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Abstract

In this paper, we designed an Uzawa iterative method for solving the thermally coupled
stationary incompressible magnetohydrodynamics system, where a decoupled discrete system
is obtained and no saddle point problem is required to deal with at each iterative step
except the initial guess. Then, the convergence analysis of the presented method is provided.
Finally, the effectiveness of the proposed method is illustrated with some numerical examples.
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1. Introduction

This paper is concerned with numerical methods for solving the thermally coupled in-
compressible magnetohydrodynamics (MHD) flow for applications like the design of electro-
magnetic pumps, nuclear reactor cooling, steel casting, and crystal growth. The thermally
coupled MHD model can describe buoyancy effects due to temperature differences in the
MHD flow. The governing equations of this model are the MHD equations coupled with the
heat equation by the Boussinesq approximation. The strong coupling between the saddle-
point subproblems, the nonlinearity, and the extra temperature field needed for the MHD
flow make accurate simulation of the MHD flow challenging.

Although multi-physical field coupling of the stationary thermally coupled incompress-
ible magnetohydrodynamics model makes its numerical simulation challenging, the research
is of great significance due to the wide applications of the model. There have been many
literatures on numerical investigations for the considered equations in recent years. For ex-
ample, the thermally coupled MHD problem is studied initially by Meir [18, 19], where the
existence and uniqueness of the solutions to the considered equations are addressed, and the
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finite element approximation for the problem is studied. Further, Meir and Schmidt [21]
have proposed a general approach to stationary, electromagnetically, and thermally driven
liquid-metal flows. Some existence results of weak solutions to two stationary MHD systems
of equations including Joule heating have been given in [4]. Ravindran [26] has investigated
and proposed an efficient partitioned time-stepping scheme for solving the MHD system with
temperature-dependent coefficients. Badia et al. [3] have extended block preconditioning
techniques to the thermally coupled incompressible inductionless MHD problem. Addition-
ally, a stabilized finite element method is designed to solve thermally coupled MHD flows
[6]. Sheikholeslami [27] has conducted an investigation into the importance of the generated
magnetic field in enhancing Brownian diffusion and its profound influence on the hydrother-
mal analysis of the base liquid. This stabilized method is based on splitting the unknown
into a finite element component and a subscale and on giving an approximation for the
latter. Recently, Yang and Zhang [29] have proposed three iterative finite element methods
for the thermally coupled stationary incompressible MHD equations. Zhang et al. [31] have
designed the two-level finite element iterative methods for the stationary thermally coupled
incompressible MHD equations. Keram et al. [16] have designed an iterative method based
on linearization approach for the thermally coupled stationary incompressible MHD equa-
tions at high physical parameters. A decoupled Crank-Nicolson time-stepping scheme is
designed in [25], and the unconditional stability and optimal order error estimates of the
scheme are proved. In addition, for the non-stationary equations, Ding et al. [9] have given
the Crank-Nicolson extrapolated fully discrete scheme based on the finite element method
and obtained some optimal error estimates for the velocity, magnetic induction, and tem-
perature under a weak regularity hypothesis. Moreover, Qiu et al. [24] have studied a fully
discrete Euler semi-implicit scheme for the nonstationary electromagnetically and thermally
driven flow, which is describing the motion of a nonisothermal incompressible magnetohy-
drodynamics fluid subject to generalized Boussinesq problem with temperature dependent
parameters. Ma et al. [20] have proposed a fully discrete decoupled finite element method
for the thermally coupled incompressible magnetohydrodynamic problem. In addition, Liu
et al. [17] have presented a grad-div stabilization with the Jacobi iteration to the thermally
coupled incompressible MHD system. Yang et al. [29] have proved existence and unique-
ness of weak solution to a Voigt regularization of the three-dimensional thermally coupled
MHD equations and proposed a fully discrete scheme that has unconditional stability and is
convergent. Although the previous works obtain many efficient numerical results, relatively
little attention is given to the development of efficient numerical methods to deal with the
strong coupling between the saddle-point subproblems.

As is known, the Uzawa iterative method [2] is first proposed to solve the constrained
optimization problems, where the saddle point problem naturally arises. Since it is simple,
efficient, and has minimal computer memory requirements, it has been widely used in com-
putational science and engineering. For the nonlinear partial differential equations, Chen et
al. [7] have constructed some Uzawa-type iterative methods for solving the steady incom-
pressible Navier-Stokes equations and have proved that the methods converge geometrically
with a contraction number. Further, the steady-state MHD equations are solved by applying
some Uzawa-type iterative algorithms [30]. The lines of arguments in the presented paper
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follow closely those used in [30]. Recently, Hong et al. [15] have presented an augmented
Lagrangian Uzawa-type method for qquasi-static multiple-network poroelasticity equations
and the robust uniform linear convergence of its parameters is proved. Moreover, Çıbık et
al. [8] have constructed the Ramshaw-Mesina iteration to solve some saddle-point problems.
Ouertani et al. [23] have presented two algorithms for the resolution of the time-dependent S-
tokes problem with nonstandard boundary conditions by the domain-decomposition spectral
element method.

