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Abstract

This research focuses on analyzing a specific type of fractional Schrödinger-

Poisson system that contains strong singular terms and double critical exponents.

By employing the critical point theory for nonsmooth functionals and mountain

pass theorem, it is demonstrated that there are two positive solutions to this

system.

Keywords: strong singularity, double critical exponents, critical point theory,

nonsmooth functionals.

Mathematics Subject Classification: 35J10, 35J20, 35J60.

1 Introduction and main results

Consider the multiplicity of positive solutions to the following fractional Schrödinger-

Poisson system with strong singularities and double critical exponents
(−∆)su− φ|u|2∗s−3u = |u|2∗s−2u+

λ

u
, in Ω,

(−∆)sφ = |u|2∗s−1, in Ω,

u > 0, in Ω,

u = φ = 0, on ∂Ω,

(1.1)

where Ω ⊂ RN(N ≥ 3) is a domain that has a well-defined smooth boundary, s ∈
(0, 1), N > 2s, 2∗s = 2N

N−2s
, λ > 0.
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Above system comes from the following Schrödinger-Poisson system{
−∆u+ V (x)u+K(x)φu = f(x, u), x ∈ R3,

−∆u = K(u)u2, x ∈ R3,

where V, K, f satisfy some suitable assumptions. The Schrödinger-Poisson system is

a fundamental equation in quantum mechanics introduced by the Austrian physicist

Schrödinger in 1926. The equation is a second-order partial differential equation that

combines the concept of matter waves with wave equations. It is used to describe the

movement of microscopic particles. The system has strong physical implications and

is widely used in quantum mechanical models and semiconductor theory, see [1, 2, 3,

4, 5] and references therein for more physical background.

The following Schrödinger-Poisson system with singularities has been extensively

investigated, 
−∆u+ ηφu = f(x)u−γ + g(x, u), x ∈ Ω,

−∆φ = u2, x ∈ Ω,

u > 0, x ∈ Ω,

u = φ = 0, x ∈ ∂Ω.

(1.2)

where γ > 0, η = ±1, f, g satisfy some suitable assumptions. When η = 1, f(x) =

µ > 0, g(x, u) = 0, Zhang in [6] considered the system (1.2), it is proved that (1.2)

has a unique positive solution for any µ > 0 by the variational method. When η =

−1, f(x) = µ > 0, g(x, u) = 0, it is proved by using Nehari method that there are two

positive solutions for any µ > 0. When γ > 1, η = 1, g(x, u) = 0, Yu in [8] considered a

class of Schrödinger-Poisson systems with strong singularities, by employed variational

method to establish sufficient requirements for the existence and uniqueness of positive

weak solutions for system (1.2). For more exciting results, see [9, 10, 11] and the

references therein.

Recently, the existence and multiplicity of nontrivial and ground state solutions of

nonlocal elliptic equations have been received attention{
−∆u+ φu = µ|u|p−2u+ f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.3)

where µ > 0, p ∈ (2, 6), f satisfy some assumptions. When µ = −α, α > 0, p ∈ (2, 12
5

)

and f satisfies some assumptions, Wang in [35] studied the existence and nonexistence

of nontrivial solution of a class of Schrödinger-Poisson systems with zero mass potential.

By the Nehari-Pohozaev method and variational method, it was proved that there is

a nontrivial solution to the system (1.3). When α = 1, f(u) = |u|q−2u, q ∈ (p, 6),

necessary and sufficient condition for the existence of nontrivial radial solutions was

established. When φ(x) = 1
4π|x| ∗ |u|

2, f(u) = |u|u, µ > 0, 3 < p < 6, Lei in [36]

studied the existence of a ground state solution of the Schrödinger-Poisson-Slater type

with Coulomb-Sobolev critical growth, and obtained a ground state solution of the

equation by the Nehari-Pohozaev method and compactness arguments.
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Godoy [37] studied the existence and uniqueness of weak solution to the following

singular elliptic problem with mixed boundary conditions,
−∆u = g(· , u), in Ω,

u = τ, on Γ1,
∂u
∂v

= η, on Γ2,

u > 0, in Ω,

(1.4)

where Ω is a C2 bounded domain in Rn such that ∂Ω = Γ1

⋃
Γ2, Γ1 and Γ2 are disjoint

closed subsets of ∂Ω, 0 ≤ τ ∈ W 1
2
,2(Γ1), η ∈ (H1

0,Γ1
(Ω))

′
and g : Ω × (0,∞) → R is a

nonnegative Carathéodory funcation. The existence and uniqueness of a positive weak

solution to the problem were proved using the sub-supersolution theorem and the Hopf

boundary lemma.

In recent years, many scholars have focused on the following fractional Schrödinger-

Poisson systems {
(−∆)su+ V (x)u+ λφu = h(x, u), x ∈ R3,

(−∆)tφ = λu2, x ∈ R3,
(1.5)

where 0 < s ≤ t < 1, λ > 0 is a real parameter, and V, h satisfy some assumptions.

System (1.5) has a strong physical background and it is one of the main objects of

fractional quantum mechanics. It appears in some fields such as nonlinear optics,

plasma physics and condensed matter physics. Among others, the fractional Laplace

operator describes various phenomena in applied sciences, such as flame propagation,

free boundary barrier problem, or Hamilton-Jacobi equation with critical fractional

diffusion, see [29, 30, 31]. For work on nonlinear systems of fractional Laplace operators,

they also appear in problems of fractional quantum mechanics, physics, chemistry,

optimization, etc, see [32, 33, 34] and references therein for more physical background.

Consequently, solvability and multiplicity of fractional Schrödinger-Poisson systems

have received much attention, see literature [12, 13, 14, 15, 16] and references therein.

Guo [38] considered the following mixed order conformally invariant system with

Hartree-type nonlinearity,
(−∆)su(x) =

( 1

|x|σ
∗ v

2N−σ
N−2

)
v
N+2s−σ
N−2

(x), in RN ,

(−∆)v(x) = u
N+2
N−2s (x), in RN ,

u ≥ 0, v ≥ 0, in RN ,

(1.6)

where 0 < α ≤ 2, N ≥ 3, σ ∈ (0, N), 0 < s =: m + α
2
< +∞, m is a integer.

