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Abstract

In this paper, we study the existence and uniqueness of solutions for the boundary value problem
of Hilfer-Hadamard sequential fractional differential equations via fixed point theorems. The
existence of a solution is proved by the Krasnoselskii fixed point theorem, the Leray-Schauder al-
ternative, and the Leray-Schauder nonlinear alternative. Moreover, we prove the uniqueness of the
solution using the Banach contraction principle. We also discuss the Ulam-Hyers, Ulam-Hyers-
Rassias, generalized Ulam-Hyers and generalized Ulam-Hyers-Rassias stability for the problem.
Illustrative examples are also provided.
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1 Introduction
Fractional calculus has its origins in the question of extending the meaning of derivatives and

integrals to real and complex numbers. The concept was first introduced by Gottfried Wilhelm
Leibniz in the late 17th century, and it was later developed by various mathematicians, including
Niels Henrik Abel, Joseph Liouville, and Oliver Heaviside. It has numerous applications across
various fields. This is because fractional differential equations are a class of mathematical models that
have gained significant attention in recent years due to their ability to describe complex phenomena
in various fields, including physics, chemistry, biology, engineering, economics, signal and image
processing, control theory, and so on; see the monographs [2,7,12,13,16,19,22,25,37]. These equations
extend the traditional concept of differential equations by incorporating fractional derivatives, which
are a generalization of the classical derivatives used in traditional differential equations and can model
complex phenomena more accurately.

Various types of fractional derivatives have been introduced, among which the Riemann-Liouville
fractional derivative and the Caputo fractional derivative are the most widely used. The Hilfer-
Hadamard fractional derivative is new fractional derivative introduced in 2012 by M.D. Qasim [23]. It
is an interpolation between the well-known Hadamard fractional derivative and the Caputo fractional
derivative. It was introduced as a means to bridge the gap between these two types of fractional
derivatives, offering a more flexible framework for modeling dynamic systems. The Hilfer-Hadamard
fractional derivative is particularly useful in fields where systems exhibit memory and hereditary
properties, which are not adequately captured by integer-order derivatives. It has been applied in
areas such as control theory, signal processing, viscoelasticity, and anomalous diffusion.

The existence of solutions and stability to fractional differential equations are a topic of significant
interest in the field of fractional calculus. The existence and uniqueness of solutions are studied using
classical fixed point theorems; see the monographs [3,4,27,34,36]. Stability is a crucial concept in the
analysis of fractional differential equations (FDEs), just as it is for ordinary differential equations
(ODEs). The stability of a solution ensures that the system’s behavior remains predictable and
consistent under small perturbations. There are several types of stability relevant to FDEs, often
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extending classical stability concepts to accommodate the fractional nature of these equations such
as Lyapunov stability, Ulam stability, practical stability, input-to-state stability and Mittag-Leffler
stability. In this paper, we focus on Ulam stability. Ulam stability examines the sensitivity of the
solutions of differential equations to perturbations in their initial conditions or equation itself. If a
small change in the input leads to a small change in the output, the system is considered stable.
This foundational idea has been expanded by Hyers and later by Rassias, who introduced their
own concepts of stability. Ulam-Hyers stability addresses the existence of a solution that remains
close to the original solution under slight perturbations, while Ulam-Hyers-Rassias stability further
generalizes this concept by allowing for greater flexibility in the types of perturbations considered.
These stability continues to be a vital area of research in mathematics. It provides essential insights
into the stability and robustness of solutions to differential equations, enabling the modeling and
analysis of a wide range of real-world phenomena. Researchers have investigated the Ulam-Hyers
and Ulam-Hyers-Rassias stability of various types of fractional differential equations, including linear
and nonlinear equations, and have developed several methods for establishing stability results, see
the monographs [5, 8, 10,15,17,18,20,21,30–33,35].