In this paper, to conquer the numerical difficulties mentioned earlier and find an effi-
cient and accurate approximation of the thermally coupled stationary incompressible MHD
problem, we are going to devise an Uzawa iterative method for the considered problem
based on a mixed finite element method, where a decoupled discrete system is solved and no
saddle-point system is required to solve at each iterative step except the initial guess. The
remainder of the paper is organized as follows. In Section 2, we describe the problem to be
solved, some notations, and the basic facts to be used throughout the paper. The method
is proposed and fully analyzed for the considered problem in Section 3. Numerical examples
are presented in the final section.

2. Problem statement

Let Ω be a bounded, simple-connected domain in R2, which is convex or has a C1,1

boundary ∂Ω. In this paper, we consider the following thermally coupled stationary incom-
pressible MHD equations [18, 19], i.e., the stationary incompressible Navier-Stokes equations
and Maxwell’s equations coupled to the heat equation by the Boussinesq approximation

−Re−1∆u+ (u · ∇)u+∇p+ sH× curlH =f + βT j, in Ω,

sRm−1curl(curlH)− scurl(u×H) =g, in Ω,

−κ∆T + u · ∇T =γ, in Ω,

divu = 0, divH =0, in Ω,

(1)

where u = (u1(x), u2(x), 0), H = (H1(x), H2(x), 0), p and T are the velocity field, magnetic
field, pressure and temperature, respectively. Several coefficients appeared in (1) are the
hydrodynamic Reynolds number Re, the magnetic Reynolds number Rm, the thermal ex-
pansion coefficient β, the thermal conductivity κ and the coupling number s. In addition,
g = (g1(x), g2(x), 0) represents the known applied current with divg = 0, f = (f1(x), f2(x), 0),
is a force term for the magnetic induction, γ is a given heat source, and j denotes a unit
vector in the direction opposite to the direction of gravity for u.

Furthermore, the system (1) is considered in conjunction with the following boundary
conditions [18, 14, 5, 9]:

u|∂Ω = 0, (no-slip condition),

H · n|∂Ω = 0, n× curlH|∂Ω = 0, (perfectly conducting wall),

T |ΓD
= 0, ∇T · n|ΓN

= 0, (insulated wall),

(2)
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where n the outer unit normal vector to ∂Ω and ΓD = ∂Ω \ ΓN is a regular open subset of
∂Ω.

For 1 ≤ q ≤ ∞ and m ∈ N+, we define the usual Sobolev space Wm,q(Ω) norm and
Lebegue space Lq(Ω) norm by∥ · ∥Wm,q(Ω) and ∥ · ∥Lq(Ω), respectively. Particularly, L2(Ω)
norm and its inner product are denoted by ∥ · ∥0 and (·, ·). In addition, we write Hm(Ω) for
Wm,2(Ω) and ∥ · ∥m represents the norm in Hm(Ω). Next, to write the variational form of
the system (1)-(2), we introduce the following necessary function spaces:

X = {v ∈ H1(Ω)2 : v|∂Ω = 0}, W = {B ∈ H1(Ω)2 : B · n|∂Ω = 0},
Q = {S ∈ H1(Ω) : S|ΓD

= 0}, M = {q ∈ L2(Ω) : (q, 1) = 0}.

Now, we introduce the product space D = X×W, which is equipped with the norm for all
(w,Φ) ∈ D, ∥∇(w,Φ)∥20 = ∥∇w∥20 + ∥∇Φ∥20.

Moreover, we define three continuous bilinear forms a0(·, ·), a1(·, ·) and a2(·, ·) on Q×Q,
X×X and W ×W, respectively, by

a0(T, S) =κ(∇T,∇S), ∀T, S ∈ Q, a1(u,v) = Re−1(∇u,∇v), ∀u,v ∈ X,

a2(H,B) =sRm−1
(
(curlH, curlB) + (divH, divB)

)
, ∀H,B ∈ W,

and three trilinear forms b0(·, ·, ·), b1(·, ·, ·) and b2(·, ·, ·) on X × Q × Q, X × X × X and
W ×W ×X, by

b0(u, T, S) =(u · ∇T, S) +
1

2
((divu)T, S) =

1

2
(u · ∇T, S)− 1

2
(u · ∇S, T ), ∀u ∈ X, T, S ∈ Q,

b1(u,w,v) =((u · ∇)w,v) +
1

2
((divu)w,v) =

1

2
((u · ∇)w,v)− 1

2
((u · ∇)v,w), ∀u,v,w ∈ X,

b2(H,B,v) =s(H× curlB,v), ∀v ∈ X, H,B ∈ W.

