
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume *, Number *, * *, 1–22 DOI:10.11948/*.1

EXISTENCE AND HYERS-ULAM STABILITY
OF IMPULSIVE DELAY

INTEGRO-DIFFERENTIAL EQUATIONS∗

Fengya Xu1, Jing Shao†1, Zhihao Tian1, Zhaowen Zheng2

Abstract In recent years, impulsive ordinary differential equations with de-
lay terms have garnered significant attention due to their wide applications
in various fields, including mechanics, population dynamics, and nuclear re-
actor physics. The primary objective of this paper is to establish the Hyers-
Ulam stability and Hyers-Ulam-Rassias stability for impulsive delay ordinary
differential equations by employing a novel generalized Gronwall inequality
alongside fixed-point methods and Picard’s operator technique. An example
is provided to illustrate the stability of impulsive differential equation which
is based on a new deep learning framework, and the integral operators are
learned using neural networks.
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1. Introduction

In the early 20th century, the works of V. Volterra on population dynamics have
motivated the theory of impulsive differential equation (IDE), which stemmed from
the necessity of modeling systems [1,2]. By the mid-20th century, with the develop-
ment of computer technology and numerical calculation, IDE became an essential
mathematical tool in various scientific and engineering fields [3,4]. Nowadays, IDEs
are used in a wide range of scientific and engineering fields, such as mechanics,
chemical reactions, communication systems, population dynamics, medical models,
optimal control models, nuclear reactor physics, economics, deep learning, pharma-
cokinetics and frequency modulation systems (see [5]- [10], and the bibliography
therein). The naturally evolutionary behavior in many real-world problems can be
characterized by impulse effects [11].

In 1940s, Ulam proposed a problem regarding the stability of the Cauchy equa-
tion, to which Hyers provided a partial solution. In 1978, Rassias provided a more
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extensive elaboration on the idea of Hyers, where the bound for the norm of the
Cauchy difference was determined in a more general form. This concept of stability
is known as Ulam’s type stability(including Hyers-Ulam stability and Hyers-Ulam-
Rassias stability). Subsequently, numerous researchers have delved into the investi-
gation of Hyers-Ulam stability in ordinary differential equations, partial differential
equations, and fractional differential equations (see [5–8,10,12,15,16,18–24,27] and
references therein). The Hyers-Ulam stability problem stands as a fundamental is-
sue in classical physical systems, encompassing plasma physics, electrical circuits,
aerodynamics and various other fields.

Among these results, Ulam’s type stability of IDEs draw many researchers’ at-
tention, the first result on IDEs was obtained by Wang et al. [12] in 2012. They
gave the Ulam’s type stability for the first-order nonlinear IDEs on closed bound-
ed interval with finite impulses. In addition, various generalizations of Hyers-Ulam
stability have been extensively studied and many elegant results have been obtained
by using different approaches, for examples, see [13]- [27]. C. Tunç [18] investigat-
ed the stability of zero solution and boundedness of all solutions of the nonlinear
Volterra integro-differential equation with delay by defining new suitable Lyapunov
functions. In 2016, using abstract Gronwall lemma and Gronwall integral inequali-
ty, A. Zada et al. [19] considered the Hyers-Ulam stability and Hyers-Ulam-Rassias
stability for first-order IDEs with delay of the form:

z′ (t) = F (t, z(t), z(h(t))), I = [t0, T ], t ∈ I ′ , I \ {t1, t2, · · · , tm} ,

z(t) = α(t), t ∈ [t0 − τ, t0] ,

4z(tk) = z(t+k )− z(t−k ) = Yk(z(t−k )), k = 1, 2, · · · ,m,

where τ > 0, T > t0 ≥ 0 are fixed points, and F : [t0, T ] × R2 → R, Yk : R → R
and α : [t0 − τ, t0] → R are continuous functions. z(t+k ) = lims→0+ z(tk + s) and
z(t−k ) = lims→0+ z(tk − s) are the right and left side limits of z(t) at tk, k =
1, 2, · · · ,m, where tk satisfy t0 < t1 < t2 < · · · < tm < tm+1 = T < +∞. In 2019,
using Gronwall integral inequality, A. Zada et al. [20] investigated the existence
and uniqueness theorem for the solutions of a class of nonlinear impulsive integral
equations with a bounded variable delay. Moreover, the Hyers-Ulam stability and
Hyers-Ulam-Rassias stability of the integral equations were obtained with the help
of open mapping theorem approach.

A. R. Aruldass et al. [21] proposed a new method for investigating the Ulam
stability of linear differential equations of the form u′(t) + µu(t) = 0 and the non-
homogeneous linear differential equation u′(t) + µu(t) = r(t) by applying Kamal
transform method in 2021. In the same year, using fixed point method in the sense
of Cadariu and Radu, R. Murali et al. [22] proved the Hyers-Ulam stability and
Hyers-Ulam-Rassias stability of the n−order differential equation. D. A. Refaai et
al. [23] discussed the Hyers-Ulam stability of fractional impulsive Volterra delay
integro-differential equations of the form:

η1(t) = Iαt0,tf

(
t, η1(t), η1(h(t)),

∫ t

t0

g(t, τ, η1(τ), η1(h(τ)))dτ

)
, t ∈ I ′,

4η1(tk) = η1(t+k )− η1(t−k ) = βk

∫ tk−θk

tk−τk
U(η1(s))ds, k = 1, 2, · · · ,m,

η1(t) = φ(t), t ∈ [t0 − τ, t0],
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where τ > 0, βk ≥ 0, 0 ≤ θk ≤ τk ≤ tk − tk−1 for k = 1, 2, · · · ,m, T > t0 ≥
0, f : [t0, T ] × R3 → R and g : [t0, T ] × [t0, T ] × R2 → R are continuous functions,
φ : [t0−τ, t0]→ R is a delay function, and Iαt0,tf is the Riemann-Liouville fractional
integral of order α. Their analysis was based on Pachpatte’s inequality and the
fixed point approach represented by the Picard operators.

Thereafter, using the fixed point theory and the generalized metric, E. El-hady
et al. [24] obtained Hyers-Ulam-Rassias stability for the following impulsive Volterra
integral equation of second kind

u(t) =

∫ t

0

f(s, u(s))ds+
∑

0<tk<t

U(u(t−k )),

where U : C → C, u(t−k ) represents the left limit of u(t) at t = tk, k = 1, 2, · · · ,m
and f is a continuous function.