They obtained the new results by classifying all the nonnegative nontrivial classical

solutions of the system. Firstly, the equivalence of PDEs system and IEs system was

proved. Then, using the method of moving sphere, the classification of the nonnegative

solutions of the system (1.6) was given. When N
2
< s =: m + α

2
< +∞, the Liouville-

type theorems results of the system (1.6) were proved for the critical and supercritical-

orders respectively.
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Meanwhile, fractional Schrödinger-Poisson systems with singular terms
(−∆)su+ V (x)u+ λφu = µf(x)u−γ + h(x, u), x ∈ R3,

(−∆)tφ = u2, x ∈ R3,

u > 0, x ∈ R3,

(1.7)

have been received attention from many authors, where 0 < s ≤ t < 1, µ > 0, 0 <

γ < 1, λ > 0 is a real parameter, and V, f, h satisfy certain presumptions. Yu [17]

studied system (1.7) with 0 < γ < 1 on condition that λ > 0, µ = 1, h(x, u) = 0 and

0 < s ≤ t < 1, 4s+ 2t > 3, f and V satisfy the following assumptions:

(V1): V ∈ C(R3) satisfies infx∈R3 V (x) > V0 > 0, where V0 is a constant.

(V2): meas {x ∈ R3 : −∞ < V (x) ≤ h} < +∞ for all h ∈ R.

(f1): f ∈ L
2

1+γ (R3) is a nonnegative function.

The variational method is used to verify the existence, monotonicity, and uniqueness

of the positive solution. When 0 < γ < 1, V (x) = 0, λ = 1, µ > 0, h(x, u) =

g(x)u2∗α−2u, s = α, t = s
2
, s ∈ (0, N), α ∈ (0, 1) and 2α < N < 4α, f and g satisfy

the following assumptions:

(H1): f(x), g(x) ≥ 0 on Ω.

(H2): There exist z ∈ Ω and ρ > N, such that g(z) = maxx∈Ω g(x) = 1 and g(z)−
g(x) = O(|z − x|ρ).

Fan [18] investigated the existence and multiplicity of positive solutions in system

(1.7) using Nehari method.

Lei [7] looked into the following nonlocalization Schrödinger-Poisson system
−∆u+ φu2∗−2 =

λ

uγ
, in Ω,

−∆φ = u2∗−1, in Ω,

u > 0, in Ω,

u = φ = 0, on ∂Ω,

(1.8)

where Ω is a bounded domain with a smooth boundary in RN(N ≥ 3), γ ∈ (0, 1), 2∗ =
2N
N−2

and λ > 0 is a numerical value that belongs to the set of real numbers. Two

positive solutions of the system (1.8) were obtained by the variational and perturbation

methods.

Recently, the following fractional Schrödinger-Poisson system with double critical

exponents has also been studied{
(−∆)su+ V (x)u− φ|u|2∗s−3u = |u|2∗s−2u+ λh(x, u), x ∈ R3,

(−∆)sφ = |u|2∗s−1, x ∈ R3,
(1.9)

where s ∈ (0, 1), 2∗s = 6
3−2s

, λ > 0 is a real parameter, h and V satisfy some suitable

hypothesis. When s ∈ (0, 1), λ > 0, h(x, u) = f(x, u), f and V satisfy some suitable

hypothesis, Jiang and Liao [19] proved that the system (1.9) has at least two positive

solutions by applying the variational methods and mountain pass theorem. When
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s ∈ (3
4
, 1), λ = 1, h(x, u) = g(u), g, V satisfy some suitable hypothesis, He [20]

studied system (1.9) and obtained a positive solution for this system by the variational

method. More results are in [21, 22] and references therein.

This paper is particularly inspired by [23] and [19]. Up to now, there are no research

results on system (1.1). The difficult aspect of this paper is that the strong singularities

lead to the non-integrability of the functional and the double critical terms lead to the

lack of compactness. Therefore, it is difficult to find a solution to system (1.1). The

non-integrability of the singular terms is solved by utilizing auxiliary equation and the

critical point theory for nonsmooth functionals, and the lack of compactness is solved by

utilizing the Brézis-Lieb Lemma. The proof establishes the existence and multiplicity

of positive solutions for a specific category of fractional Schrödinger-Poisson systems

that contain strong singular terms and possess double critical exponents.

The primary outcomes of our study are as follows.

Theorem 1.1. Assume that N ≥ 3, λ > 0 and s ∈ (0, 1), then there exists λ∗ > 0

such that for 0 < λ < λ∗, system (1.1) has at least two positive solutions.

Remark 1.2. As far as we know, system (1.1) has not been researched thus far.

In contrast to [23], we extend to fractional Schrödinger-Poisson systems with double

critical exponents. In contrast to [19], we consider the case with a strong singularities

terms in a bounded domain.

2 Variational framework

We provide the variational framework for the system (1.1). Let LP (Ω) be the standard

Lebesgue space with the norm |u|p = (
∫

Ω
|u|pdx)

1
p . For each s ∈ (0, 1), Ds,2(Ω) is the

completion of the set C∞0 (Ω). This set consists of infinitely differentiable functions

u : RN → R with compact support, and the completeness is defined with respect to

the following norm:

[u]2s =

∫∫
E

|u(x)− u(y)|2

|x− y|N+2s
dxdy,

where E = (RN × RN \ CΩ × CΩ) with CΩ = RN \ Ω. Equivalently, {Ds,2(Ω) =

u ∈ L2∗s(Ω) : [u]s <∞}. ‖u‖Hs =
√
|u|22 + [u]2s is a norm of the fractional spaceHs(Ω) =

{u ∈ L2(Ω) : [u]s <∞}. We shall be operating within the specified fractional Sobolev

space.