Fractional differential equations involving the Hilfer-Hadamard fractional derivative have been
studied extensively in recent years. Researchers have investigated topics such as the existence
and uniqueness of solutions, stability, and numerical methods. The research results cover various
aspects of Hilfer-Hadamard fractional differential equations, including their applications, properties,
and solution techniques. Many mathematicians have conducted research on fractional differential
equations with the Hilfer-Hadamard fractional derivative. Abbas et al. [1] in 2017, studied the
existence and Ulam-Hyers-Rassias stability results for a class of fractional differential equations
involving the Hilfer-Hadamard fractional derivative,{

HD
α,β
1 u(t) = f(t, u(t)), t ∈ J = [1, T ],

I1−γ
1 u(t)|t=1 = ϕ,

where α ∈ (0, 1), β ∈ [0, 1], γ = α+β−αβ, T > 1, ϕ ∈ R, f : J ×R → R is a given function, HI
1−γ
1 is

the left-sided mixed Hadamard integral of order 1− γ and HD
α,β
1 is the Hilfer-Hadamard fractional

derivative of order α and type β. Schauder fixed point theorem is used to show the existence result
and then the solution is proved to be generalized Ulam-Hyers-Rassias stable.

In 2018, Vivek et al. [29] researched the existence, uniqueness and Ulam stabilities of solutions
for Hilfer-Hadamard fractional differential equations with boundary conditions,{

HD
α,β
1+
x(t) = f(t, x(t)), t ∈ J = [1, T ],

I1−γ
1+

x(1) = a, I1−γ
1+

x(T ) = b, γ = α+ β − αβ,

where HD
α,β
1+

is the Hilfer-Hadamard fractional derivative of order 1 < α < 2 and type β ∈ [0, 1],
f : J×X → X is given continuous function and X is a Banach space. The existence results is shown
by Schaefer’s fixed point theorem while Banach’s fixed point theorem is used to obtain uniqueness.
Then the solution is shown to be generalized Ulam-Hyers stable.

In 2020, Ahmad and Pawar [24] studied the existence and uniqueness for Hilfer-Hadamard frac-
tional differential equations,

HD
α,βx(t) + f(t, x(t)) = 0, t ∈ J = (1, e],

with boundary value condition,

x(1 + ϵ) = 0, HD
1,1x(e) = vHD

1,1x(ζ),

where HD
α,β is the Hilfer-Hadamard fractional derivative of order 1 < α ≤ 2 and type β ∈ [0, 1], 0 ≤

v < 1, ζ ∈ (1, e), 0 < ϵ < 1, HD
1,1 = t ddt and f : J → R+, (R+ := [0,∞)). This paper uses Leray-

Schauder alternative and Banach’s fixed point theorem to show the existence and uniqueness of the
solution.
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Recently, in [28], the authors studied the existence and uniqueness of solutions for boundary value
problems for sequential Hilfer-Hadamard fractional differential equations with three-point boundary
conditions,

(HD
α,β
1+ + kHD

α−1,β
1+ )u(t) = f(t, u(t)), t ∈ [1, e],

u(1) = 0, u(e) = λu(θ), θ ∈ (1, e),

where HD
α,β
1+ is the Hilfer-Hadamard fractional derivative of order α ∈ (1, 2] and type β ∈ [0, 1], k ∈

R+ := [0,∞), λ ∈ R \ { 1
(log θ)γ−1 } and f : [1, e]×R → R is a given continuous function. However, it

has been observed that the literature on Hilfer-Hadamard sequential fractional differential equations
of order in (1, 2] is scarce and needs to be developed further.