These trilinear forms satisfy the following properties [14, 12, 11]:

|b0(u, T, S)| ≤ N0∥∇u∥0∥∇T∥0∥∇S∥0, |b1(u,w,v)| ≤ N1∥∇u∥0∥∇w∥0∥∇v∥0, (3)

|b2(H,B,v)| ≤ sN2∥∇H∥0∥∇B∥0∥∇v∥0, (4)

for all u,v,w ∈ X and H,B ∈ W, where Ni > 0, i = 0, 1, 2 are constants depending on Ω.
In addition, from Gerbeau et al. [11], Girault and Raviart [12], Nochetto and Pyo [22] and
Gunzburger et al. [13], it is seen that the following inequalities hold: for all B ∈ W,

∥∇B∥20 ≤ c1(∥curlB∥20 + ∥divB∥20), (5)

∥curlB∥0 ≤
√
2∥∇B∥0, (6)

where c1 is positive constant and only dependent on Ω.
Then, the thermally coupled stationary incompressible MHD problem (1)-(2) can be

rewritten as: For all ((v,B), S, q) ∈ D×Q×M , search for ((u,H), T, p) ∈ D×Q×M such
that

A0((u,H), (v,B)) + A1((u,H), (u,H), (v,B))− d((v,B), p) =(F, (v,B)) +G(T, (v,B)),

d((u,H), q) =0,

a0(T, S) + b0(u, T, S) =(γ, S),

(7)
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whereA1((u,H), (w,Φ), (v,B)) = b1(u,w,v)+b2(H,Φ,v)−b2(H,B,w), A0((u,H), (v,B)) =
a1(u,v)+ a2(H,B), (F, (v,B)) = (f ,v)+ (g,B), G(T, (v,B)) = β(T j,v) and d((v,B), p) =
(divv, p).

To discuss the well-posedness of the above mixed variational formulation, we recall
the coercive and continuous properties of A0((·, ·), (·, ·)) and the continuous property of
A1((·, ·), (·, ·), (·, ·)).

Lemma 2.1. [10, 30] For all (u,H), (w,Φ), (v,B) ∈ D, there hold

A0((u,H), (v,B)) ≤ cA∥∇(u,H)∥0∥∇(v,B)∥0,

A0((u,H), (u,H)) ≥ νA∥∇(u,H)∥20,

A1((u,H), (w,Φ), (v,B)) ≤ N∥∇(u,H)∥0∥∇(w,Φ)∥0∥∇(v,B)∥0,

where cA = max{Re−1, 4sRm−1}, νA = min{Re−1, sRm−1c−1
1 } and N =

√
2max{N1, sN2}.

Now, we recall the following existence and uniqueness results for the problem (1)-(2)
[18, 19, 29].

Theorem 2.1. Let γ ∈ Q′, F ∈ D′ and νA satisfy the following uniqueness condition:

0 < δ < 1,

where δ = δ1+δ2 with δ1 := ν−2
A N(∥F∥−1+κ−1β∥γ∥−1) and δ2 := ν−1

A κ−2βN0∥γ∥−1, ∥γ∥−1 =

sup
T∈Q,T ̸=0

(γ,T )
∥∇T∥0 , ∥F∥−1 = sup

(u,H)∈D,(u,H)̸=(0,0)

(F,(u,H))
∥∇(u,H)∥0 , and CF is the Poincaré constant. Then

the problem (1) and (2) admits a unique solution ((u,H), p, T ) ∈ D×M ×Q such that

νA∥∇(u,H)∥0 ≤ (∥F∥−1 + C2
Fβκ

−1∥γ∥−1), κ∥∇T∥0 ≤ ∥γ∥−1.

Noting that in the above theorem, one applies the fact that ∥v∥−1 ≤ C2
F∥∇v∥0, for all v ∈

H1
0 (Ω).

3. An Uzawa iterative method

From now on, let h be a real positive parameter. The conforming finite element sub-
spaces (Xh,Wh, Qh,Mh) of (X,W, Q,M) is characterized by Kh = Kh(Ω), a partitioning of
Ω into triangles K, assumed to be uniformly regular as h → 0. Next, we define the product
space Dh = Xh ×Wh. Further, we assume that the couple Xh ×Mh admits the following
discrete inf-sup condition: for each qh ∈ Mh, there exists vh ∈ Xh, such that [12]

sup
0̸=vh∈Xh

∫
Ω
qh divvh dx

∥∇vh∥0
≥ β̃∥qh∥0, (8)

where β̃ > 0 is a constant depending on Ω.
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Then, according to the above finite element subspaces, the finite element approximation
for (7) is to seek ((uh,Hh), Th, ph) ∈ Dh × Qh ×Mh such that for all ((v,B), S, q) ∈ Dh ×
Qh ×Mh

a0(Th, S) + b0(uh, Th, S) = (γ, S),

A0((uh,Hh), (v,B)) + A1((uh,Hh), (uh,Hh), (v,B))− d((v,B), ph) = (F, (v,B))

+G(Th, (v,B)),

d((uh,Hh), q) = 0.