H = {u ∈ Hs(Ω) with u = 0 a.e in RN\Ω}.
Then, the norm of H is defined as ‖u‖2 = [u]2s. It is widely recognized that the function

space Ds,2(Ω) is continuously embedded into L2∗s(Ω), and there exists the best Sobolev

constant S > 0 such that

S = inf
u∈Ds,2(Ω)\{0}

∫
Ω
|(−∆)

s
2u|2dx

(
∫

Ω
|u|2∗sdx)

2
2∗s

. (2.1)
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The uniqueness of the solution φ = φu ∈ Ds,2(Ω) for the second equation of system

(1.1) is established using the Lax-Milgram theorem.

The following conclusions can be drawn from the [27] and [28].

Lemma 2.1. The solution φu satisfies the following properties:

(i) φu ≥ 0 for all u ∈ H;

(ii) φtu = t2
∗
s−1φu for all t > 0 and u ∈ H;

(iii) For each u ∈ H, one has ‖φu‖Ds,2 ≤ S−
1
2 |u|2

∗
s−1

2∗s
and

∫
Ω
φu|u|2

∗
s−1dx ≤ S−1|u|2(2∗s−1)

2∗s
;

(iv) if {un} ⊂ H and u ∈ H are such that un ⇀ u in H and un(x)→ u(x) a.e. in Ω as

n→∞, then φun ⇀ φu in Ds,2(Ω). Moreover,∫
Ω

φun|un|2
∗
s−1dx−

∫
Ω

φun−u|un − u|2
∗
s−1dx =

∫
Ω

φu|u|2
∗
s−1dx+ on(1).

The system (1.1) can be converted into the following fractional Schrödinger equa-

tion, 
(−∆)su− φu|u|2

∗
s−3u = |u|2∗s−2u+

λ

u
, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(2.2)

The energy functional corresponding to problem (2.2) is precisely defined as

I(u) =
1

2

∫
Ω

|(−∆)
s
2u|2dx− 1

2(2∗s − 1)

∫
Ω

φu|u|2
∗
s−1dx− 1

2∗s

∫
Ω

|u|2∗sdx− λ
∫

Ω

ln|u|dx

for u ∈ H. The singular term is known to cause I to not be differentiable on H. Hence,

determining the local minimizer and mountain pass type solutions of issue (2.2) is a

challenging task. We take into consideration the following problem in order to first

discover a local minimizer solution, (−∆)su =
λ

u
, in Ω,

u = 0, on ∂Ω.
(2.3)

According to Corollary 3.3 of [24], we know that problem (2.3) has a unique positive

solution ωλ with ωλ ≥ cφ1 (where φ1 is a specific function that corresponds to the

lowest eigenvalue, denoted as λ1, of the problem (−∆)sφ+λφ = 0, φ|∂Ω). Furthermore,

if t belongs to the interval (0, 1), they have demonstrated that∫
Ω

1

φt1
dx < +∞. (2.4)

To analyze problem (2.2), we establish the function f : Ω× R→ [0,+∞) as

f(x, t) =


1

t
, if x ∈ Ω and t > ωλ(x),

1
ωλ
, if x ∈ Ω and t ≤ ωλ(x).
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Take into account the following auxiliary problem
(−∆)su− φu|u|2

∗
s−3u = |u|2∗s−2u+ λf(x, u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(2.5)

The functional of problem (2.5) has the following variational structure

J(u) =
1

2
‖u‖2 − 1

2(2∗s − 1)

∫
Ω

φu|u|2
∗
s−1dx− 1

2∗s

∫
Ω

|u|2∗sdx− λ
∫

Ω

F (x, u)dx,

where F (x, u) =
∫ u

0
f(x, t)dt. A solution of (2.5) refers to a function u belonging to

the set H, such that for each φ in H that satisfies∫
Ω

(−∆)
s
2u(−∆)

s
2ϕdx−

∫
Ω

φu|u|2
∗
s−3uϕdx−

∫
Ω

|u|2∗s−2uϕdx− λ
∫

Ω

f(x, u)ϕdx = 0.

(2.6)

Therefore, we use the theory of critical points of nonsmooth functional to find the

critical point of J and thus prove the existence of a positive solution to problem (2.5).

3 Some Relevant Lemmas

Lemma 3.1. Given that {un} is bounded in H and un ⇀ u in H, we can conclude

that

lim
n→∞

∫
Ω

F (x, un)dx =

∫
Ω

F (x, u)dx. (3.1)

Proof. Since F (x, u) =
∫ u

0
f(x, t)dt ≤ 1 one has f(x, u) = 1

ωλ
when u < ωλ. f(x, u) = 1

u

when u > ωλ; see that ln|x| ≤ |x|. Then

F (x, u) =

∫ ωλ

0

1

ωλ
dx+

∫ u

ωλ

1

t
dt

=1 + lnu+ 2ln
1
√
ωλ

≤1 + u+
2
√
ωλ
.

Based on the facts provided above, it can be inferred

F (x, u) ≤ 1 + u+
2
√
ωλ
, for u ∈ H. (3.2)

From [24], we have
√
ωλ ≥ c

√
φ1. According to equation (2.4), it is true that∫

Ω

1
√
ωλ
dx ≤ c

∫
Ω

1√
φ1

dx < +∞. (3.3)

According to the dominated convergence theorem (3.1) is true.
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First, we review some concepts of critical point theory based on nonsmooth func-

tionals. f : X → R is a continuous functional in X. Let (X, d) be a complete metric

space. Indicate by |df |(u) the supremun of δ in [0,∞) such that there exists a positive

value r, neighborhood U of u ∈ X, and a continuous map σ : U × [0, r] satisfying{
f(σ(v, t)) ≤ f(v)− δt, (v, t) ∈ U × [o, r],

d(σ(v, t), v) ≤ t, (v, t) ∈ U × [o, r].
(3.4)

A sequence {un} of elements in X is referred to a Palais-Smale sequence of the func-

tional f if the absolute value of the derivative of f evaluated at un, denoted as |df |(un),

tends to zero as n approaches infinity, and if the values of f(un) are bounded. A critical

point of function f is defined as a point u belonging to set X such that the absolute

value of the derivative of f evaluated at u is equal to zero. Given that the function

u→ |df |(u) is lower semicontinuous, it follows that every accumulation point of a (PS)

sequence is unequivocally a crucial point of f .

