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SOME PROPERTIES OF CENTER
MANIFOLDS OF DIFFERENTIAL SYSTEMS

Maoan Han1,†, Ai Ke1

Abstract We present some symmetrical properties of center manifolds of
differential systems under certain symmetrical conditions. These properties
are fundamental to study local behavior of orbits, including stability of singular
points, bifurcation of periodic solutions and homoclinic orbits of the reduced
equations.
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1. Introduction on center manifolds

As we know, the theory of center manifolds plays an important role in the study of
differential systems. It is a valid tool to reduce the dimension of the phase space.
See [1–8] for general theory of center manifolds and applications of the theory. For
a given system, using its center manifold we can obtain a reduced system under
certain conditions. If we know more information about the center manifold we
can find more properties of the reduced system and therefore make a more precise
analysis on local behavior of orbits. In this section we list two well-known theorems
on the existence and uniqueness of center manifolds.

Consider a differential system of the form

ẋ = Ax+ f(x), x ∈ Rn, (1.1)

where n ≥ 1, A is an n× n matrix, and f ∈ Ck(Rn) for some k ≥ 1 with

f(0) = 0, Df(0) = 0. (1.2)

Before stating center manifold theorems, we first introduce some notations. Let

x = (x1, x2, · · · , xn), ‖x‖ =
( n∑
i=1

x2i

) 1
2

, f(x) = (f1(x), f2(x), · · · , fn(x)).

Define

‖f‖k = max
0 ≤ j ≤ k

1 ≤ i, l ≤ n

sup
x∈Rn

∣∣∣∂jfi(x)

∂jxl

∣∣∣
†The corresponding author.
1School of Mathematical Sciences, Zhejiang Normal University, Jinhua,
321004, China
∗This work is supported by the National Key R&D Program of China (No.
2022YFA1005900) and the National Natural Science Foundation of China
(No. 12301214).
Email: mahan@zjnu.edu.cn(M. Han)

http://www.jaac-online.com
http://dx.doi.org/10.11948/***


2 M. Han, A. Ke

and
Ckb (Rn) = {f ∈ Ck(Rn) | ‖f‖k <∞}.

Also, let

‖Df‖0 = max
1≤i, l≤n

sup
x∈Rn

∣∣∣∂fi(x)

∂xl

∣∣∣.
To state center manifold theorems clearly, we let further

Ax =

A1 0

0 A2

u
v

 , u ∈ Rn1 , v ∈ Rn2 , (1.3)

where n = n1 + n2, A1 is an n1 × n1 matrix with eigenvalues having zero real part
and A2 an n2 × n2 matrix with each eigenvalue having nonzero real part. Then by
Theorem 1.1 and Theorem 2.1 in Chapter one of [1], we have the following theorem
which is called the global center manifold theorem.

Theorem 1.1. Suppose that (1.2) and (1.3) hold. Let f ∈ Ckb (Rn), k ≥ 1. Then
there is a number δk > 0 such that if ‖Df‖0 < δk then (1.1) has a unique global
center manifold W c of class Ck which is invariant and has the form

W c = {x = (u, v) ∈ Rn | v = ψ(u), u ∈ Rn1}, (1.4)

where

ψ ∈ Ck, ψ(0) = 0, Dψ(0) = 0, Lip(ψ) < 1 and sup
u∈Rn1

‖ψ(u)‖ <∞. (1.5)

We remark that the uniqueness of W c of the form (1.4) means that the function
ψ satisfying (1.5) is unique.

By Theorem 3.2 of Chapter one in [1], we have the following local manifold
theorem.