(9)

The following results can be found in [19, 29], which describe the stability of the nu-
merical solutions obtained by (9).

Theorem 3.1. Let ((uh,Hh), Th, ph) ∈ Dh × Qh × Mh be a solution of the finite element

discretization (9). Then, under the assumptions of Theorem 2.1, there hold

νA∥∇(uh,Hh)∥0 ≤ (∥F∥−1 + C2
Fβκ

−1∥γ∥−1), κ∥∇Th∥0 ≤ ∥γ∥−1.

Now, we present an Uzawa iterative method for the finite element scheme (9) of the
considered problem, and then analyze its convergence based on a positive number ρ called
relaxation parameter.

Algorithm 3.1. (Uzawa algorithm). Given an initial guess ((u0
h,H

0
h), T

0
h , p

0
h) ∈ Dh ×Qh ×

Mh, search for ((un+1
h ,Hn+1

h ), T n+1
h , pn+1

h ) ∈ Dh ×Qh ×Mh such that

a0(T
n+1
h , S) + b0(u

n
h, T

n+1
h , S) = (γ, S),

A0((u
n+1
h ,Hn+1

h ), (v,B)) + A1((u
n
h,H

n
h), (u

n+1
h ,Hn+1

h ), (v,B))− d((v,B), pnh)

= (F, (v,B)) +G(T n+1
h , (v,B)),

(pn+1
h , q) = (pnh, q)− ρd((un+1

h ,Hn+1
h ), q),

(10)

for all (v,B) ∈ Dh, S ∈ Qh and q ∈ Mh, where ρ > 0 is the relaxation parameter and n

denotes iterative step.

Note that the nonlinear terms in (9) are linearized by allowing the nonlinearities to
lag one time step behind. Then, the velocity, magnetic, pressure, and temperature are
decoupled, a decoupled discrete system is obtained and no saddle point problem is required
to solve at each iterative step except the initial guess. Furthermore, for Algorithm 3.1, the
initial guess ((u0

h,B
0
h), T

0
h , p

0
h) ∈ Dh×Qh×Mh is defined by solving the following equations:

a0(T
0
h , S) = (γ, S), ∀S ∈ Qh,

A0((u
0
h,H

0
h), (v,B))− d((v,B), p0h) = (F, (v,B)) +G(T 0

h , (v,B)), ∀(v,B) ∈ Dh,

d((u0
h,H

0
h), q) = 0, ∀q ∈ Mh.

(11)
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Although (11) is a saddle point problem, it is also a linear problem. Compared with
the nonlinear saddle point problem (9), it is much simpler to solve. In the numerical tests,
we apply the Crout solver to obtain the initial guess.

Then, we will expect to prove the following iterative error bounds between the finite
element solutions of (9) and the Uzawa iterative solutions of (10). For convenience, we set
enh = uh − un

h, ξ
n
h = Hh −Hn

h , ηnh = ph − pnh and θnh = Th − T n
h , n ≥ 0. Firstly, we need to

derive the iterative error bounds between the equations (9) and (11).

Lemma 3.1. Let ((u0
h,H

0
h), p

0
h, T

0
h ) ∈ Dh × Qh ×Mh be the solution of (11). Then, under

the assumptions of Theorem 3.1, we have the following results

∥∇θ0h∥0 ≤ N0κ
−2ν−1

A ∥γ∥−1(∥F∥−1 + C2
Fβκ

−1∥γ∥−1),

∥∇(e0h, ξ
0
h)∥0 ≤ ν−1

A δ(∥F∥−1 + C2
Fβκ

−1∥γ∥−1),

∥η0h∥0 ≤ β̃−1δ(cAν
−1
A + 1)(∥F∥−1 + C2

Fβκ
−1∥γ∥−1).

Proof. By subtracting the first equation of (9) from the first equation of (11), we have

a0(θ
0
h, S) + b0(uh, Th, S) = 0. (12)

Taking S = θ0h in (12) and using (3) yield

∥∇θ0h∥0 ≤ κ−1N0∥∇uh∥0∥∇Th∥0 ≤ κ−1N0∥∇(uh,Hh)∥0∥∇Th∥0.