Given that we are seeking a positive solution for system (1.1), we examine the

functional J defined on the closed positive cone P of H,

P = {u|u ∈ H, u(x) ≥ 0, a.e. x ∈ Ω}.

In this context, P refers to a metric space that is considered complete, whereas J is a

continuous functional defined on P .

The following lemma is true if |dJ |(u) < +∞.

Lemma 3.2. If |dJ |(u) < +∞, then for any v ∈ P , the following is true:

λ

∫
Ω

f(x, u)(v − u)dx ≤
∫

Ω

(−∆)
s
2u(−∆)

s
2 (v − u)dx−

∫
Ω

φu|u|2
∗
s−3u(v − u)dx

−
∫

Ω

|u|2∗s−2u(v − u)dx+ |dJ |(u)‖v − u‖. (3.5)

If u is a crucial point of J in particular. The issue (2.5) then has a weak solution in

u.

Proof. The proof provided is analogous to the demonstration of Lemma 2.2 in reference

[23]. Assume δ < 1
2
‖v−u‖, v 6= u, v ∈ P and |dJ |(u) < c. The mapping σ : U×[0, δ]→

P is defined by the function

σ(z, t) = z + t
v − z
‖v − z‖

,

where U represents a neighborhood of u. Then ‖σ(z, t)−z‖ = t. According to equation

(3.4), there is a pair (z, t) ∈ U × [0, δ] such that

J(σ(z, t)) > J(z)− ct.
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Hence, we suppose that sequences {un} ⊂ P and {tn} ⊂ [0,+∞) such that un → u, as

tn → 0+, and

J(un + tn
v − un
‖v − un‖

) ≥ J(un)− ctn.

Namely,

J(un + sn(v − un)) ≥ J(un)− csn‖v − un‖, (3.6)

where sn = tn
‖v−un‖ → 0+ as n→∞. When dividing (3.6) by sn, the following equation

is obtained:

λ

∫
Ω

F (x, un + sn(v − un))− F (x, un)

sn
dx

≤1

2

‖un + sn(v − un)‖2 − ‖un‖2

sn

− 1

2(2∗s − 1)

∫
Ω

φun+sn(v−un)|un + sn(v − un)|2∗s−1 − φun|un|2
∗
s−1

sn
dx

− 1

2∗s

∫
Ω

|un + sn(v − un)|2∗s − |un|2
∗
s

sn
dx+ c‖v − un‖. (3.7)

Suppose that

I1,n =

∫
Ω

F (x, un + sn(v − un))− F (x, (1− sn)un)

sn
dx

and

I2,n =

∫
Ω

F (x, (1− sn)un)− F (x, un)

sn
dx.

Notice that

I1,n =

∫
Ω

f(x, ξn)snv

sn
dx =

∫
Ω

f(x, ξn)vdx

where ξn ∈ (un − snun, un + sn(v − un)), since ξn → u, un → u, as sn → 0+. Given

that F (x, t) is growing in t, I1,n ≥ 0 for every n. By employing Fatou’s Lemma to I1,n,

we derive

lim inf
n→∞

I1,n ≥
∫

Ω

f(x, u)vdx

for v ∈ P . By applying the differential mean value theorem to I2,n, we obtain

lim
n→∞

I2,n =

∫
Ω

f(x, u)udx.

Based on the above facts, one has

λ

∫
Ω

f(x, u)(v − u)dx ≤ lim inf
n→∞

(I1,n + I2,n). (3.8)
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For the second term of (3.7), since sn → 0+ as n→∞, we have

1

2sn

(
‖un + sn(v − un)‖2 − ‖un‖2

)
=

1

2sn

(
〈un + sn(v − un), un + sn(v − un)〉

− 〈un, un〉
)

=
1

2sn

[
(〈un, un〉+ 2sn〈un, v − un〉

+ s2
n〈v − un, v − un〉)− 〈un, un〉

]
=〈un, v − un〉+

sn
2
‖v − un‖2

=〈u, v − u〉. (3.9)

On the fourth item, we need proof

lim
n→∞

∫
Ω

|un + sn(v − un)|2∗s − |un|2
∗
s

2∗ssn
dx =

∫
Ω

|un|2
∗
s−1(v − u)dx. (3.10)

According to the differential mean value theorem, we obtain∫
Ω

|un + sn(v − un)|2∗s − |un|2
∗
s

2∗ssn
dx =

∫
Ω

2∗sξ
2∗s−1
n1 sn(v − un)

2∗ssn
dx =

∫
Ω

ξ2∗s−1
n1

(v − un)dx,

where ξn1 ∈ (un, un + sn(v − un)), since ξn1 → u, un → u as sn → 0+, and so

lim
n→∞

∫
Ω

|un + sn(v − un)|2∗s − |un|2
∗
s

2∗ssn
dx =

∫
Ω

u2∗s−1(v − u)dx.

Therefore, combining (3.8), (3.9), (3.10) and Lemma 2.1, we get

λ

∫
Ω

f(x, u)(v − u)dx ≤ lim inf
n→∞

(I1,n + I2,n)

≤
∫

Ω

(−∆)
s
2u(−∆)

s
2 (v − u)dx−

∫
Ω

φu|u|2
∗
s−3u(v − u)dx

−
∫

Ω

|u|2∗s−2u(v − u)dx+ c‖v − u‖

for every v ∈ P . Given that |dJ |(u) < c is arbitrarily chosen, (3.5) is valid. Assume that

u is a critical point of the functional J . For ϕ ∈ H, ω > 0, taking v = (u+ ωϕ)+ ∈ P ,
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as test function in the aforementioned inequality, we may conclude that