Motivated by the above mentioned papers, in this paper, using a novel general-
ized Gronwall inequality and the fixed-point method, we investigate the Hyers-Ulam
stability and Hyers-Ulam-Rassias stability of impulsive delay integro-differential e-
quation of the form:

u′(t) = F (t, u(t), u(h(t))) +

∫ t

t0

G(t, s, u(s), u(h(s)))ds, t ∈ I ′,

u(t) = α(t), t ∈ [t0 − τ, t0],

4u(tk) = u(t+k )− u(t−k ) = φk(u(t−k )), k = 1, 2, · · · ,m,

(1.1)

where τ > 0, T > t0 ≥ 0, α(t) : [t0 − τ, t0] → R is a continuous function, F :
[t0, T ] × R2 → R, G : [t0, T ] × [t0, T ] × R2 → R, and φk : R → R. Moreover, we
assume that h : [t0, T ]→ [t0−τ, T ] is a continuous delay function such that h(t) ≤ t.
u(t+k ) = lim4t→0+ u(tk +4t) and u(t−k ) = lim4t→0− u(tk +4t) are the right and
left side limits of u(t) at tk, where tk satisfy t0 < t1 < · · · < tm+1 = T < +∞.

The rest of this paper is structured as follows: Section 2 introduces important
notations, recalls some concepts and preliminary results, and proposes the new
Gronwall inequality. Section 3 establishes the existence, uniqueness, and Hyers-
Ulam stability for equation (1.1) by utilizing the fixed point theorem and a new
generalized Gronwall inequality. In Section 4, the Hyers-Ulam-Rassias stability
for equation (1.1) is demonstrated using a generalized Gronwall inequality. An
illustrative example based on the neural integro-differential equation is provided in
Section 5 to show the application of our main results.

2. Preliminaries

In this section, we provide preliminaries including some important notations,
definitions and lemmas.

Let C(J) be the Banach space of all continuous real valued functions defined
on J with norm ‖z‖c = sup {|z(t)| : t ∈ J}, where J is a compact interval. Let
PC ([t0 − τ, T ]) be the collection of piecewise continuous functions z: [t0−τ, T ]→ R
with discontinuous points tk satisfying t0 < t1 < t2 < · · · < tm < T , tm+1

and z(t+k ), z(t−k ) exist and are finite for k = 1, 2, · · · ,m. With norm ‖z‖PC =
sup {|z(t)| : t ∈ [t0 − τ, T ]}, it is easy to see that PC([t0 − τ, T ]) is a Banach space.
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Similarly, we define the Banach space

PC1([t0 − τ, T ]) = {z|z ∈ PC ([t0 − τ, T ]) and z′ ∈ PC([t0 − τ, T ])}

with norm
‖z‖PC1 = max {‖z′‖PC , ‖z‖PC} .

Now, for ε > 0, and a nonnegative, increasing function ϕ(t) ∈ PC([t0 − τ, T ])
with ϕ′(t) > 0 and χ > 0 with ϕ(t∗) = χ > 0 for some t∗ ∈ [t0 − τ, T ], we consider
the following inequalities:∣∣∣∣u′ − F (t, u(t), u(h(t)))−

∫ t

t0

G(t, s, u(s), u(h(s)))ds

∣∣∣∣ ≤ ε, t ∈ I ′,∣∣4u(tk)− φk(u(t−k ))
∣∣ ≤ ε, k = 1, 2, · · · ,m,

(2.1)

∣∣∣∣u′ − F (t, u(t), u(h(t)))−
∫ t

t0

G(t, s, u(s), u(h(s)))ds

∣∣∣∣ ≤ ϕ(t), t ∈ I ′,∣∣4u(tk)− φk(u(t−k ))
∣∣ ≤ χ, k = 1, 2, · · · ,m.

(2.2)

Definition 2.1. Equation (1.1) is Hyers-Ulam stable on [t0 − τ, T ] if for each
u ∈ PC([t0 − τ, T ]) ∩ PC1([t0, T ]) satisfying (2.1), there exists a solution u0 ∈
PC([t0 − τ, T ])∩PC1([t0, T ]) of (1.1) with |u0(t)− u(t)| ≤ Kε for all t ∈ [t0 − τ, T ],
where K > 0 is a constant.

Definition 2.2. Equation (1.1) is Hyers-Ulam-Rassias stable on [t0 − τ, T ] with
respect to (ϕ, χ) if for each u ∈ PC([t0 − τ, T ])∩PC1([t0, T ]) satisfying (2.2), there
exists a solution u0 ∈ PC([t0 − τ, T ]) ∩ PC1([t0, T ]) of (1.1) with |u0(t)− u(t)| <
Mϕ(t) for all t ∈ [t0 − τ, T ], where M > 0 is a constant.

Definition 2.3. (Picard operator [27]) Let (Z; d) be a metric space. An operator
T : Z → Z is said to be a Picard operator if there exists z∗ ∈ Z such that :

(i)FT = {z∗}, where FT = {z ∈ Z : T (z) = z} is the fixed point set of T ;
(ii) the sequence {Tn(z)}n∈N converges to z∗ for all z ∈ Z.

Lemma 2.1. (Generalized Gronwall Lemma) If for t ≥ t0 ≥ 0, we have

z(t) ≤ a(t) +

∫ t

t0

b(s)

(
z(s) +

∫ s

t0

c(τ)z(τ)dτ

)
ds+

∑
t0<tk<t

z(t−k )ξk, (2.3)

where z, a, b, c ∈ PC([t0,∞)) are nonnegative functions, a(t) is nondecreasing and
ξk > 0 for k = 1, 2, · · · ,m. Then for t ≥ t0, the following inequality holds

z(t) ≤ ak(t)H(tk, t), t ∈ (tk, tk+1] (2.4)

for k = 0, 1, 2, · · · ,m with a0(t) = a(t), where

ak(t) = a(t)

k∏
i=1

[1 +H(ti−1, ti) (A(ti−1, ti) + ξi)] , (2.5)

A(ti−1, t) =

∫ t

ti−1

b(s)

(
1 +

∫ s

t0

c(τ)dτ

)
ds, (2.6)

H(tk, t) = 1 +A(tk, t)

(
1 +

∫ t

tk

b(s) exp

{∫ s

tk

(b(τ) + c(τ))dτ

}
ds

)
. (2.7)
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Proof: Since z, a, b and c are piecewise continuous nonnegative functions, a(t)
is nondecreasing and ξk > 0, for t0 ≤ t ≤ t1, we have

z(t) ≤ a(t) +

∫ t

t0

b(s)z(s)ds+

∫ t

t0

b(s)

∫ s

t0

c(τ)z(τ)dτds.

Obviously
z(t) ≤ a(t) + w(t), (2.8)

where w(t) =
∫ t
t0
b(s)z(s)ds +

∫ t
t0
b(s)

∫ s
t0
c(τ)z(τ)dτds and w(t0) = 0. It is easy to

see that

w(t) ≤
∫ t

t0

b(s)

(
a(s) + w(s) +

∫ s

t0

c(τ)(a(τ) + w(τ))dτ

)
ds

=

∫ t

t0

b(s)a(s)ds+

∫ t

t0

b(s)

∫ s

t0

c(τ)a(τ)dτds

+

∫ t

t0

b(s)

(
w(s) +

∫ s

t0

c(τ)w(τ)dτ

)
ds.

