khη0)− Ω(g +Kη0)∥∞

≤ C1[{∥Kh(η
M
h − η0)∥∞ + ∥Lh(ηMh − η0)∥∞}+ {∥(Kh −K)η0∥∞+∥(Lh − L)η0∥∞}]

≤ C(A1 +A2)L∥ηMh − η0∥2∞ + ∥Kh(I−Qh)∥∞∥[(KhQh −K)η0 + (LhQh − L)η0]∥∞
+ ∥KhQh[(Kh −K)η0 + (Lh − L)η0]∥∞ + ∥Lh(I−Qh)∥∞∥[(KhQh −K)η0

+ (LhQh − L)η0]∥∞ + ∥LhQh[(Kh −K)η0 + (Lh − L)η0]∥∞
≤ CAL∥ηMh − η0∥2∞ + ∥Kh(I−Qh)∥∞∥[(KhQh −K)η0 + (LhQh − L)η0]∥∞
+ ∥KhQh[(Kh −K)η0 + (Lh − L)η0]∥∞ + ∥Lh(I−Qh)∥∞∥[(KhQh −K)η0

+ (LhQh − L)η0]∥∞ + ∥LhQh[(Kh −K)η0 + (Lh − L)η0]∥∞. (3.37)

From the Lemma 2, we have

∥(KhQh −K)η0∥∞+∥(LhQh − L)η0∥∞ = O(hmin(d+1, m+m1)) +O(hmin(d+1, m+m2))

= O(hmin(d+1, m+m1, m+m2)). (3.38)

And by Proposition 1, we have

∥(Kh −K)η0∥∞+∥(Lh − L)η0∥∞ = O(hd+1) +O(hd+1)

= O(hd+1). (3.39)
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Next using the estimates (3.38)-(3.39) and Lemma 1 in Eq. (3.37), we obtain

∥η̃Mh − η0∥∞ = O(hmin(d+1, m+2m1, m+2m2)). (3.40)

Now from the Eqs. (2.8) and (2.40), we get

∥z̃Mh − z0∥∞ = ∥Khη̃
M
h −Kη0∥∞

= ∥(Khη̃
M
h −Khη0 +Khη0 −Kη0∥∞

≤ ∥(Kh(η̃
M
h − η0) + (Kh −K)η0∥∞

≤ ∥(Kh(η̃
M
h − η0)∥∞ + ∥(Kh −K)η0∥∞

= O(hmin(d+1, m+2m1, m+2m2)) +O(hd+1)

= O(hmin(d+1, m+2m1, m+2m2)).

Hence Proved the Theorem.

Remark 1. According to Theorems 4 and 5, it is clear that by selecting a quadrature rule with

d+1 ≥ max{m+2m1,m+2m2}, then we achieve the convergence rates in discrete multi-Galerkin

and its iterated version as form:

∥zMh − z0∥∞ = O(hmin( m+m1, m+m2)),

∥z̃Mh − z0∥∞ = O(hmin( m+2m1, m+2m2)).

The iterated discrete multi-Galerkin method exhibits superior convergence rates than the discrete

multi-Galerkin method.

Remark 2. When employing linear piecewise (r = 1) polynomials for approximation, the choice

of the Gauss two-point quadrature rule becomes crucial, as it ensures a precision degree d = 4.

4. Numerical results

Here, some numerical aspects are given to validate our theoretical outcomes. To tackle this problem

using discrete multi-Galerkin methods, initially, we choose linear (r = 1) piecewise polynomials as

approximation subspace Xh. For mathematical simulation, we use a PC equipped with an Intel(R),

8.00 GB-RAM, Core i5 − 3470 CPU@2.10 GHz processor, 64-bit operating system, and Matlab

(R2015a). The solutions acquired through the discrete multi-Galerkin method and its iterated

version are given in the infinity norm, along with their associated errors and convergence rates. If

we consider the approximation in the discrete multi-Galerkin method and its iterated version as

zMh and z̃Mh , respectively, then we assume that ∥zMh − z0∥∞= O(hα) and ∥z̃Mh − z0∥∞ = O(hβ),

where z0 is the unique solution.
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Example 1. [40] Let us consider the given derivative-dependent BVP