0 ≤
∫

Ω

(−∆)
s
2u(−∆)

s
2 [(u+ ωϕ)+ − u]dx−

∫
Ω

φu|u|2
∗
s−3u[(u+ ωϕ)+ − u]dx

−
∫

Ω

|u|2∗s−2[(u+ ωϕ)+ − u]dx− λ
∫

Ω

f(x, u)[(u+ ωϕ)+ − u]dx

=ω
[ ∫

Ω

(−∆)
s
2u(−∆)

s
2ϕdx−

∫
Ω

φu|u|2
∗
s−3uϕdx−

∫
Ω

|u|2∗s−2uϕdx− λ
∫

Ω

f(x, u)ϕdx
]

−
∫
{u+ωϕ<0}

(−∆)
s
2u(−∆)

s
2 (u+ ωϕ)dx+

∫
{u+ωϕ<0}

φu|u|2
∗
s−3u(u+ ωϕ)dx

+

∫
{u+ωϕ<0}

|u|2∗s−2u(u+ ωϕ)dx+ λ

∫
{u+ωϕ<0}

f(x, u)(u+ ωϕ)dx

≤ω
[ ∫

Ω

(−∆)
s
2u(−∆)

s
2ϕdx−

∫
Ω

φu|u|2
∗
s−3uϕdx−

∫
Ω

|u|2∗s−2uϕdx− λ
∫

Ω

f(x, u)ϕdx
]

− ω
∫
{u+ωϕ<0}

(−∆)
s
2u(−∆)

s
2ϕdx.

Given that (−∆)
s
2u(x) = 0 for a.e. x ∈ Ω with u(x) = 0 and {x ∈ Ω|u(x) + ωϕ(x) <

0, u(x) > 0} → 0 as ω → 0. We possess∫
{u+ωϕ<0}

(−∆)
s
2u(−∆)

s
2ϕdx =

∫
{u+ωϕ<0,u>0}

(−∆)
s
2u(−∆)

s
2ϕdx→ 0 as ω → 0.

Therefore

0 ≤ω
[ ∫

Ω

(−∆)
s
2u(−∆)

s
2ϕdx−

∫
Ω

φu|u|2
∗
s−3uϕdx−

∫
Ω

|u|2∗s−2uϕdx− λ
∫

Ω

f(x, u)ϕdx
]

+ o(ω)

as ω → 0, we obtain∫
Ω

(−∆)
s
2u(−∆)

s
2ϕdx−

∫
Ω

φu|u|2
∗
s−3uϕdx−

∫
Ω

|u|2∗s−2uϕdx− λ
∫

Ω

f(x, u)ϕdx ≥ 0.

From the arbitrary nature of the sign of ϕ, we can infer that∫
Ω

(−∆)
s
2u(−∆)

s
2ϕdx−

∫
Ω

φu|u|2
∗
s−3uϕdx−

∫
Ω

|u|2∗s−2uϕdx− λ
∫

Ω

f(x, u)ϕdx = 0

for every ϕ ∈ H. As so, u is a system (1.1) weak solution.

We then show, that u ≥ ωλ a.e. in Ω. Choosing in (2.6) ϕ = (u− ωλ)−, one has∫
{u<ωλ}

(−∆)
s
2u(−∆)

s
2 (u− ωλ)dx =

∫
{u<ωλ}

φu|u|2
∗
s−3u(u− ωλ)dx

+

∫
{u<ωλ}

(|u|2∗s−2u+
λ

ωλ
)(u− ωλ)dx. (3.11)

11



Notice that ∫
{u<ωλ}

(−∆)
s
2u(−∆)

s
2 (u− ωλ)dx = λ

∫
{u<ωλ}

u− ωλ
ωλ

dx. (3.12)

Therefore, it may be deduced from equations (3.11) and (3.12) that∫
{u<ωλ}

|(−∆)
s
2 (u− ωλ)|2dx =

∫
{u<ωλ}

φu|u|2
∗
s−3u(u− ωλ)dx

+

∫
{u<ωλ}

|u|2∗s−2u(u− ωλ)dx

≤0.

It follows that ‖(u − ωλ)−‖ = 0, that is, u(x) ≥ ωλ(x) a.e. in Ω. Therefore, it follows

that u ∈ P . Summarizing, u is a positive solution of system (1.1) if it is a critical point

of J .

Lemma 3.3. There are positive values λ∗ > 0, r, and ρ > 0 such that the functional

J fulfills the following statements:

(i) J(u)|u∈Sρ ≥ r and infu∈Ωρ J(u) < 0 for λ ∈ (0, λ∗);

(ii) There exists e ∈ H such that ‖e‖ > ρ and J(e) < 0.

Proof. (i) Based on the definitions of S, Hölder inequality, Sobolev inequality, and

Lemma 2.1, equations (3.2) and (3.3), it can be shown that

J(u) =
1

2
‖u‖2 − 1

2(2∗s − 1)

∫
Ω

φu|u|2
∗
s−1dx− 1

2∗s

∫
Ω

|u|2∗sdx− λ
∫

Ω

F (x, u)dx

≥ 1

2
‖u‖2 − 1

2(2∗s − 1)
S−1‖u‖2(2∗s−1) − 1

2∗s
‖u‖2∗sS−

2∗s
2 − Cλ.

It is observed that there are certain constants r, ρ, λ∗ > 0 such that J(u)|Sρ ≥ r for

every λ in the interval (0, λ∗). Furthermore, if u ∈ H, then the following statement is

true:

lim
t→0+

J(tu)

t
= −λ lim

t→0+

∫
Ω

∫ tu
0
f(x, s)ds

t
dx

= −λ
∫

Ω

f(x, 0)udx

= −λ
∫

Ω

u

ωλ
dx < 0.

Therefore, we can deduce that J(tu) < 0 for all t 6= 0 , provided that t is sufficiently

small. Thus, given sufficiently small values of ‖u‖, the following inequality holds

d , inf
u∈Ωρ

J(u) < 0. (3.13)

(ii) For every u ∈ H, u 6= 0, one has J(tu)→ −∞ as t→ +∞. Consequently, J(e) < 0

and ‖e‖ > ρ for every e ∈ H. The proof is finished.
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Lemma 3.4. The functional J fulfills the (PS)c condition if and only if c ∈ (0, c∗),

where

c∗ =
(√5− 1

2

) 2
2∗s−2 (2∗s − 2)(2 · 2∗s + 1−

√
5)

4(2∗s − 1)2∗s
S
N
2s − θλ, θ = θ

(
N, S, |Ω|,

∫
Ω

1√
φ1

dx
)
.