Theorem 1.2. Let (1.2) and (1.3) hold. Suppose f ∈ Ck(Rn) with k ≥ 1. Then
(1.1) has a local Ck center manifold W c

l of the form

W c
l = {x = (u, v) | v = ψ(u), u ∈ V }, (1.6)

where V is an open neighborhood of the origin in Rn1 , ψ is a Ck function on V ,
and

ψ(0) = 0, Dψ(0) = 0. (1.7)

As we know (see [1]), Theorem 1.2 can be obtained by applying Theorem 1.1 to
a system of the form

ẋ = Ax+ f(x)ϕ
(x
ρ

)
, x ∈ Rn,

where ρ > 0 is a small constant, ϕ is a C∞ cut-off function from Rn to [0, 1]
satisfying

ϕ(x) = 1 (= 0, resp.) for ‖x‖ ≤ 1 (‖x‖ ≥ 2, resp.).

In section 2 we present some results on symmetrical properties of center mani-
folds and the reduced systems under certain symmetrical conditions supposed for a
given system of the form (1.1).
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2. Main results and proof

Consider system (1.1). Let (1.2) and (1.3) hold. Then (1.1) can be rewritten as

u̇ = A1u+ f̃(u, v),

v̇ = A2v + g̃(u, v),
(u, v) ∈ Rn.

First, we have

Theorem 2.1. Consider system (1.1), satisfying (1.2) and (1.3). Then we have
(a) If

f̃(−u, v) = −f̃(u, v),

g̃(−u, v) = g̃(u, v)
(2.1)

for (u, v) ∈ Rn, then (1.1) has a local Ck center manifold W c
l of the form (1.6),

where ψ is a Ck function on V satisfying (1.7) and

ψ(−u) = ψ(u) for ± u ∈ V. (2.2)

(b) If f(−x) = −f(x) or equivalently

f̃(−u,−v) = −f̃(u, v),

g̃(−u,−v) = −g̃(u, v),
(2.3)

then (1.1) has a local Ck center manifold W c
l of the form (1.6), where ψ is a Ck

function on V satisfying (1.7) and

ψ(−u) = −ψ(u) for ± u ∈ V. (2.4)

Proof. Let ϕ0 : (−∞,+∞) → [0, 1] be a C∞ function satisfying ϕ0(x) = 1 (=
0, resp.) for |x| ≤ 1 (|x| ≥ 2, resp.). Based on ϕ0 we introduce a C∞ function ϕ
on Rn as follows

ϕ(x) = ϕ0(‖x‖), x ∈ Rn, (2.5)

where ‖x‖ is the Euclidan norm of x.
Consider a system of the form

ẋ = Ax+ fρ(x), x ∈ Rn, (2.6)

where
fρ(x) = f(x)ϕ

(x
ρ

)
, x ∈ Rn, (2.7)

and ρ > 0 is a constant.
By Lemma 3.1 in [1] and (1.2) we have fρ ∈ Ckb (Rn) and ‖Dfρ‖0 < δk as ρ > 0

is sufficiently small, where δk is the constant in Theorem 1.1. Then by Theorem 1.1,
(2.6) has a unique global center manifold W c of the form (1.4), where ψ satisfies
(1.5).

Let
fρ(x) = (f̃ρ(u, v), g̃ρ(u, v)), (u, v) ∈ Rn,

where
f̃ρ(u, v) = f̃(u, v)ϕ

(x
ρ

)
, g̃ρ(u, v) = g̃(u, v)ϕ

(x
ρ

)
.
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Note that (2.6) can be rewritten as

u̇ = A1u+ f̃ρ(u, v),

v̇ = A2v + g̃ρ(u, v).
(2.8)

If (2.1) is satisfied, then by (2.5) and (2.7)

f̃ρ(−u, v) = −f̃ρ(u, v), g̃ρ(−u, v) = g̃(u, v)

for all (u, v) ∈ Rn, which implies that (2.8) is invariant under the change (u, v) →
(−u, v).

Note that the manifold W c becomes

W̃ c = {x = (u, v) ∈ Rn | v = ψ(−u), u ∈ Rn1}

under the change (u, v) → (−u, v). On the other hand, W̃ c is also a global center
manifold of (2.8). Thus, the uniqueness of global center manifold implies that

ψ(u) = ψ(−u) for u ∈ Rn1 .