(z′(t))′ = −tλ−2(λtezz′ + λ(λ− 1)ez),

with boundary conditions

z(0) = ln(
1

4
) and z(1) = ln(

1

5
), λ > 0,

gives the corresponding Hammerstein integral equation as

z(t) = f(t) +

∫ 1

0
K(t, s)ψ(s, z(s), z′(s)) ds, 0 ≤ t ≤ 1,

with right side function f(t) = ln(45)t + ln(14), ψ(s, z(s), z′(s)) = −tλ−2(λtezz′ + λ(λ − 1)ez),

z(t) = ln( 1
4+t2 ) and kernel

K(t, s) =

{
t(s− 1), ∀ t ∈ [0, s],

s(t− 1), ∀ t ∈ [s, 1].

Since we are assuming (n+ 1) dimensional linear (r = 1) piecewise polynomials as approximation

subspaces. Then, for the discrete multi-Galerkin method, we get the expected convergence rates as

∥zMh − z0∥∞ = O(hmin(d+1, m+m1, m+m2)),

and the iterated discrete multi-Galerkin method, we get the expected convergence rates as

∥z̃Mh − z0∥∞ = O(hmin(d+1, m+2m1, m+2m2)),

for µ = 0 and k1 ≥ 2, we get m = 2, m1 = 2 and m2 = 1. Since the degree of precision d = 4.

Hence for r = 1, then the obtained convergence rates are α = 3 and β = 4, shown in Table 1.

Table 1.: Error bounds and corresponding expected order of convergence in zMn and z̃Mn , when λ = 2.

n ∥zMh − z0∥∞ α ∥z̃Mh − z0∥∞ β

2 1.32 ×10−4 - 3.11 ×10−4 -

4 1.59×10−5 3.05 1.92×10−5 4.01

8 1.81×10−6 3.13 1.22×10−6 3.97

16 2.21×10−7 3.03 7.18×10−8 4.08

32 2.89×10−8 2.93 4.47×10−9 4.00

64 4.10×10−9 2.81 2.69×10−10 4.05
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In Example 1, we will compare our proposed methods with the discrete Galerkin method

and its iterated version presented by Kant et al. [22]. Here, we use the quadrature rule with the

precision degree of d = 4. As a result, for r = 1 the expected convergence rates are α = 2 and

β = 3, respectively (see Table 2). The comparison of the proposed methods with the existing

methods shown in Tables 1 and 2 is illustrated in Figure 1.

Table 2.: [22] Error bounds and corresponding expected order of convergence in zn and z̃n, when λ = 2

.

n ∥zh − z0∥∞ α ∥z̃h − z0∥∞ β

2 1.06 ×10−2 - 1.21 ×10−4 -

4 2.60 ×10−3 2.03 1.56 ×10−5 2.95

8 6.34 ×10−4 2.03 1.79×10−6 3.12

16 1.55 ×10−4 2.02 2.18×10−7 3.03

32 3.79 ×10−5 2.03 3.01×10−8 2.85

64 9.22×10−6 2.04 1.01×10−9 2.81

Figure 1.: Comparison of errors among proposed methods with the discrete Galerkin and iterated discrete

Galerkin methods.

Example 2. [22] Let us consider the given derivative-dependent BVP

(z′(t))′ = −z′ez,

with boundary conditions

z(0) = ln
1

2
and z(1) = ln

1

3
,
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gives the corresponding Hammerstein integral equation as

z(t) = g(t) +

∫ 1

0
K(t, s)ψ(s, z(s), z′(s)) ds, 0 ≤ t ≤ 1,

with right side function g(t) = t ln 2
3 + ln 1

2 , ψ(s, z(s), z
′(s)) = −z′ez, z(t) = ln( 1

2+t) and kernel

K(t, s) =

{
t(s− 1), ∀ t ∈ [0, s],

s(t− 1), ∀ t ∈ [s, 1].