Motivated by the ongoing research in Hilfer-Hadamard fractional differential equations, this
paper investigates the existence and uniqueness of solutions for sequential Hilfer-Hadamard fractional
differential equation

(HD
α,β
1+ + kHD

α−1,β
1+ )u(t) = f(t, u(t)), t ∈ [1, e], (1)

with multi-points integral boundary conditions,

u(1) = 0, u(e) =
m∑
i=1

λiI
δiu(θi) =

m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1u(s)ds, (2)

where HD
α,β
1+ is the Hilfer-Hadamard fractional derivative of order α ∈ (1, 2] and type β ∈ [0, 1],

k ∈ R+ := [0,∞), λi ∈ R, θi ∈ (1, e), i = 1, 2, . . . ,m and f : [1, e] × R → R is a given continuous
function. Iδi , i = 1, 2, . . . ,m are the Riemann-Liouville fractional integral of positive order.

Existence and uniqueness of solutions are established via classical fixed point theorems, such
as Banach, Krasnoselskii and Schaefer fixed point theorems, and the Leray-Schauder nonlinear
alternative. The Ulam-Hyers, Ulam-Hyers-Rassias, generalized Ulam-Hyers and generalized Ulam-
Hyers-Rassias stability are also discussed for the Hilfer-Hadamard boundary value problem (1)-(2).
Illustrative examples are also provided.

This paper is structured as follows: In Section 2, we recall some definitions, notations, and
theorems needed for our proof. The main results regarding existence and uniqueness are proved in
Section 3. The stability results in the sense of Ulam-Hyers, Ulam-Hyers-Rassias, generalized Ulam-
Hyers, and generalized Ulam-Hyers-Rassias are discussed in Section 4, while examples illustrating
the main results are provided in Section 5.

2 Preliminaries
In this section, some basic definitions and theorems are presented. Let L1[a, b] be the Banach space

of an Lebesgue integrable function. We consider AC[a, b], the space of absolutely continuous function
on the interval [a, b], and ACn

δ [a, b], the space of n-times δ−differentiable absolutely continuous
functions on the interval [a, b], as follows

AC[a, b] =

{
f : f(t) = c+

∫ t

a
φ(τ)dτ, c ∈ R, φ ∈ L1[a, b]

}
,

ACn
δ [a, b] =

{
f : [a, b] → R : δ(n−1)f(t) ∈ AC[a, b]

}
,

where δ is the Euler operator t ddt .

Definition 2.1 (The Riemann-Liouville fractional integral [13]). The Riemann-Liouville integral of
order α > 0 of a function f : [a,∞) → R is defined by

Iαa+f (t) :=
1

Γ (α)

∫ t

a
(t− τ)α−1f (τ) dτ, t > a.

3

SC2
Highlight

SC2
Highlight



Definition 2.2 (Hadamard fractional integral [13]). The Hadamard fractional integral of order
α > 0 for a function f : [a,∞) → R is defined as

HI
α
a+f(t) =

1

Γ(α)

∫ t

a

(
log

t

τ

)α−1 f(τ)

τ
dτ, t > a

provided the integral exists, where log(.) = loge(.).

Definition 2.3 (Hadamard fractional derivative [13]). The Hadamard fractional derivative of order
α > 0, applied to the function f : [a,∞) → R is defined as

HD
α
a+f(t) = δn(HI

n−α
a+

f(t)), n− 1 < α < n, n = [α] + 1,

where δn = (t ddt)
n and [α] denotes the integer part of the real number α.

Definition 2.4 (Hilfer-Hadamard fractional derivative [11,24]). Let n− 1 < α < n and 0 ≤ β ≤ 1,
f ∈ L1[a, b]. The Hilfer-Hadamard fractional derivative of order α and type β of f is defined as

(HD
α,β
a+
f)(t) = (HI

β(n−α)
a+

δn HI
(n−α)(1−β)
a+

f)(t),

= (HI
β(n−α)
a+

δn HI
n−γ
a+

f)(t)

= (HI
β(n−α)
a+ HD

γ
a+
f)(t),

where γ = α+nβ−αβ, HI
(.)
a+

and HD
(.)
a+

are the Hadamard fractional integral and derivative defined
by Definitions 2.2 and 2.3, respectively.