(2.9)

Let J(t) =
∫ t
t0
b(s)a(s)ds+

∫ t
t0
b(s)

∫ s
t0
c(τ)a(τ)dτds, we get J(t0) = 0. Since a(t) is

nondecreasing, we get J(t) ≤ a(t)A(t0, t), where A(t0, t) is defined by (2.6).
For t > t0, dividing both sides of (2.9) by J(t), we have

w(t)

J(t)
≤ 1 +

1

J(t)

∫ t

t0

b(s)

(
w(s) +

∫ s

t0

c(τ)w(τ)dτ

)
ds

≤ 1 +

∫ t

t0

b(s)

(
w(s)

J(s)
+

∫ s

t0

c(τ)
w(τ)

J(τ)
dτ

)
ds.

Let

Y (t) =
w(t)

J(t)
, (2.10)

we get

Y (t) ≤ 1 +

∫ t

t0

b(s)

(
Y (s) +

∫ s

t0

c(τ)Y (τ)dτ

)
ds.

Using nonlinear Pachpatte’s integral inequalities [28], we get

Y (t) ≤ 1 +

∫ t

t0

b(s) exp

{∫ s

t0

[b(τ) + c(τ)]dτ

}
ds.

Then (2.10) implies that

w(t) ≤ J(t)

(
1 +

∫ t

t0

b(s) exp

{∫ s

t0

[b(τ) + c(τ)]dτ

}
ds

)
≤ a(t)A(t0, t)

(
1 +

∫ t

t0

b(s) exp

{∫ s

t0

[b(τ) + c(τ)]dτ

}
ds

)
,

(2.11)

thus, for t ∈ [t0, t1], using (2.8) and (2.11), we get

z(t) ≤ a(t)H(t0, t). (2.12)
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Particularly, we have

z(t−1 ) = z(t1) ≤ a(t1)H(t0, t1). (2.13)

For t ∈ (t1, t2], using (2.12) and (2.13), we get

z(t) ≤ a(t) + ξ1z(t
−
1 ) +

∫ t

t0

b(s)

(
z(s) +

∫ s

t0

c(τ)z(τ)dτ

)
ds

= B1(t) +

∫ t

t1

b(s)

(
z(s) +

∫ s

t0

c(τ)z(τ)dτ

)
ds,

where

B1(t) = a(t) + ξ1z(t
−
1 ) +

∫ t1

t0

b(s)

(
z(s) +

∫ s

t0

c(τ)z(τ)dτ

)
ds

≤ a(t) + z(t−1 )(A(t0, t1) + ξ1)

≤ a(t) [1 +H(t0, t1)(A(t0, t1) + ξ1)] = a1(t).

So we get

z(t) ≤ a1(t) +

∫ t

t1

b(s)

(
z(s) +

∫ s

t0

c(τ)z(τ)dτ

)
ds.

Let

Y1(t) =
z(t)

a1(t)
, (2.14)

we get

Y1(t) ≤ 1 +

∫ t

t1

b(s)

(
Y1(s) +

∫ s

t0

c(τ)Y1(τ)dτ

)
ds.

Then we obtain

Y1(t) ≤ 1 + k(t), (2.15)

where

k(t) =

∫ t

t1

b(s)

(
Y1(s) +

∫ s

t0

c(τ)Y1(τ)dτ

)
ds,

and k(t1) = 0. So we have

k′(t) = b(t)

(
Y1(s) +

∫ t

t0

c(s)Y1(s)ds

)
≤ b(t)

(
1 +

∫ t

t0

c(s)ds

)
+ b(t)

(
k(t) +

∫ t1

t0

c(s)k(s)ds+

∫ t

t1

c(s)k(s)ds

)
≤ b(t)

(
1 +

∫ t

t0

c(s)ds

)
+ b(t)

(
k(t) +

∫ t

t1

c(s)k(s)ds

)
.

(2.16)

Integrating on both sides of (2.16) from t1 to t, we have

k(t) ≤ A(t1, t) +

∫ t

t1

b(s)

(
k(s) +

∫ s

t1

c(τ)k(τ)dτ

)
ds.
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Since A(t1, t) > 0 for t > t1, we get

k(t)

A(t1, t)
≤ 1 +

∫ t

t1

b(s)

(
k(s)

A(t1, s)
+

∫ s

t1

c(τ)
k(τ)

A(t1, τ)
dτ

)
ds.

Using nonlinear Pachpatte’s integral inequalities, we obtain

k(t) ≤ A(t1, t)

(
1 +

∫ t

t1

b(s) exp

{∫ s

t1

(b(τ) + c(τ))dτ

}
ds

)
. (2.17)

By (2.15) and (2.17), it is easy to see that

Y1(t) ≤ 1 +M(t)

(
1 +

∫ t

t1

b(s) exp

{∫ s

t1

(b(τ) + c(τ))dτ

}
ds

)
. (2.18)

By (2.14) and (2.18), we get

z(t) ≤ a1(t)Y1(t) ≤ a1(t)(1 + k(t)) = a1(t)H(t1, t),

and as a consequence, we get

z(t−2 ) = z(t2) ≤ a1(t2)H(t1, t2). (2.19)

Suppose for t ∈ (tk−1, tk], one has z(t) ≤ ak−1(t)H(tk−1, t) and z(t−k ) = z(tk) ≤
ak−1(tk)H(tk−1, tk), then for t ∈ (tk, tk+1], we get

z(t) ≤a(t) +

∫ t

t0

b(s)

(
z(s) +

∫ s

t0

c(τ)z(τ)dτ

)
ds+

∑
t0<tk<t

z(t−k )ξk

=Bk(t) +

∫ t

tk

b(s)

(
z(s) +

∫ s

t0

c(τ)z(τ)dτ

)
ds,

(2.20)

where

Bk(t) =a(t) +

k∑
i=1

∫ ti

ti−1

b(s)

(
z(s) +

∫ s

t0

c(τ)z(τ)dτ

)
ds+

k∑
i=1

z(t−i )ξi

≤a(t) +

k∑
i=1

[A(ti−1, ti) + ξi] z(t
−
i )

≤a(t) +

k∑
i=1

[A(ti−1, ti) + ξi] ai−1(ti)H(ti−1, ti)

≤a(t) +

k∑
i=1

[A(ti−1, ti) + ξi] ai−1(t)H(ti−1, ti)

≤a1(t) +

k∑
i=2

[A(ti−1, ti) + ξi] ai−1(t)H(ti−1, ti)

≤a2(t) +

k∑
i=3

[A(ti−1, ti) + ξi] ai−1(t)H(ti−1, ti)

≤ · · · ≤ ak(t).
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So we get by (2.20) that

z(t) ≤ ak(t) +

∫ t

tk

b(s)

(
z(s) +

∫ s

t0

c(τ)z(τ)dτ

)
ds.