Since we are assuming (n+ 1) dimensional linear (r = 1) piecewise polynomials as approximation

subspaces. Then, for the discrete multi-Galerkin method, we get the expected convergence rates as

∥zMh − z0∥∞ = O(hmin(d+1, m+m1, m+m2)),

and the iterated discrete multi-Galerkin method, we get the expected convergence rates as

∥z̃Mh − z0∥∞ = O(hmin(d+1, m+2m1, m+2m2)),

for µ = 0 and k1 ≥ 2, we get m = 2, m1 = 2 and m2 = 1. Since the degree of precision d = 4.

Hence for r = 1, then the obtained convergence rates are α = 3 and β = 4, shown in Table 3.

Table 3.: Error bounds and corresponding expected order of convergence in zMn and z̃Mn , when λ = 2.

n ∥zMh − z0∥∞ α ∥z̃Mh − z0∥∞ β

2 1.13 ×10−4 - 1.42×10−4 -

4 1.50×10−5 2.92 1.05 ×10−5 3.75

8 1.92×10−6 2.96 7.70 ×10−7 3.76

16 2.42×10−7 2.98 5.42 ×10−8 3.82

32 3.01×10−8 3.00 3.52×10−9 3.94

64 4.10×10−9 2.87 2.24 ×10−10 3.97

Similar for Example 2, we will compare our proposed methods with the discrete Galerkin method

and its iterated version [22]. We use the quadrature rule with precision degree of d = 4 and obtain

corresponding expected convergence rates α = 2 and β = 3 for r = 1 (see Table 4), with comparison

shown in Figure 2.
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Table 4.: [22] Error bounds and corresponding expected order of convergence in zn and z̃n, when λ = 2.

n ∥zh − z0∥∞ α ∥z̃h − z0∥∞ β

2 4.50 ×10−3 - 1.04 ×10−4 -

4 1.20 ×10−3 1.90 1.41 ×10−5 2.87

8 3.08 ×10−4 1.96 1.84×10−6 2.93

16 7.68 ×10−5 2.00 2.34×10−7 2.96

32 1.88 ×10−5 2.02 2.83×10−8 3.06

64 4.61×10−6 2.03 3.50×10−9 3.01

Figure 2.: Comparison of errors among proposed methods with the discrete Galerkin and iterated discrete

Galerkin methods.

5. Conclusion

In this article, we have studied the discrete multi-Galerkin method and its iterated version for solv-

ing the derivative-dependent nonlinear Hammerstein type Fredholm integral equations with Green’s

kernels. The main advantage of these methods is their ability to achieve superconvergence and high

accuracy efficiently. We obtained superconvergence result for the iterated discrete multi-Galerkin

method with the rate of convergence O(hmin(d+1, m+2m1, m+2m2)). The comparison of errors among

proposed methods with the discrete Galerkin method and its iterated version presented by Kant

et al. [22], as illustrated in Figures 1 and 2. These Figures show that the proposed discrete multi-

Galerkin method, along with its iterated version, achieves higher accuracy compared to discrete

Galerkin and iterated discrete Galerkin methods. Finally, numerical results confirm our theoretical

findings and demonstrate that the proposed approach is computationally more efficient than pre-

vious methods.
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These methods can be extended to solve derivative-dependent nonlinear systems, such as Hammer-

stein and Urysohn integral equations with Green’s kernels through certain modifications. Moreover,

these methods can be further improved by employing approximation using Jacobi or Legendre

polynomials. In the future, collocation and multi-collocation methods could be studied for solv-

ing derivative-dependent nonlinear Hammerstein-type Fredholm integral equations with Green’s

kernels.
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