In view of Theorem 3.1, we deduce that

∥∇θ0h∥0 ≤ N0κ
−2ν−1

A ∥γ∥−1(∥F∥−1 + C2
Fβκ

−1∥γ∥−1). (13)

Next, subtract the second equation of (9) from the second equation of (11) to get

A0((e
0
h, ξ

0
h), (v,B)) + A1((uh,Hh), (uh,Hh), (v,B)))− d((v,B), η0h) = G(θ0h, (v,B)). (14)

Choosing (v,B) = (e0h, ξ
0
h) in (14), we obtain

A0((e
0
h, ξ

0
h), (e

0
h, ξ

0
h)) = −A1((uh,Hh), (uh,Hh), (e

0
h, ξ

0
h)) +G(θ0h, (e

0
h, ξ

0
h)),

where we have used the third equation of (9) and the third equation of (11). Hence, utilizing

Lemma 2.1, we get

νA∥∇(e0h, ξ
0
h)∥0 ≤ N∥∇(uh,Hh)∥20 + β∥θ0h∥−1,

which combines with (13) and Theorem 3.1 to give

∥∇(e0h, ξ
0
h)∥0 ≤ ν−1

A δ(∥F∥−1 + C2
Fβκ

−1∥γ∥−1). (15)
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Finally, use the discrete inf-sup condition (8) and (14) to bound

∥η0h∥0 ≤ β̃−1(cA∥∇(e0h, ξ
0
h)∥0 +N∥∇(uh,Hh)∥20 + β∥θ0h∥−1)

≤ β̃−1δ(cAν
−1
A + 1)(∥F∥−1 + C2

Fβκ
−1∥γ∥−1),

where we have applied (13) and (15).

Next, we will consider the convergence of the Uzawa iterative method for the thermally
coupled stationary incompressible MHD problem. First, we show that the function sequence
generated by this iterative algorithm is bounded, and then we will develop the corresponding
convergence rate analysis based on the relaxation parameter.

Theorem 3.2. Let {(un
h,H

n
h), p

n
h, T

n
h } be the function sequence of Algorithm 3.1. Then,

under the assumptions of Theorem 3.1, if the relaxation parameter ρ ∈ (0, 2νA(1− δ)), then

we have

D1∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ D1∥∇(e0h, ξ

0
h)∥20 + ∥η0h∥20,

D1∥∇θn+1
h ∥20 ≤ κ−4N2

0∥γ∥2−1(D1∥∇(e0h, ξ
0
h)∥20 + ∥η0h∥20),

where D1 =
ρ
2
((2νA − ρ) +

√
∆) and ∆ = (2νA − ρ)2 − 4ν2

Aδ
2.

Proof. Subtracting the first equation of (9) from the first equation of (10), we have

a0(θ
n+1
h , S) + b0(e

n
h, Th, S) + b0(u

n
h, θ

n+1
h , S) = 0. (16)

Taking S = θn+1
h in (16) and combining (3) with the fact that b0(u

n
h, θ

n+1
h , θn+1

h ) = 0, we

obtain

κ∥∇θn+1
h ∥0 ≤ N0∥∇enh∥0∥∇Th∥0,

which combines Theorem 3.1 to give

∥∇θn+1
h ∥0 ≤ κ−2N0∥γ∥−1∥∇(enh, ξ

n
h)∥0. (17)

Then, subtracting the second equation of (9) from the second equation of (10), we have

A0((e
n+1
h , ξn+1

h ), (v,B)) + A1((e
n
h, ξ

n
h), (uh,Hh), (v,B))− d((v,B), ηnh)

+ A1((u
n
h,H

n
h), (e

n+1
h , ξn+1

h ), (v,B)) = G(θn+1
h , (v,B)). (18)

Selecting (v,B) = (en+1
h , ξn+1

h ) in (18) yields

νA∥∇(en+1
h , ξn+1

h )∥20 − d((en+1
h , ξn+1

h ), ηnh)

≤ −A1((e
n
h, ξ

n
h), (uh,Hh), (e

n+1
h , ξn+1

h )) +G(θn+1
h , (en+1

h , ξn+1
h )). (19)
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Note that A1((u
n
h,H

n
h), (e

n+1
h , ξn+1

h ), (en+1
h , ξn+1

h )) = 0.

Moreover, according to the Polarization identity 2(a, b) = ∥a+ b∥20 − ∥a∥20 − ∥b∥20, com-

bining the third equation of (9) and the third equation of (10), we arrive at

− d((en+1
h , ξn+1

h ), ηnh) = −d((uh,Hh), η
n
h) + d((un+1

h ,Hn+1
h ), ηnh) = ρ−1(pnh − pn+1

h , ηnh)

= ρ−1(ηn+1
h − ηnh , η

n
h) = (2ρ)−1(∥ηn+1

h ∥20 − ∥ηnh∥20 − ∥ηn+1
h − ηnh∥20). (20)

Plugging (20) into (19) leads to

2ρνA∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ ∥ηnh∥20 + ∥ηn+1

h − ηnh∥20 + 2ρG(θn+1
h , (en+1

h , ξn+1
h ))