Similar method as above can deduce that z(t) ≤ ak(t)H(tk, t). By the method of
mathematical induction, we prove that (2.4) holds for the whole interval I ′. This
completes the proof of Lemma 2.1.

Lemma 2.2. (Abstract Gronwall Lemma [19]) Let (Z, d,≤) be an ordered metric
space and let T : Z → Z be an increasing Picard operator with fixed point z∗. Then
for any z ∈ Z, z ≤ T (z) implies z ≤ z∗ and z ≥ T (z) implies z ≥ z∗, where z∗ is
the fixed point of T in Z.

Lemma 2.3. (c.f. [12]) A function u ∈ PC1([t0, T ]) satisfies (2.1) if and only if
there is a function f ∈ PC([t0 − τ, T ]) and a sequence {fk} (which depends on f)
such that |f(t)| ≤ ε for all t ∈ [t0 − τ, T ], |fk| ≤ ε for all k = 1, 2, · · · ,m and

u′(t) = F (t, u(t), u(h(t))) +

∫ t

t0

G(t, s, u(h(s)))ds+ f(t), t ∈ I ′,

4u(tk) = φk(u(t−k )) + fk, k = 1, 2, 3, · · · ,m.
(2.21)

Remark 2.1. A function u ∈ PC1([t0, T ]) satisfies (2.2) if and only if there is a
function f ∈ PC([t0 − τ, T ]) and a sequence {fk} (which depends on f) such that
|f(t)| ≤ ϕ(t) for all t ∈ [t0 − τ, T ], |fk| ≤ χ for all k = 1, 2, 3, · · · ,m and (2.21)
holds.

Lemma 2.4. Each solution u ∈ PC1([t0, T ]) of (2.1) satisfies the following integral
inequality ∣∣∣∣∣∣u(t)− u(t0)−

k∑
j=1

φj(u(t−j ))−
∫ t

t0

F (x, u(x), u(h(x)))dx

−
∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx

∣∣∣∣ ≤ (t− t0 +m)ε

for all t ∈ (tk, tk+1] ⊂ [t0, T ], k = 0, 1, 2, · · · ,m.

Proof: If u ∈ PC1([t0, T ]) satisfies (2.1), then by Lemma 2.3, we have

u′(t) = F (t, u(t), u(h(t))) +

∫ t

t0

G(t, s, u(s), u(h(s)))ds+ f(t), t ∈ I ′,

4u(tk) = φk(u(t−k )) + fk, k = 1, 2, · · · ,m.
(2.22)

For t ∈ [t0, t1], integrating (2.22) from t0 to t implies that∫ t

t0

u′(x)dx =

∫ t

t0

[
F (x, u(x), u(h(x))) +

∫ x

t0

G(x, s, u(s), u(h(s)))ds+ f(x)

]
dx,

then we have

u(t) = u(t0) +

∫ t

t0

[
F (x, u(x), u(h(x))) +

∫ x

t0

G(x, s, u(s), u(h(s)))ds+ f(x)

]
dx,
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and

u(t−1 ) = u(t1) =u(t0) +

∫ t1

t0

F (x, u(x), u(h(x)))dx+

∫ t1

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx

+

∫ t1

t0

f(x)dx.

For t ∈ (t1, t2], integrating (2.22) from t1 to t implies that∫ t

t1

u′(x)dx =

∫ t

t1

[
F (x, u(x), u(h(x))) +

∫ x

t0

G(x, s, u(s), u(h(s)))ds+ f(x)

]
dx.

Then we get

u(t) =u(t+1 ) +

∫ t

t1

F (x, u(x), u(h(x)))dx+

∫ t

t1

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx

+

∫ t

t1

f(x)dx

=φ1(u(t−1 )) + u(t−1 ) + f1 +

∫ t

t1

F (x, u(x), u(h(x)))dx

+

∫ t

t1

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx+

∫ t

t1

f(x)dx

=φ1(u(t−1 )) + u(t0) + f1 +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx+

∫ t

t0

f(x)dx.

(2.23)

So we have

u(t−2 ) =φ1(u(t−1 )) + u(t0) + f1 +

∫ t2

t0

F (x, u(x), u(h(x)))dx

+

∫ t2

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx+

∫ t2

t0

f(x)dx.

Now, suppose that for t ∈ (tk−1, tk], we have

u(t) =u(t0) +

k−1∑
i=1

fi +

k−1∑
j=1

φj(u(t−j )) +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx+

∫ t

t0

f(x)dx,

and

u(t−k ) =u(t0) +

k−1∑
i=1

fi +

k−1∑
j=1

φj(u(t−j )) +

∫ tk

t0

F (x, u(x), u(h(x)))dx

+

∫ tk

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx+

∫ tk

t0

f(x)dx.
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Then for t ∈ (tk, tk+1], integrating (2.22) from tk to t implies that

u(t) =u(t+k ) +

∫ t

tk

F (x, u(x), u(h(x)))dx

+

∫ t

tk

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx+

∫ t

tk

f(x)dx

=φk(u(t−k )) + u(t−k ) + fk +

∫ t

tk

F (x, u(x), u(h(x)))dx

+

∫ t

tk

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx+

∫ t

tk

f(x)dx

=u(t0) +

k∑
i=1

fi +

k∑
j=1

φj(u(t−j )) +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

f(x)dx+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx.

Hence, by the method of mathematical induction, we have

u(t) = u(t0) +

k∑
i=1

fi +

k∑
j=1

φj(u(t−j )) +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

f(x)dx+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx, t ∈ (tk, tk+1].

(2.24)

It follows by (2.24) that∣∣∣∣∣∣u(t)− u(t0)−
k∑
j=1

φj(u(t−j ))−
∫ t

t0

F (x, u(x), u(h(x)))dx

−
∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx

∣∣∣∣
=

∣∣∣∣∣
∫ t

t0

f(x)dx+

k∑
i=1

fi

∣∣∣∣∣ ≤
∫ t

t0

|f(x)|dx+

k∑
i=1

|fi|

≤ (t− t0 + k)ε ≤ (t− t0 +m)ε, t ∈ (tk, tk+1].

This completes the proof of Lemma 2.4.