Proof. Let {un} ⊂ P ⊂ H be such that |dJ |(un)→ 0, J(un)→ c as n→∞. According

to Lemma 3.2, we obtain

λ

∫
Ω

f(x, un)(v − un)dx ≤
∫

Ω

(−∆)
s
2un(−∆)

s
2 (v − un)dx−

∫
Ω

φun|un|2
∗
s−3un(v − un)dx

−
∫

Ω

|un|2
∗
s−2un(v − un)dx+ |dJ |(un)‖v − un‖. (3.14)

By substituting v = 2un into equation (3.14), we obtain

λ

∫
Ω

f(x, un)undx ≤
∫

Ω

(−∆)
s
2un(−∆)

s
2undx−

∫
Ω

φun|un|2
∗
s−1dx−

∫
Ω

|un|2
∗
sdx

+ |dJ |(un)‖un‖.

By (3.2) and (3.3),

1 + c+ o(1)‖un‖ ≥J(un)− 1

2∗s
|dJ |(un)‖un‖

=
1

2
‖un‖2 − 1

2(2∗s − 1)

∫
Ω

φun|un|2
∗
s−1dx− 1

2∗s

∫
Ω

|un|2
∗
sdx

− λ
∫

Ω

F (x, un)dx− 1

2∗s
‖un‖2 +

1

2∗s

∫
Ω

φun|un|2
∗
s−1dx+

1

2∗s

∫
Ω

|un|2
∗
sdx

+
λ

2∗s

∫
Ω

f(x, un)undx

≥2∗s − 2

2 · 2∗s
‖un‖2 +

2∗s − 2

2(2∗s − 1)2∗s

∫
Ω

φun|un|2
∗
s−1dx− λ

∫
Ω

F (x, un)dx

+
λ

2∗s

∫
Ω

f(x, un)undx

≥2∗s − 2

2 · 2∗s
‖un‖2 − λ

∫
Ω

F (x, un)dx

≥ s

N
‖un‖2 − c‖un‖,

for some positive constant c. Thus, the sequence {un} is bounded in H. Therefore,

there is a subsequence {un} ⊂ P ⊂ H (which is still denoted by itself) and v ∈ P such

that 
un ⇀ v in H,

un → v in Lq(Ω), 1 ≤ q ≤ 2∗s,

un(x)→ v(x) a.e. in Ω.
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Given that f(x, un)v ≤ 1 for every n, by the dominated convergence theorem, we can

get ∫
Ω

f(x, un)undx→
∫

Ω

f(x, v)vdx. (3.15)

Let ωn = un − v. The conclusion is true if ‖ωn‖ → 0. Alternatively, there is a

subsequence (which is still referred to as itself) such that limn→∞‖ωn‖2 = l > 0. Thus

by limn→∞〈J ′(un), v〉 = 0 and (3.15) we know

‖v‖2 −
∫

Ω

φv|v|2
∗
s−1dx−

∫
Ω

|v|2∗sdx− λ
∫

Ω

f(x, v)vdx = 0. (3.16)

As stated by the Brézis-Lieb Lemma, the following holds true:{
‖un‖2 = ‖ωn‖2 + ‖v‖2 + on(1),∫

Ω
|un|2

∗
sdx =

∫
Ω
|ωn|2

∗
sdx+

∫
Ω
|v|2∗sdx+ on(1).

(3.17)

According to Lemma 2.1, (3.15) and (3.17), it follows that

on(1) =‖v‖2 + ‖ωn‖2 −
(∫

Ω

φv|v|2
∗
s−1dx+

∫
Ω

φωn|ωn|2
∗
s−1dx

)
−
(∫

Ω

|v|2∗sdx+

∫
Ω

|ωn|2
∗
sdx
)
− λ

∫
Ω

f(x, v)vdx.

Consequently, we infer that

‖ωn‖2 =

∫
Ω

φωn|ωn|2
∗
s−1dx+

∫
Ω

|ωn|2
∗
sdx+ on(1), (3.18)

For the sake of simplicity, we can suppose that

an =

∫
Ω

φωn|ωn|2
∗
s−1dx→ a and bn =

∫
Ω

|ωn|2
∗
sdx→ b. (3.19)

Notice that ∫
Ω

|ωn|2
∗
sdx =

∫
Ω

(−∆)
s
2φωn(−∆)

s
2ωndx

≤ε
2

2

∫
Ω

|(−∆)
s
2 |ωn||2dx+

1

2ε2

∫
Ω

|(−∆)
s
2φωn|2dx

≤ε
2

2

∫
Ω

|(−∆)
s
2ωn|2dx+

1

2ε2

∫
Ω

φωn|ωn|2
∗
s−1dx.

Thus, taking the limit when n→∞, we deduce that

b <
1

2ε2
a+

ε2

2
l.
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We conclude that a ≥ 3−
√

5
2
l by choosing ε2 =

√
5−1
2

and combining (3.18) and (3.19).

It can be deduced from equations (3.18) and (3.19) that

1

2
‖ωn‖2 − 1

2(2∗s − 1)

∫
Ω

φωn|ωn|2
∗
s−1dx− 1

2∗s

∫
Ω

|ωn|2
∗
sdx

=
1

2
l − 1

2(2∗s − 1)
a− 1

2∗s
b+ on(1)

≥(2∗s − 2)(2 · 2∗s + 1−
√

5)

4(2∗s − 1)2∗s
l. (3.20)

In addition, the estimations (2.1) and (3.18) result in

l ≤ S−2∗s l2
∗
s−1 + S−

2∗s
2 l

2∗s
2 .