− 2ρA1((e
n
h, ξ

n
h), (uh,Hh), (e

n+1
h , ξn+1

h )). (21)

Next, applying the third equation of (9) and third equation of (10) again to estimate

the term ∥ηn+1
h − ηnh∥0, we get

(ηn+1
h − ηnh , q) = (pnh − pn+1

h , q) = ρd((un+1
h ,Hn+1

h ), q) = −ρd((en+1
h , ξn+1

h ), q). (22)

Setting q = ηn+1
h − ηnh in (22) and noticing the fact that ∥divv∥0 ≤ ∥∇v∥0 proved in [22]

yield

∥ηn+1
h − ηnh∥0 ≤ ρ∥∇(en+1

h , ξn+1
h )∥0. (23)

Hence, making use of (23) and Lemma 2.1, we rewrite (21) as

ρ(2νA − ρ)∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ ∥ηnh∥20 + 2ρβ∥θn+1

h ∥−1∥∇(en+1
h , ξn+1

h )∥0
+ 2ρN∥∇(enh, ξ

n
h)∥0∥∇(uh,Hh)∥0∥∇(en+1

h , ξn+1
h )∥0.

Then, using (17) and the Young inequality, we derive that

ρ(νA(2− δς)− ρ)∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ ∥ηnh∥20 + ρνAδς

−1∥∇(enh, ξ
n
h)∥20, (24)

where ς > 0 is a parameter to be determined later on.

Furthermore, we solve a quadratic algebraic equation

νAδς
2 − (2νA − ρ)ς + νAδ = 0,

to get a positive root ς = ς⋆ which makes νA(2− δς)− ρ = νAδς
−1 hold. It is easy to obtain

ς⋆ =
(2νA − ρ)−

√
∆

2νAδ
,

9



where ∆ = (2νA − ρ)2 − 4ν2
Aδ

2. Note that the condition ρ ∈ (0, 2νA(1 − δ)). Hence, ς⋆ is a

positive root, due to the fact that ∆ = (2νA(1 + δ)− ρ)(2νA(1− δ)− ρ).

Finally, let D1 = ρ(νA(2− δς⋆)− ρ) = ρνAδ(ς
⋆)−1. Then, D1 =

ρ
2
((2νA − ρ) +

√
∆) and

(24) is rewritten as

D1∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ D1∥∇(enh, ξ

n
h)∥20 + ∥ηnh∥20. (25)

In view of (17), it follows from (25) that

D1∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ D1∥∇(e0h, ξ

0
h)∥20 + ∥η0h∥20,

D1∥∇θn+1
h ∥20 ≤ κ−4N2

0∥γ∥2−1(D1∥∇(e0h, ξ
0
h)∥20 + ∥η0h∥20).

Now, we are going to develop our convergence rate analysis for the Uzawa iterative
algorithm.

Theorem 3.3. Under assumptions of Theorem 3.2, the following estimates hold:

D∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤Hn+1(D∥∇(e0h, ξ

0
h)∥20 + ∥η0h∥20),

D∥∇θn+1
h ∥20 ≤κ−4N2

0∥γ∥2−1H
n(D∥∇(e0h, ξ

0
h)∥20 + ∥η0h∥20),

where D ∈
(
0, 1

2
ν2
A

)
and H ∈

(
1− 1

4

(
νA
cA

)2
, 1
)
are two parameters independent of n and h.

Proof. In fact, according to Lemma 3.1 and Theorem 3.2, 3.1, there exists a positive constant

D2 independent of n and h such that

∥∇(un
h,H

n
h)∥0 ≤ D2.

Then, rewrite (18) to give

d((v,B), ηnh) =A0((e
n+1
h , ξn+1

h ), (v,B))−G(θn+1
h , (v,B)) + A1((e

n
h, ξ

n
h), (uh,Hh), (v,B))

+ A1((u
n
h,H

n
h), (e

n+1
h , ξn+1

h ), (v,B)).

Applying the inf-sup condition (8) to the above equation, we obtain

β̃∥ηnh∥0 ≤ (cA +ND2)∥∇(en+1
h , ξn+1

h )∥0 + νAδ∥∇(enh, ξ
n
h)∥0,

where we have used Theorem 3.1 and (17). That is

β̃2∥ηnh∥20 ≤ 2
(
(cA +ND2)

2∥∇(en+1
h , ξn+1

h )∥20 + ν2
Aδ

2∥∇(enh, ξ
n
h)∥20

)
.

10



Hence, one gets

∥∇(en+1
h , ξn+1

h )∥20 ≥ D3∥ηnh∥20 −D4∥∇(enh, ξ
n
h)∥20, (26)

where D3 =
β̃2

2(cA+ND2)2
and D4 =

ν2Aδ2

(cA+ND2)2
.