The Hilfer-Hadamard fractional derivative can be viewed as an interpolation between the Hadamard
fractional derivative and the Caputo-Hadamard fractional derivative. Specifically, when β = 0, this
derivative reduces to the Hadamard fractional derivative, and when β = 1, it corresponds to the
Caputo-Hadamard fractional derivative.

We recommend some theorems of the Hadamard fractional integral and Hilfer-Hadamard frac-
tional derivative by Kilbas et al. [13].

Theorem 2.5. ( [13]) Let α > 0, n = [α]+1 and 0 < a < b <∞. If f ∈ L1[a, b] and (HI
n−α
a+ f)(t) ∈

ACn
δ [a, b], then

(HI
α
a+ HD

α
a+f)(t) = f(t)−

n−1∑
j=0

(δ(n−j−1)(HI
n−α
a+ f))(a)

Γ(α− j)

(
log

t

a

)α−j−1

.

Theorem 2.6. ( [24]) Let α > 0, 0 ≤ β ≤ 1, γ = α + nβ − αβ, n − 1 < γ ≤ n, n = [α] + 1, and
0 < a < b <∞. If f ∈ L1[a, b] and (HI

n−γ
a+ f)(t) ∈ ACn

δ [a, b], then

HI
α
a+ (HD

α,β
a+ f)(t) = HI

γ
a+ (HD

γ
a+f)(t) = f(t)−

n−1∑
j=0

(δ(n−j−1)(HI
n−γ
a+ f))(a)

Γ(γ − j)

(
log

t

a

)γ−j−1

.

From this theorem, we notice that if β = 0 the formula reduces to the formula in the Theorem 2.5.

We will use the following well-known classical fixed point theorems in Banach spaces to prove
the existence and uniqueness of solution of the Hilfer-Hadamard fractional differential problem.

Theorem 2.7. (Krasnoselskii’s fixed point theorem [14]). Let Y be a bounded, closed, convex and
nonempty subset of a Banach space X. Let F1 and F2 be the operators satisfying the conditions: (i)
F1y1 + F2y2 ∈ Y whenever y1, y2 ∈ Y ; (ii) F1 is compact and continuous; (iii) F2 is a contraction
mapping. Then there exists y ∈ Y such that y = F1y + F2y.
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Theorem 2.8. (Schaefer fixed point theorem [26]). Let F : E → E be a completely continuous
operator (i.e., a continuous map F restricted to any bounded set in E is compact). Let ε(F)={x ∈
E : x = λF(x), 0 ⩽ λ ⩽ 1}. Then, either the set ε(F) is unbounded, or F has at least one fixed
point.

Theorem 2.9. (Leray-Schauder nonlinear alternative for single valued maps [9]). Let X be a Banach
space, C a closed, convex subset of X, U an open subset of C and 0 ∈ U . Suppose that F : Ū → C
is a continuous, compact (that is, F(Ū) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in Ū , or

(ii) there is a x ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with x = λF(x).

Theorem 2.10. (Banach fixed point theorem [6]). Let X be a Banach space, D ⊂ X nonempty
closed subset, and F : D → D a strict contraction, i.e., there exists k ∈ (0, 1) such that ∥Fx−Fy∥ ≤
k∥x− y∥ for all x, y ∈ D. Then, F has a fixed point in D.

In this paper, we are interested in the stability in the sense that the solution of the problem (1)-
(2) remains continuous under changes to the equation while preserving the structure of the boundary
condition. We present and discuss four types of Ulam stability: Ulam-Hyers stability, generalized
Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for
the fractional differential problems (1)-(2).