We thus get l ≥ (
√

5−1
2

)
2

2∗s−2S
N
2s . Taking it into (3.20), we conclude that

1

2
‖ωn‖2 − 1

2(2∗s − 1)

∫
Ω

φωn|ωn|2
∗
s−1dx− 1

2∗s

∫
Ω

|ωn|2
∗
sdx

≥
(√5− 1

2

) 2
2∗s−2 (2∗s − 2)(2 · 2∗s + 1−

√
5)

4(2∗s − 1)2∗s
S
N
2s . (3.21)

On one hand, according to the Young, Hölder, and Sobolev inequalities, the following

statement is true

J(v) =
1

2
‖v‖2 − 1

2(2∗s − 1)

∫
Ω

φv|v|2
∗
s−1dx− 1

2∗s

∫
Ω

|v|2∗sdx− λ
∫

Ω

F (x, v)dx

=
2∗s − 2

2 · 2∗s
‖v‖2 +

2∗s − 2

2(2∗s − 1)2∗s

∫
Ω

φv|v|2
∗
s−1dx− λ

∫
Ω

F (x, v)dx+
λ

2∗s

∫
Ω

f(x, v)vdx

≥ 2∗s − 2

2 · 2∗s
‖v‖2 − Cλ

=
s

N
‖v‖2 − Cλ

≥ −θλ,

where θ = θ(N, S, |Ω|,
∫

Ω
1√
φ1
dx). On the other hand, according to (3.15), (3.17),

(3.21) and Lemma 2.1, we obtain

J(v) =J(un)−
[1

2
‖ωn‖2 − 1

2(2∗s − 1)

∫
Ω

φωn|ωn|2
∗
s−1dx− 1

2∗s

∫
Ω

|ωn|2
∗
sdx
]

+ on(1)

≤c−
(√5− 1

2

) 2
2∗s−2 (2∗s − 2)(2 · 2∗s + 1−

√
5)

4(2∗s − 1)2∗s
S
N
2s

<
[(√5− 1

2

) 2
2∗s−2 (2∗s − 2)(2 · 2∗s + 1−

√
5)

4(2∗s − 1)2∗s
S
N
2s − θλ

]
−
(√5− 1

2

) 2
2∗s−2 (2∗s − 2)(2 · 2∗s + 1−

√
5)

4(2∗s − 1)2∗s
S
N
2s

=− θλ.
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It’s a contradiction. As thus, l = 0 suggests that un → u in H. The proof of Lemma

3.5 is therefore finished.

Theorem 3.5. For 0 < λ < λ0, system (1.1) has a positive solution (u0, φu0) with

J(u0) = d < 0.

To demonstrate the existence of a positive solution for system (1.1) using mountain

pass theorem, as described in [25]. We state that vε(x) = ψ(x)Uε(x), x ∈ Ω, where

Uε(x) = ε−
N−2s

2 u∗(x
ε
), u∗(x) = ũ(x\S

1
2s )

‖ũ‖2∗s
, and ũ(x) = k(µ2

0 + |x|2)−
N−2s

2 with k > 0 and

µ0 > 0 being fixed constants; the cut-off function ψ ∈ C∞0 (Ωδ(x0), [0, 1]) such that

ψ(x) = 1 near x = x0, where Ωδ(x0) ⊂ Ω. Let vε(x) = ψ(x)Uε(x), our conclusion is as

follows.

By multiplying the second equation of system (1.1) by |u| and integrating, we obtain∫
Ω

|vε|2
∗
sdx =

∫
Ω

(−∆)
s
2φvε(−∆)

s
2 |vε|dx

≤1

2

∫
Ω

|(−∆)
s
2 |vε||2dx+

1

2

∫
Ω

|(−∆)
s
2φvε|2dx

≤1

2

∫
Ω

|(−∆)
s
2vε|2dx+

1

2

∫
Ω

φvε|vε|2
∗
s−1dx. (3.22)

Consequently, if we define a new functional G : H → R defined as follows

G(u) ,
N

N + 2s
‖u‖2 − λ

∫
Ω

F (x, u)dx− 1

2∗s − 1

∫
Ω

|u|2∗sdx

=
2N

N + 2s

(1

2
‖u‖2 − λ(N + 2s)

2N

∫
Ω

F (x, u)dx− 1

2∗s

∫
Ω

|u|2∗sdx
)

,
2N

N + 2s
I(u)

where

I(u) =
1

2
‖u‖2 − λ(N + 2s)

2N

∫
Ω

F (x, u)dx− 1

2∗s

∫
Ω

|u|2∗sdx.

By (3.22) we have

J(u) ≤ G(u) =
2N

N + 2s
I(u) (3.23)

for each u ∈ H. Now, let us consider the following problem: (−∆)su =
λ(N + 2s)

2N
f(x, u) + |u|2∗s−2u, in Ω,

u = 0, on ∂Ω.
(3.24)

The critical point of the functional I corresponds to a weak solution of problem (3.24).

The energy functional corresponding to problem (3.24) is as follows

I(u) =
1

2
‖u‖2 − λ(N + 2s)

2N

∫
Ω

F (x, u)dx− 1

2∗s

∫
Ω

|u|2∗sdx.

where F (x, u) =
∫ u

0
f(x, t)dt.
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Lemma 3.6. (see[24]) Every positive weak solution of problem (3.24) belongs to L∞(Ω)∩
C∞(Ω).

Remark 3.7. By employing a similar approach as the proof of Lemma 3.3, we can

demonstrate that the functional I also fulfills mountain pass theorem. Thus, problem

(3.24) has a positive solution u0 with I(u0) < 0.

Lemma 3.8. Assume 0 < λ < λ1, for each s ∈ (0, 1) it holds

sup
t≥0

I(u0 + tvε) ≤ c∗ − θλ

where λ1 = min{1, ( C2

C3+C1+θ
)2}. In particular

sup
t≥0

J(u0 + tvε) ≤
2N

N + 2s
c∗ − θλ (3.25)

Proof. From [25], we have∫
Ω

|(−∆)
s
2vε|2dx ≤ S

N
2s +O(εN−2s),

∫
Ω

|vε|2
∗
sdx = S

N
2s +O(εN) (3.26)

and

|vε|pp =


O(ε

N(2−p)+2sp
2 ) if p > N

N−2s
,

O(ε
N(2−p)+2sp

2 |logε|) if p = N
N−2s

,

O(ε
(N−2s)p

2 ) if p < N
N−2s

.