Next, denote cρ,ς = ρ(νA(2− δς)− ρ). Then (24) becomes

σ∥∇(en+1
h , ξn+1

h )∥20 + (cρ,ς − σ)∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ ρνAδς

−1∥∇(enh, ξ
n
h)∥20 + ∥ηnh∥20,

where σ ∈ (0, cρ,ς) is a parameter to be determined. Substituting (26) into the above

inequality, we obtain

(cρ,ς − σ)∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20

≤ (ς−1ρνAδ + σD4)∥∇(enh, ξ
n
h)∥20 + (1− σD3)∥ηnh∥20. (27)

Further, we will choose parameters ς and σ such that

cρ,ς − σ

1
=

ς−1ρνAδ + σD4

1− σD3

, (28)

and 1− σD3 > 0, which leads to

D3σ
2 − (1 + cρ,ςD3 +D4)σ + cρ,ς − δρνAς

−1 = 0. (29)

Because

cρ,ς − δρνAς
−1 = (1 + cρ,ςD3 +D4)σ −D3σ

2 > cρ,ςD3σ −D3σ
2 > 0,

we get cρ,ς − δρνAς
−1 > 0, which combines the definition of cρ,ς to yield

δνAς
2 − (2νA − ρ)ς + νAδ < 0.

Next, we solve this quadratic inequality to get

(2νA − ρ)−
√
∆

2νAδ
< ς <

(2νA − ρ) +
√
∆

2νAδ
.

Noticing that ρ ∈ (0, 2νA(1− δ)), we arrive at ∆ = ((2νA−ρ)+2νAδ)((2νA−ρ)−2νAδ) > 0.

Here, we select

ς = ς† =
2νA − ρ

2νAδ
.

11



Substituting the parameter ς† into (29), we get cρ,ς† = ρνA − ρ2

2
, and a quadratic algebraic

equation

aσ2 − bσ + c = 0, (30)

where a = D3, b = 1+D4+cρ,ς†D3 and c = cρ,ς†−
ρ2ν2Aδ2

c
ρ,ς†

. It is easy to verify that b > 1+cρ,ς†a

and c < cρ,ς† , which lead to

b2 − 4ac > (1 + cρ,ς†a)
2 − 4acρ,ς† ≥ 0.

Hence, if we select ς = ς†, then (29) has a real root σ = σ† = b−
√
b2−4ac
2a

.

Next, we choose the parameters ς and σ as ς† and σ†, so the estimate (27) can be

expressed as

D∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ H(D∥∇(enh, ξ

n
h)∥20 + ∥ηnh∥20), (31)

where H = 1− σ†D3 and D = cρ,ς† − σ†. Note that D > 0 and H > 0. Next, we will prove

them.

For the quadratic algebraic equation (30), we consider its quadratic function f(x) =

ax2−bx+c. Because a > 0, cρ,ς† > 0, b > 1+cρ,ς†a and c < cρ,ς† , we obtain lim
x→−∞

f(x) = −∞
and

f(cρ,ς†) < ac2ρ,ς† − (1 + acρ,ς†)cρ,ς† + cρ,ς† = 0.

In fact, the chosen smaller root σ† = b−
√
b2−4ac
2a

of (30) must belong to (−∞, cρ,ς†)∩ (0,+∞),

so D > 0, which combines with (28) to get

DH =
2ν2

Aδ
2ρ

2νA − ρ
+ σ∗D4 > 0.

Hence, H > 0.

Finally, note that 0 < D < cρ,ς† = ρνA − ρ2

2
= 1

2
ρ(2νA − ρ) ≤ 1

2
ν2
A. In light of the

definition of D3 and the fact that β̃ ≤ 1 proved in [22], we get D3 < 1
2c2A

. Noticing that

σ† < cρ,ς† <
ν2A
2
, we arrive at 1 > H = 1− σ†D3 > 1− ν2A

4c2A
.

Combining (31) with (17), we finish the proof.

4. Numerical experiments

In this section, we give some numerical experiments to test the accuracy and perfor-
mance of the proposed algorithm for the thermally coupled stationary incompressible MHD
flow.
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4.1. Experiment 1

In the first experiment, we access to the numerical performance of the presented Uzawa
iterative algorithm for the thermally coupled incompressible MHD equations. Here, let the
domain Ω = [0, 1]× [0, 1] and the right-hand sides f ,g and γ are selected such that the exact
solutions are given by

u1(x, y) = x2(x− 1)2y(y − 1)(2y − 1), u2(x, y) = −y2(y − 1)2x(x− 1)(2x− 1),

H1(x, y) = sin(πx) cos(πy), H2(x, y) = − cos(πx) sin(πy),

p(x, y) = (2x− 1)(2y − 1), T (x, y) = u1(x, y) + u2(x, y).