Remark 2.2. Each solution u ∈ PC1([t0, T ]) of (2.2) satisfies the following integral
inequality∣∣∣∣∣∣u(t)− u(t0)−

k∑
j=1

φj(u(t−j ))−
∫ t

t0

F (x, u(x), u(h(x)))dx

−
∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx

∣∣∣∣ ≤ ρϕ(t) +mχ, for t ∈ (tk, tk+1] ⊂ [t0, T ].
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3. Hyers-Ulam Stability

In this section, the Hyers-Ulam stability for the impulsive delay integro-
differential equation is studied by using Definition 2.1, Lemma 2.1 and Lemma
2.2.

Theorem 3.1. Suppose that the following hypotheses hold:

(A1) F : [t0, T ]× R2 → R, G : [t0, T ]× [t0, T ]× R2 → R are continuous, and F , G
are Lipschitz continuous with respect to the last two variables,

|F (x, η1, η2)− F (x, ξ1, ξ2)| ≤
2∑
i=1

L1 |ηi − ξi| , (3.1)

|G(x, s, η1, η2)−G(x, s, ξ1, ξ2)| ≤
2∑
i=1

L1L2 |ηi − ξi| , (3.2)

where L1, L2 > 0, for all x, s ∈ I ′;

(A2) φj : R → R is such that |φj(η1)− φj(η2)| ≤ Mj |η1 − η2|, Mj > 0 for all
j ∈ {1, 2, · · · ,m} and η1, η2 ∈ R;

(A3)
∑m
j=1Mj + 2L1(T − t0) + (T − t0)2L1L2 < 1.

Then there exists a unique solution of problem (1.1) in PC([t0 − τ, T ])∩PC1([t0, T ])
and equation (1.1) is Hyers-Ulam stable on [t0 − τ, T ].

Proof: (1) We define an operator T : PC([t0 − τ, T ])→ PC([t0 − τ, T ]) as

(Tu)(t) =



α(t),t ∈ [t0 − τ, t0],

α(t0) +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx, t ∈ (t0, t1],

α(t0) + φ1(u(t−1 )) +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx, t ∈ (t1, t2],

α(t0) +

2∑
j=1

φj(u(t−j )) +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx, t ∈ (t2, t3],

...

α(t0) +

m∑
j=1

φj(u(t−j )) +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx, t ∈ (tm, tm+1].

(3.3)



12 F. Xu, J. Shao, Z. Tian & Z. Zheng

For any u1, u2 ∈ PC([t0 − τ, T ]), and for all t ∈ [t0 − τ, t0], we have

|(Tu1)(t)− (Tu2)(t)| = 0.

For t ∈ (tk, tk+1], we deduce that

|(Tu1)(t)− (Tu2)(t)|

≤
k∑
j=1

∣∣φj(u1(t−j ))− φj(u2(t−j ))
∣∣

+

∫ t

t0

|F (x, u1(x), u1(h(x)))− F (x, u2(x), u2(h(x)))| dx

+

∫ t

t0

∫ x

t0

|G(x, s, u1(s), u1(h(s)))−G(x, s, u2(s), u2(h(s)))| dsdx

≤
k∑
j=1

Mj

∣∣u1(t−j )− u2(t−j )
∣∣+ L1

∫ t

t0

|u1(x)− u2(x)| dx

+ L1

∫ t

t0

|u1(h(x))− u2(h(x))| dx+ L1L2

∫ t

t0

∫ x

t0

|u1(s)− u2(s)| dsdx

+ L1L2

∫ t

t0

∫ x

t0

|u1(h(s))− u2(h(s))| dsdx

≤

 k∑
j=1

Mj + 2L1(T − t0) + (T − t0)2L1L2

 · sup
t∈[t0−τ,T ]

|u1(x)− u2(x)|

≤

 m∑
j=1

Mj + 2L1(T − t0) + (T − t0)2L1L2

 ‖u1 − u2‖ .

By (A3), the operator T is strictly contractive on (tk, tk+1], k = 0, 1, 2, · · · ,m, and
hence it is a Picard operator on PC([t0 − τ, T ]). By (3.1) and (3.2), the unique
fixed point of this operator is in fact the unique solution of (1.1) in PC([t0 − τ, T ])∩
PC1([t0, T ]).

Next, let y ∈ PC([t0 − τ, T ]) ∩ PC1([t0, T ]) be a solution of (2.1). The unique
solution u ∈ PC([t0 − τ, T ]) ∩ PC1([t0, T ]) of the following initial value problem

u′(t) = F (t, u(t), u(h(t))) +

∫ t

t0

G(t, s, u(s), u(h(s)))ds, t ∈ I ′,

u(t) = y(t), t ∈ [t0 − τ, t0] ,

4u(tk) = φk(u(t−k )), k = 1, 2, · · · ,m

(3.4)
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is given by

u(t) =



y(t),t ∈ [t0 − τ, t0],

y(t0) +

∫ t

t0

F (x, u(x), u(h(x)))dx+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx, t ∈ (t0, t1],

y(t0) + φ1(u(t−1 )) +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx, t ∈ (t1, t2],

y(t0) +

2∑
j=1

φj(u(t−j )) +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx, t ∈ (t2, t3],

...

y(t0) +

m∑
j=1

φj(u(t−j )) +

∫ t

t0

F (x, u(x), u(h(x)))dx

+

∫ t

t0

∫ x

t0

G(x, s, u(s), u(h(s)))dsdx, t ∈ (tm, tm+1].

(3.5)
We observe that for t ∈ [t0 − τ, t0], |y(t)− u(t)| = 0.

For t ∈ (tk, tk+1], using Lemma 2.4, let

B(t) = y(t)− y(t0)−
k∑
j=1

φj(y(t−j ))−
∫ t

t0

F (x, y(x), y(h(x)))dx

−
∫ t

t0

∫ x

t0

G(x, s, y(s), y(h(s)))dsdx,

we get

|y(t)− u(t)| ≤ |B(t)|+
∫ t

t0

|F (x, y(x), y(h(x)))− F (x, u(x), u(h(x)))| dx

+

∫ t

t0

∫ x

t0

|G(x, s, y(s), y(h(s)))−G(x, s, u(s), u(h(s)))| dsdx

+

k∑
j=1

∣∣φj(y(t−j ))− φj(u(t−j ))
∣∣

≤(m+ t− t0)ε+ L1

∫ t

t0

|y(x)− u(x)| dx+ L1

∫ t

t0

|y(h(x))− u(h(x))| dx

+ L1L2

∫ t

t0

∫ x

t0

|y(s)− u(s)| dsdx+ L1L2

∫ t

t0

∫ x

t0

|y(h(s))− u(h(s))| dsdx

+

k∑
j=1

Mj

∣∣y(t−j )− u(t−j )
∣∣ .
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Next, we show that the operator Λ : PC([t0 − τ, T ])→ PC([t0 − τ, T ]) given below
is an increasing Picard operator on PC([t0 − τ, T ])