Obviously, there exists ε0 = ε0(ρ) > 0 such that ‖(u, ψ(u))‖ < ρ for |u| < ε0. Then
we can take

W c
l = {(u, v) | v = ψ(u), |u| < ε0},

and the conclusion (a) follows. The conclusion (b) can be obtained in the same way
since under (2.3) the system (2.8) is invariant under the change (u, v)→ (−u,−v).

As we know, the flow of (1.1) on the manifold W c
l is determined by the following

reduced system
u̇ = A1u+ f̃(u, ψ(u)) ≡ fl(u), |u| < ε0. (2.9)

If (2.1) or (2.3) holds, then by (2.2) and (2.4) we have fl(−u) = −fl(u) for |u|
small. Thus, (2.9) is centrally symmetric with respect to the origin.

By the invariance of W c
l we have for |u| small

A2ψ(u) + g̃(u, ψ(u)) = ψ′(u)[A1u+ f̃(u, ψ(u))],

which can be used to compute expansions of ψ(u) at u = 0.
For example, by Theorem 2.1, the system

ẋ = x3 + 2xy, ẏ = y + x2

has a local center manifold of the form

y = −x2 + 2x4 +O(x6) = ψ(x).

The corresponding reduced system is

ẋ = x3 + 2xψ(x) = −x3 +O(x5).

Similarly, the system

ẋ = y + xz,

ẏ = −x+ yz,

ż = −z + xy + x2
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has a local center manifold of the form

z =
1

5
(4x2 − xy + y2) +O(|x, y|4),

which is even in (x, y).
Now we generalize Theorem 2.1 to a more general case by a similar proof.
Let further

A1u =

B1 0

0 B2

u1
u2

 , uj ∈ Rmj , j = 1, 2, (2.10)

where m1 +m2 = n1, u = (u1, u2)T . Then we can rewrite (1.1) as

u̇1 = B1u1 + f̃1(u1, u2, v),

u̇2 = B2u2 + f̃2(u1, u2, v), (2.11)

v̇ = A2v + g̃(u1, u2, v),

where (u1, u2, v) ∈ G ⊂ Rn with G the domain of (1.1). By a very similar way to
the proof of Theorem 2.1 we can prove the following theorem.

Theorem 2.2. Consider system (1.1), where the function f is defined on an open
set G of the form

G = {x ∈ Rn | ‖x‖ < ε0}, ε0 > 0.

Let (1.2), (1.3) and (2.10) hold.
(a) If (2.11) satisfies that

f̃1(−u1, u2, v) = −f̃1(u1, u2, v),

f̃2(−u1, u2, v) = f̃2(u1, u2, v),

g̃(−u1, u2, v) = g̃(u1, u2, v)

for (u1, u2, v) ∈ G, then (1.1) has a local Ck center manifold W c
l of the form (1.6),

where ψ is a Ck function on V satisfying (1.7) and

ψ(−u1, u2) = ψ(u1, u2) for (±u1, u2) ∈ V.

(b) If (2.11) satisfies that

f̃1(−u1, u2,−v) = −f̃1(u1, u2, v),

f̃2(−u1, u2,−v) = f̃2(u1, u2, v),

g̃(−u1, u2,−v) = −g̃(u1, u2, v)

for (u1, u2, v) ∈ G, then (1.1) has a local Ck center manifold W c
l of the form (1.6),

where ψ is a Ck function on V satisfying (1.7) and

ψ(−u1, u2) = −ψ(u1, u2) for (±u1, u2) ∈ V.

Under the conditions of the above theorem, instead of (2.7) we define the func-
tion fρ in (2.6) as
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fρ(x) =

 f(x)ϕ(xρ ), ‖x‖ < ε0,

0, ‖x‖ ≥ ε0.