We employ the MINI element [1] for approximating the velocity and pressure, and the
continuous linear finite element for discretizing the temperature and magnetic field.

Then, we set the parameters s = Re = Rm = β = κ = 1. Additionally, the stopping
criterion of the iteration is set to be√

∥un−1
h − un

h∥20 + ∥Hn−1
h −Hn

h∥20 < 1.0e− 6.

In Figure 1, we plot the log errors of the numerical solutions in H1-seminorms of the
velocity, magnetic, temperature, and L2-norm of the pressure at different iterative step n.
Here, we set the relaxation parameter ρ = 1.5 and pick five different mesh sizes h. From
Figure 1, we can find that the Uzawa iterative algorithm works well and the iterative error
decreases when iteration step increases. Moreover, we can see that it converges faster when
the mesh size is smaller.

In the above test, we choose a fixed relaxation parameter and pick the different mesh
sizes. Now, we consider a fixed mesh size h = 1

64
and test the Uzawa iterative algorithm with

the different relaxation parameters. Figure 2 shows the log errors at the different iterative
step for the different relaxation parameter. From Figure 2, we can observe that the Uzawa
iterative algorithm converges faster when ρ becomes larger. However, it becomes slow when
ρ is too large (e.g. ρ = 1.9), which is not surprising. Because from Theorem 3.2 and 3.3 the
relaxation parameter ρ has its limited interval.

Finally, to find the relaxation parameter that makes the Uzawa iterative algorithm
converge fast, we consider the relation between n and ρ with h = 1

64
. In Table 1, we list

the iterative steps n used for reaching the numerical solution in terms of the stopping rule.
Obviously, from this table, the Uzawa iterative algorithm converges faster when we choose
larger ρ, and the Uzawa iterative algorithm with ρ = 1.5 has the least iterative step n = 23.
However, if ρ > 1.5, then it needs more iterative step to converge or it may not converge.

Table 1: The iterative step n with the relaxation parameter ρ.

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

n 247 139 98 77 63 54 47 42 37 34 31 29 27 25 23 24 31 47 93 —

“—” means that the iterative step is larger than 600.
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Figure 1: The log errors of the velocity (a), magnetic (b), temperature (c) and pressure (d) at the different

iterative steps.

4.2. Experiment 2

In this experiment, we will test the presented Uzawa iterative method by using the
thermal driven cavity problem, which is investigated in [29]. The computational domain
consists of a square cavity with differentially heated vertical walls where left and right walls
are kept at T = 1 and T = 0, respectively. The remaining walls are insulated and there is
no heat transfer through them. No-slip boundary conditions are imposed for the velocity at
all walls. For the magnetic field, we set H1 = 1, ∂H2

∂n
= 0 at the horizontal walls and H2 = 0,

∂H1

∂n
= 0 at the vertical walls.
In the numerical example, the computations are obtained on the uniform grid 30× 30.

Here, we set the model parameters s = Re = κ = 1, Rm = 0.1 and take f = 0,g = 0, γ = 0.
The performances of the presented Uzawa iterative method with ρ = 1.5 are compared
with Newton iterative and Oseen iterative method in [29]. Note that the selection of the
parameters is the same as that in [29]. In Table 2, we show that the maximum velocity
at y = 0.5 with different thermal expansion coefficient β. From this table, we can see
that the presented Uzawa iterative method spends the least CPU times to get almost the
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Figure 2: The log errors of the velocity (a), magnetic (b), temperature (c) and pressure (d) at the different

iterative steps.

same maximum velocity values obtained by the other iterative methods. Furthermore, in
Figure 3, we give the numerical velocity streamlines, magnetic and isotherms of the thermally
coupled incompressible MHD problem by the Uzawa iterative method with different thermal
expansion coefficient. From this figure, the Uzawa iterative method runs well and can capture
this model well.

Table 2: Comparisons of the maximum velocity values obtained by the different iterative methods.

β = 1 β = 10 β = 100 CPU time

Uzawa iterative method 0.189 0.224 0.570 18.578

Newton iterative method [29] 0.188 0.223 0.576 32.829

Oseen iterative method [29] 0.190 0.224 0.578 31.859
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Figure 3: Numerical velocity streamlines, magnetic and isotherms with different thermal expansion coefficient

β = 1 (the first line), β = 10 (the second line) and β = 100 (the third line).

References

[1] D. N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes equations,
Calcolo 21 (1984) 337-344.

[2] K. Arrow, L. Hurwicz, H. Uzawa, Studies in Nonlinear Programming, Standford Uni-
versity Press, Standford, 1958.

[3] S. Badia, A. F. Mart́ına, R. Planas, Block recursive LU preconditioners for the thermally
coupled incompressible inductionless MHD problem, J. Comput. Phys. 274 (2014) 562-
591.
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