(Λv)(t) =



0, t ∈ [t0 − τ, t0],

(t− t0)ε+ L1

∫ t

t0

v(x)dx+ L1

∫ t

t0

v(h(x))dx

+ L1L2

∫ t

t0

∫ x

t0

v(s)dsdx+ L1L2

∫ t

t0

∫ x

t0

v(h(s))dsdx, t ∈ (t0, t1],

(1 + t− t0)ε+M1v(t−1 ) + L1

∫ t

t0

v(x)dx+ L1

∫ t

t0

v(h(x))dx

+ L1L2

∫ t

t0

∫ x

t0

v(s)dsdx+ L1L2

∫ t

t0

∫ x

t0

v(h(s))dsdx, t ∈ (t1, t2],

(2 + t− t0)ε+ Σ2
j=1Mjv(t−j ) + L1

∫ t

t0

v(x)dx+ L1

∫ t

t0

v(h(x))dx

+ L1L2

∫ t

t0

∫ x

t0

v(s)dsdx+ L1L2

∫ t

t0

∫ x

t0

v(h(s))dsdx, t ∈ (t2, t3],

...

(m+ t− t0)ε+

m∑
j=1

Mjv(t−j ) + L1

∫ t

t0

v(x)dx+ L1

∫ t

t0

v(h(x))dx

+ L1L2

∫ t

t0

∫ x

t0

v(s)dsdx+ L1L2

∫ t

t0

∫ x

t0

v(h(s))dsdx, t ∈ (tm, tm+1].

(3.6)
For any v1, v2 ∈ PC([t0 − τ, T ]), |(Λv1)(t)− (Λv2)(t)| = 0 for t ∈ [t0 − τ, t0]. For
t ∈ (tk, tk+1], we see that

|(Λv1)(t)− (Λv2)(t)| ≤
k∑
j=1

Mj

∣∣v1(t−j )− v2(t−j )
∣∣+ L1

∫ t

t0

|v1(x)− v2(x)| dx

+ L1

∫ t

t0

|v1(h(x))− v2(h(x))| dx

+ L1L2

∫ t

t0

∫ x

t0

|v1(s)− v2(s)| dsdx

+ L1L2

∫ t

t0

∫ x

t0

|v1(h(s))− v2(h(s))| dsdx

≤
k∑
j=1

Mj sup
t∈[t0−τ,T ]

|v1(t)− v2(t)|+ L1(t− t0) sup
t∈[t0−τ,T ]

|v1(t)− v2(t)|

+ L1(t− t0) sup
t∈[t0−τ,T ]

|v1(h(t))− v2(h(t))|

+ L1L2

∫ t

t0

(x− t0)dx sup
t∈[t0−τ,T ]

|v1(t)− v2(t)|

+ L1L2

∫ t

t0

(x− t0)dx sup
t∈[t0−τ,T ]

|v1(h(t))− v2(h(t))| .
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So we get

|(Λv1)(t)− (Λv2)(t)| ≤

 m∑
j=1

Mj + 2L1(T − t0) + (T − t0)2L1L2

 ‖v1 − v2‖ .
According to (A3), the operator Λ is contractive on PC([t0− τ, T ]) in each interval
(tk, tk+1], where k = 0, 1, 2, · · · ,m. Applying Banach contraction principle, we
get Λ is a Picard operator and hence it has a unique fixed point, that is v∗ ∈
PC([t0 − τ, T ]), and

v∗(t) =(m+ t− t0)ε+

k∑
j=1

Mjv
∗(t−j ) + L1

∫ t

t0

v∗(x)dx+ L1

∫ t

t0

v∗(h(x))dx

+ L1L2

∫ t

t0

∫ x

t0

v∗(s)dsdx+ L1L2

∫ t

t0

∫ x

t0

v∗(h(s))dsdx, t ∈ (tk, tk+1].

v∗ is increasing, so v∗(h(t)) ≤ v∗(t) and hence we can get

v∗(t) ≤ (m+ T − t0)ε+

k∑
j=1

Mjv
∗(t−j ) + 2L1

∫ t

t0

v∗(x)dx+ 2L1L2

∫ t

t0

∫ x

t0

v∗(s)dsdx.

(3.7)
Using Lemma 2.1, we get

v∗(t) ≤ (m+ T − t0)ε

k∏
i=1

[1 +H(ti−1, ti) (A(ti−1, ti) +Mi)]H(tk, t).

where

A(ti−1, ti) = 2L1

[
1− L2t0 +

L2

2
(ti + ti−1)

]
(ti − ti−1) (3.8)

H(ti−1, ti) = 1 +
2L1

2L1 + L2
(ti − ti−1)

[
1− L2t0 +

L2

2
(ti + ti−1)

]
· [L2 + 2L1 exp{(2L1 + L2)(ti − ti−1)}]

(3.9)

and

H(tk, t) = 1 +
2L1

2L1 + L2
(t− tk)

[
1− L2t0 +

L2

2
(tk + t)

]
· [L2 + 2L1 exp{(2L1 + L2)(t− tk)}]

(3.10)

Set v(t) = |y(t)− u(t)|, by (3.6), v(t) ≤ (Λv)(t), then by using abstract Gronwall
Lemma 2.2, we get v(t) ≤ v∗. Thus

|y(t)− u(t)| ≤ v∗(t) ≤ (m+ T − t0)ε

k∏
i=1

[1 +H(ti−1, ti) (A(ti−1, ti) +Mi)]H(tk, t)

≤ kε

for all t ∈ [t0 − τ, T ], where

k = (m+ T − t0)

k∏
i=1

[1 +H(ti−1, ti) (A(ti−1, ti) +Mi)]H(tk, T ).

Consequently, equation (1.1) is Hyers-Ulam stable and the proof is completed.
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Remark 3.1. Equation (1.1) has the following two special cases.

u′(t) = F (t, u(t), u(h(t))) +

∫ t

t0

G(t, s, u(s), u(h(s)))ds, t ∈ I,

u(t) = α(t), t ∈ [t0 − τ, t0], τ ≥ 0.

(3.11)

u′(t) = F (t, u(t), u(h(t))) +

∫ t

t0

G(t, s, u(s), u(h(s)))ds, t ∈ I ′,

u(t0) = α(t0),4u(tk) = u(t+k )− u(t−k ) = φk(u(t−k )), k = 1, 2, · · · ,m.
(3.12)

For these two special cases, the following corollaries can be obtained by applying
Theorem 3.1.

Corollary 3.1. Suppose that condition (A1) is satisfied and 2L1(T − t0) + (T −
t0)2L1L2 < 1, then there exists a unique solution of problem (3.11) in C([t0 − τ, T ])∩
C1([t0, T ]) and equation (3.11) is Hyers-Ulam stable on [t0 − τ, T ].