(3.27)

Then via (3.22), for ε > 0 small enough, we derive∫
Ω

φvε|vε|2
∗
s−1dx ≥2

∫
Ω

|vε|2
∗
sdx−

∫
Ω

|(−∆)
s
2vε|2dx

=S
N
2s +O(εN−2s). (3.28)

By (3.23), we have ∫
Ω

|vε|2
∗
s−1dx = Cε

N−2s
2 . (3.29)

Since I(u0 + tvε) → −∞ as t → ∞, I(u0) < 0, according to Lemma 3.3 (i), we can

suppose that there exist t1, t2 > 0 such that supt≥0 I(u0 + tvε) = supt∈[t1,t2] I(u0 + tvε).

Since u0 is positive solution of problem (3.24), we have
I(u0) < 0,∫

Ω
(−∆)

s
2u0(−∆)

s
2vεdx =

∫
Ω
|u0|2

∗
s−2u0vεdx+ 2N

N+2s
λ
∫

Ω
vε
u0
dx,

vε
u0
∈ L1(Ω), that is

∫
Ω
vε
u0
dx ≤ C for some C > 0.

(3.30)

Moreover, according to u0 > ωλ, we deduce that

F (x, u0) =

∫ ωλ

0

1

ωλ
dt+

∫ u0

ωλ

1

t
dt

=1 + lnu0 − lnωλ.
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Therefore, we have∫
Ω

[F (x, u0 + tvε)− F (x, u0)]dx =

∫
Ω

[1 + ln(u0 + tvε)− lnωλ]dx

−
∫

Ω

(1 + lnu0 − lnωλ)dx

=

∫
Ω

ln(1 +
tvε
u0

)dx

≥0 (3.31)

for all t ≥ 0. Thus, based on equation (3.30), equation (3.31), and the following

inequality

(a+ b)2∗s ≥ a2∗s + 2∗sa
2∗s−1b+ 2∗sab

2∗s−1 + b2∗s , for a, b ≥ 0,

we have

I(u0 + tvε) =
1

2
‖u0 + tvε‖2 − 1

2∗s

∫
Ω

|u0 + tvε|2
∗
sdx− N + 2s

2N
λ

∫
Ω

F (x, u0 + tvε)dx

=
1

2
‖u0‖2 +

t2

2
‖vε‖2 + t

∫
Ω

(−∆)
s
2u0 · (−∆)

s
2vεdx

− 1

2∗s

∫
Ω

|u0 + tvε|2
∗
sdx− N + 2s

2N
λ

∫
Ω

F (x, u0 + tvε)dx

=I(u0) +
t2

2
‖vε‖2 − 1

2∗s

∫
Ω

(
|u0 + tvε|2

∗
s − |u0|2

∗
s − 2∗s|u0|2

∗
s−1tvε

)
dx

− N + 2s

2N
λ

∫
Ω

(
F (x, u0 + tvε)− F (x, u0)

)
dx+

2N

N + 2s
λ

∫
Ω

tvε
u0

dx

≤t
2

2
‖vε‖2 − t2

∗
s

2∗s

∫
Ω

|vε|2
∗
sdx− t2∗s−1

∫
Ω

|u0||vε|2
∗
s−1dx+

2N

N + 2s
λ

∫
Ω

tvε
u0

dx.

For t ≥ 0, let

g(t) =
t2

2
‖vε‖2 − t2

∗
s

2∗s

∫
Ω

|vε|2
∗
sdx− t2∗s−1

∫
Ω

|u0||vε|2
∗
s−1dx+

2N

N + 2s
λ

∫
Ω

tvε
u0

dx.

Since limt→∞ g(t) = −∞. It is demonstrated by the [26] that there exist positive

constants t1, t2 (independent of ε, λ) such that

0 < t1 ≤ tε ≤ t2 < +∞.

There exists a positive constant C such that u0 < C and one has u0 ∈ C1(Ω,R+) via a

standard regularity argument. Therefore, it can be deduced from equations (3.21) and

(3.26)-(3.30) that

sup
t∈[t1,t2]

I(u0 + tvε) ≤
(√5− 1

2

) 2
2∗s−2 (2∗s − 2)(2 · 2∗s + 1−

√
5)

4(2∗s − 1)2∗s
S
N
2s + C1ε

N−2s − C2ε
N−2s

2

+ C3λ.
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where C1, C2, C3 > 0(independent of ε, λ). Let ε = λ
1

N−2s , λ1 = min{1, ( C2

C3+C1+θ
)2} we

have

C1ε
N−2s − C2ε

N−2s
2 + C3λ =(C1 + C3)λ− C2λ

1
2

=λ(C1 + C3 − C2λ
− 1

2 )

≤− θλ

for all λ ∈ (0, λ1). We may deduce from (3.23) and the discussion above that (3.25) is

likewise true for λ ∈ (0, λ1). Thus it completes the proof of Lemma 3.8.

Proof of Theorem 1.1: Let 0 < λ < λ∗ = min{λ0, λ1}. Lemma 3.4 and Lemma 3.6

imply that J fulfills the Palais-Smale criterion at the level c. There is a Palais-Smale

sequence {un} such that, as n → ∞, |dJ |(un) → 0, J(un) → c, by Lemma 3.3. Up

to a subsequence, un → v in H, and J(v) = limn→∞ J(v) = c > 0, |dJ |(un) → 0.

By utilizing mountain pass lemma and Lemma 3.2, it can be concluded that (v, φv) is

a positive solution of system (1.1). By combining with Theorem 3.5, it follows that

system (1.1) has two positive solutions. The proof of Theorem 1.1 is now finished.
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