Then as before, when ρ ∈ (0, ε0/2) is sufficiently small, we have

fρ ∈ Ckb (Rn), ‖Dfρ‖0 < δk.

Hence, Theorem 2.2 can be obtained by applying Theorem 1.1 in the same way as
Theorem 2.1.

The above theorem can be used to study center manifolds of differential systems
with parameters. For simplicity, consider a three dimensional system of the form

ẋ = y + f1(x, y, z, ε),

ẏ = −anx2n+1 + f2(x, y, z, ε), (2.12)

ż = λz + f3(x, y, z, ε),

where λ 6= 0 is a constant, an = 1 (6= 0) for n = 0 (n ≥ 1), f1, f2 and f3 are C∞

functions for (x, y, z, ε) ∈ G × U with G ⊂ R3 containing the origin in R3 and
U ⊂ Rm a neighborhood of ε = 0 in Rm for some m ≥ 1. Further, suppose

fj(x, y, z, 0) = O(|x, y, z|2), j = 1, 2, 3. (2.13)

By adding the equation ε̇ = 0 to (2.12), taking u1 = (x, y), u2 = ε, v = z and
applying Theorem 2.2 to the resulting system, we obtain immediately

Theorem 2.3. Let (2.12) satisfy (2.13).
(a) If

f1(−x,−y, z, ε) = −f1(x, y, z, ε),

f2(−x,−y, z, ε) = −f2(x, y, z, ε), (2.14)

f3(−x,−y, z, ε) = f3(x, y, z, ε)

for |x|+ |y|+ |z|+ |ε| small, then (2.12) has a local Ck center manifold W c
ε of the

form
W c
ε = {(x, y, z) | z = ψ(x, y, ε), x2 + y2 < δ} (2.15)

for |ε| < δ with δ > 0 a small constant, where ψ ∈ Ck and satisfies

ψ(x, y, ε) = O(|ε|+ |x, y|2), ψ(−x,−y, ε) = ψ(x, y, ε).

(b) If
fj(−x,−y,−z, ε) = −fj(x, y, z, ε), j = 1, 2, 3 (2.16)

for |x|+ |y|+ |z|+ |ε| small, then (2.12) has a local Ck center manifold W c
ε of the

form (2.15) for |ε| < δ with δ > 0 a small constant, where ψ ∈ Ck and satisfies

ψ(x, y, ε) = O(|ε||x, y|+ |x, y|3), ψ(−x,−y, ε) = −ψ(x, y, ε).

(c) Under (2.14) or (2.16) the reduced system of (2.12) is of the form

ẋ = y + f1(x, y, ψ(x, y, ε), ε),

ẏ = −anx2n+1 + f2(x, y, ψ(x, y, ε), ε)

and is centrally symmetric with respect to the origin.
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In fact, when (2.16) holds, one has

fj(0, 0, 0, ε) = 0, j = 1, 2, 3,

which ensure ψ(0, 0, ε) = 0 since the singular point at the origin must lie on the
local center manifold W c

ε . When (2.14) holds, system (2.12) has a singular point
(0, 0, z0(ε)) near the origin. Then one can make a change of variables (x, y, z) →
(x, y, z − z0(ε)) to move the singular point to the origin before applying Theorem
1.1.

The third conclusion of Theorem 2.3 provides an important property of the
reduced system of (2.12) which is really useful in the study of limit cycle bifurcation
near the origin for (2.12).

Finally we remark that the function ψ in (2.15) satisfies the equation

λψ + f3(x, y, ψ, ε) = ψx(y + f1(x, y, ψ, ε)) + ψy(−anx2n+1 + f2(x, y, ψ, ε)),

which can be used to compute expansions of ψ in (x, y) near (x, y) = (0, 0) for |ε|
small. In particular, it follows ψ(0, 0, ε) = 0 if fj(0, 0, 0, ε) = 0 for j = 1, 2, 3.
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