Corollary 3.2. If conditions (A1) − (A3) are satisfied, then there exists a unique
solution of problem (3.12) in PC([t0, T ]) and equation (3.12) is Hyers-Ulam stable
on [t0, T ].

4. Hyers-Ulam-Rassias Stability

In this section, we will prove the Hyers-Ulam-Rassias stability of the impulsive
delay integro-differential equations by using Definition 2.2, Lemma 2.1, Remark 2.1
and Lemma 2.2 on [t0 − τ, T ].

Theorem 4.1. Suppose that the following hypotheses hold:

(A′1) F : [t0, T ] × R2 → R, G : [t0, T ] × [t0, T ] × R2 → R are continuous with the
Lipschitz condition:

|F (x, η1, η2)− F (x, ξ1, ξ2)| ≤
2∑
i=1

L1 |ηi − ξi| ; (4.1)

|G(x, s, η1, η2)−G(x, s, ξ1, ξ2)| ≤
2∑
i=1

L1L2 |ηi − ξi| ; (4.2)

where L1, L2 > 0 for all x, s ∈ I ′;

(A′2) φj : R → R is Lipschitz continuous, i.e., |φj(η1)− φj(η2)| ≤ Mj |η1 − η2| for
some constant Mj > 0, and for all j ∈ {1, 2, · · · ,m} and η1, η2 ∈ R;

(A′3)
∑m
j=1Mj + 2L1(T − t0) + (T − t0)2L1L2 < 1;

(A′4) ϕ(t) : [t0 − τ, T ] → R+ is an increasing function, and
∫ t
t0
ϕ(r)dr ≤ ρϕ(t) for

some constant ρ > 0.
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Then there exists a unique solution of problem (1.1) in PC([t0 − τ, T ])∩PC1([t0, T ])
and equation (1.1) is Hyers-Ulam-Rassias stable on [t0 − τ, T ].

Proof: For given ε > 0, ϕ(t) ∈ PC([t0 − τ, T ]), where ϕ(t) is an increasing
and nonnegative functions, ϕ(t1) = χ > 0 for some t1 ∈ [t0 − τ, T ]. Following
the same proof steps as Theorem 3.1, we have |T (u1)(t)− T (u2)(t)| ≤ (

∑m
j=1Mj +

2L1(T − t0) + (T − t0)2L1L2) · ‖u1 − u2‖, where the operator T is defined by (3.3),
t ∈ (tk, tk + 1], k = 0, 1, 2, · · · ,m.

Using(A′3), the operator T is strictly contractive on (tk, tk + 1], k = 1, 2, · · · ,m,
and T is a Picard operator on PC([t0 − τ, T ]). Thus, the unique fixed point of this
operator is in fact the unique solution of (1.1) in PC([t0 − τ, T ]) ∩ PC1([t0, T ]).

Let y ∈ PC([t0−τ, T ])∩PC1([t0, T ]) be a solution to (2.2). The unique solution
u ∈ PC([t0− τ, T ])∩PC1([t0, T ]) of the differential equation (3.4) is given by (3.5).
Following the proof Theorem 3.1, we have

|y(t)− u(t)| ≤
∫ t

t0

ϕ(x)dx+ kχ+ L1

∫ t

t0

|y(x)− u(x)| dx

+ L1

∫ t

t0

|y(h(x))− u(h(x))| dx+ L1L2

∫ t

t0

∫ x

t0

|y(s)− u(s)| dsdx

+ L1L2

∫ t

t0

∫ x

t0

|y(h(s))− u(h(s))| dsdx+

k∑
j=1

Mj |y(t−j )− u(t−j )|.

(4.3)
Next we show that operator Λ1 : PC([t0 − τ, T ]) → PC([t0 − τ, T ]) given below is
an increasing Picard operator on PC([t0 − τ, T ]):

(Λ1v)(t) =



0, t ∈ [t0 − τ, t0];

ρϕ(t) + L1

∫ t

t0

v(x)dx+ L1

∫ t

t0

v(h(x))dx+ L1L2

∫ t

t0

∫ x

t0

v(s)dsdx

+ L1L2

∫ t

t0

∫ x

t0

v(h(s))dsdx, t ∈ (t0, t1];

ρϕ(t) + χ+M1v(t−1 ) + L1

∫ t

t0

v(x)dx+ L1

∫ t

t0

v(h(x))dx

+ L1L2

∫ t

t0

∫ x

t0

v(s)dsdx+ L1L2

∫ t

t0

∫ x

t0

v(h(s))dsdx, t ∈ (t1, t2];

ρϕ(t) + 2χ+ Σ2
j=1Mjv(t−j ) + L1

∫ t

t0

v(x)dx+ L1

∫ t

t0

v(h(x))dx

+ L1L2

∫ t

t0

∫ x

t0

v(s)dsdx+ L1L2

∫ t

t0

∫ x

t0

v(h(s))dsdx, t ∈ (t2, t3];

...

ρϕ(t) +mχ+

m∑
j=1

Mjv(t−j ) + L1

∫ t

t0

v(x)dx+ L1

∫ t

t0

v(h(x))dx

+ L1L2

∫ t

t0

∫ x

t0

v(s)dsdx+ L1L2

∫ t

t0

∫ x

t0

v(h(s))dsdx, t ∈ (tm, tm+1].

Using the same proof as Theorem 3.1, we obtain that the operator Λ1 is contractive
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on PC([t0 − τ, T ]) for t ∈ (tk, tk + 1] where k = 0, 1, 2, · · · ,m. Applying Banach
contraction principle, we get Λ1 is a Picard operator with unique fixed v∗ ∈ PC([t0−
τ, T ]), that is

v∗(t) =ρϕ(t) + kχ+

k∑
j=1

Mjv
∗(t−j ) + L1

∫ t

t0

v∗(x)dx+ L1

∫ t

t0

v∗(h(x))dx

+ L1L2

∫ t

t0

∫ x

t0

v∗(s)dsdx+ L1L2

∫ t

t0

∫ x

t0

v∗(h(s))dsdx, t ∈ (tk, tk+1].

(4.4)
Since v∗ is increasing, v∗(h(t)) ≤ v∗(t) and hence we get by (4.4) that

v∗(t) ≤ ρϕ(t) + kχ+

k∑
j=1

Mjv
∗(t−j ) + 2L1

∫ t

t0

v∗(x)dx+ 2L1L2

∫ t

t0

∫ x

t0

v∗(s)dsdx.

Using Lemma 2.1, we get

v∗(t) ≤ (kχ+ ρϕ(t))ε

k∏
i=1

[1 +H(ti−1, ti) (A(ti−1, ti) +Mi)]H(tk, t).

where A(ti−1, ti) is defined by (2.6), and H(tk, t) is defined by (2.7). If we set
v(t) = |y(t)− u(t)|, then by (3.6), v(t) ≤ (Λ1v)(t) and using the abstract Gronwall
lemma, it follows that v(t) ≤ v∗. Thus

|y(t)− u(t)| ≤ (kχ+ ρϕ(t))ε

k∏
i=1

[1 +H(ti−1, ti) (A(ti−1, ti) +Mi)]H(tk, T ).

Consequently, equation (1.1) is Hyers-Ulam-Rassias stable, and the proof is com-
pleted.

Corollary 4.1. If conditions (A′1) and (A′4) are satisfied and 2L1(T − t0) + (T −
t0)2L1L2 < 1, then there exists a unique solution of problem (3.11) in C([t0 − τ, T ])∩
C1([t0, T ]) and equation (3.11) is Hyers-Ulam-Rassias stable on [t0 − τ, T ].

Corollary 4.2. If conditions (A′1)−(A′4) are satisfied, then there exists a unique so-
lution of problem (3.12) in PC1([t0, T ]) and equation (3.12) is Hyers-Ulam-Rassias
stable on [t0, T ].

5. Example

Integro-differential equations determined by non-local operators describe many
dynamical systems, such as brain dynamics, population dynamics, infectious disease
spreading, and learning dynamics through neural networks [4]- [7]. In the 1950s, two
sensational results appeared in the United Kingdom and the United States, namely,
the Hodgkin-Huxley equation, a mathematical model describing the conduction of
nerve impulses, and the Hartland-Ratliff equation, which described the side inhi-
bition of the visual system, both of which were complex nonlinear equations, and
aroused the interest of mathematicians and biologists.
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The application of differential equation solvers to learn the dynamical behav-
iors using neural networks was initially introduced in [25, 26], aiming to fulfill the
requirement for continuous deep learning models. In 2023, E. Zappala et al. [7]
introduce the new neural integro-differential equation, a novel deep learning frame-
work is based on the theory of integro-differential equations where integral operators
are learned using neural networks. The general form of neural integro-differential
equation is given as

u′(t) = F (t, u(t)) +

∫ β(t)

α(t)

G(t, s, u(s))ds, (5.1)

where u : R→ Rn is a vector function of independent time variable t, F : Rn+1 →
Rn and G : Rn+2 → Rn. The theory of integro-differential equations is better
understood in the setting where the function G is a product of type k(t, s)f(u(s))
for some function f : Rn → Rn, and a matrix valued function k : R2 → M(R, n) is
called a kernel function, where M(R, n) indicates the space of square matrices with
real coefficients. So we obtain the special case of (5.1) as

u′(t) = F (t, u(t)) +

∫ β(t)

α(t)

k(t, s)f(u(s))ds,

where both k and f are neural networks that will be learned during training.

Example 5.1. We consider the system of neural integro-differential equation
u′1(t) = − |u1(t)|

3(1 + |u1(t)|)
+

∫ t

0

sin 2πt

7

(
sin |u1(s)|+ |u2(s)|

1 + |u2(s)|

)
ds,

u′2(t) = − |u2(t)|
3(1 + |u2(t)|)

+

∫ t

0

cos 2πt

7

(
sin |u1(s)|+ |u2(s)|

1 + |u2(s)|

)
ds,

(5.2)

where t ∈ [0, 100] \ {25, 50}, t0 = 0, t1 = 25, t2 = 50, and t3 = 100. For vector

u = (u1, u2)T ∈ R2 and matrix A = (aij)2×2, we define ‖U‖ =
∑2
i=1 |ui|, ‖A‖ =

max1≤j≤2
∑2
i=1 |aij |. Then equation (5.2) can be written in vector form

U ′(t) = F (t, U(t)) +

∫ t

0

G(t, s, U(s))ds,

where F (t, U) = (F1(t, U), F2(t, U))T =
(
− |u1|

3(1+|u1|) ,−
|u2|

3(1+|u2|)

)T
, and G(t, s, U) =

K(t, s)f(U),

K(t, s) =

 sin 2πt
7

sin 2πt
7

cos 2πt
7

cos 2πt
7

,
f(U) = (f1(u1), f2(u2))T =

(
sin |u1|, |u2|

1+|u2|

)T
. Let M1 = 1

10 , M2 = 1
100 , L1 = 1

300 ,

L2 = 1
1000 . For U = (u1, u2)T , Ũ = (ũ1, ũ2)T ∈ (PC[0, 100]\{25, 50})2, we get

|Fi(t, U)− Fi(t, Ũ)| =
∣∣∣∣13
(
|ũi|

1 + |ũi|
− |ui|

1 + |ui|

)∣∣∣∣ ≤ 1

3
L1‖ui − ũi‖
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for i = 1, 2, so we get

‖F (t, U)− F (t, Ũ)‖ ≤ 1

3
L1‖U − Ũ‖ =

1

900
‖U − Ũ‖.

|f1(u1)− f1(ũ1)| = | sin |u1| − sin |ũ1|| ≤ ‖u1 − ũ1‖,

|f2(u2)− f2(ũ2)| =
∣∣∣∣ |u2|1 + |u2|

− |ũ2|
1 + |ũ2|

∣∣∣∣ ≤ ‖u2(t)− ũ2(t)‖.

Then we have
|f(U)− f(Ũ)| ≤ ‖U − Ũ‖.

We can show that

‖ K(t, s) ‖= | sin 2πt|| cos 2πt|
7

,

|G(t, s, U)−G(t, s, Ũ)| ≤‖ K(t, s) ‖ ·‖U − Ũ‖ ≤ 1

7
‖U − Ũ‖.

Then

M1 +M2 + 2L1(T − t0) + L1L2(T − t0)2 =
243

300
< 1.

Finally, by Theorem 3.1, the neural integro-differential equation has a unique solu-
tion in PC1[0, 100] and also all the conditions in Theorem 3.1 hold. Therefore, the
equation (5.2) is Hyers-Ulam stable on [0, 100].

6. Conclusions

Differential equations and differential-integral equations are used to solve contin-
uous deep learning models through neural network learning dynamics, and are ap-
plied to a new generation of information technology. In this paper, the Hyers-Ulam
stability and Hyers-Ulam-Rassias stability of impulsive delay ordinary differential
equations is obtained by using a novel generalized Gronwall inequality, fixed-point
method and Picard’s operator technique. For third-order and higher order differ-
ential equations, fractional differential equations,the results on Ulam type stability
are very little, which can be researched in future. Moreover, the application of d-
ifferential equations and differential-integral equations in artificial intelligence and
deep learning has just begun, and there are many novel and interesting problems
to be solved.
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