Let ϵ be a positive real number, α ∈ (1, 2], β ∈ [0, 1], f : [1, e] × R → R be the continuous
function and φ : [1, e] → R+. We consider the fractional differential problem (1)-(2) and the
following fractional differential inequalities

|(HDα,β
1+ + kHD

α−1,β
1+ )v(t)− f(t, v(t))| ≤ ϵ, t ∈ [1, e], (3)

|(HDα,β
1+ + kHD

α−1,β
1+ )v(t)− f(t, v(t))| ≤ φ(t), t ∈ [1, e], (4)

|(HDα,β
1+ + kHD

α−1,β
1+ )v(t)− f(t, v(t))| ≤ ϵφ(t), t ∈ [1, e]. (5)

with the integral boundary condition

v(1) = 0, v(e) =
m∑
i=1

λiI
δiv(θi) =

m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1v(s)ds, (6)

where λi ∈ R and θi ∈ (1, e), for i = 1, 2, . . . ,m.

Definition 2.11 (Ulam-Hyers stable [32]). Problem (1)-(2) is Ulam-Hyers stable, if there exists a
real number cf > 0 such that for each ϵ > 0 and for each solution v ∈ C1([1, e],R) of the inequality
(3) with (6), there exists a solution u ∈ C1([1, e],R) of problem (1)-(2) satisfying

|v(t)− u(t)| ≤ cf ϵ, t ∈ [1, e].

Definition 2.12 (Generalized Ulam-Hyers stable [32]). Problem (1)-(2) is generalized Ulam-Hyers
stable, if there exists a continuous function θf : R+ → R+ with θf (0) = 0 such that, for each solution
v ∈ C1([1, e],R) of the inequality (3) with (6), there exists a solution u ∈ C1([1, e],R) of problem
(1)-(2) satisfying

|v(t)− u(t)| ≤ θf (ϵ), t ∈ [1, e].

Definition 2.13 (Ulam-Hyers-Rassias stable [32]). Problem (1)-(2) is Ulam-Hyers-Rassias stable
with respect to φ, if there exists a constant cf,φ > 0 such that, for each ϵ > 0 and for each solution
v ∈ C1([1, e],R) of the inequality (5) with (6), there exists a solution u ∈ C1([1, e],R) of problem
(1)-(2) satisfying

|v(t)− u(t)| ≤ cf,φϵφ(t), t ∈ [1, e].
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Definition 2.14 (Generalized Ulam-Hyers-Rassias stable [32]). Problem (1)-(2) is generalized Ulam-
Hyers-Rassias stable with respect to φ, if there exists constant cf,φ > 0 such that, for each solution
v ∈ C1([1, e],R) of the inequality (4) with (6), there exists a solution u ∈ C1([1, e],R) of problem
(1)-(2) satisfying

|v(t)− u(t)| ≤ cf,φφ(t), t ∈ [1, e].

Remark 2.15. It is clear that (i) Definition 2.11 =⇒ Definition 2.12; (ii) Definition 2.13 =⇒
Definition 2.14; (iii) Definition 2.13 =⇒ Definition 2.11.

Remark 2.16. A function v ∈ C1([1, e],R) is a solution of the inequality (3) if and only if there
exists a function g ∈ C1([1, e],R) such that |g(t)| ≤ ϵ, t ∈ [1, e] and

(HD
α,β
1+ + kHD

α−1,β
1+ )v(t) = f(t, v(t)) + g(t), t ∈ [1, e].

One can make similar observations as Remark 2.16 for the inequalities (4) and (5).

3 Existence and Uniqueness Results
In this section, we prove existence and uniqueness of solutions for Hilfer-Hadamard sequential

fractional integral boundary value problem (1)-(2).

3.1 An Auxiliary Lemma
We start by proving a basic lemma concerning a linear variant of the boundary value problem (1)-

(2), which will be used to transform the boundary value problem (1)-(2) into an equivalent integral
equation.

Lemma 3.1. Let h ∈ C([1, e],R) and

∆ = 1−
m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1(log s)γ−1ds ̸= 0.

Then, u ∈ C([1, e],R) is a solution of the Hilfer-Hadamard sequential fractional differential equation

(HD
α,β
1+ + kHD

α−1,β
1+ )u(t) = h(t), 1 < α ≤ 2, 1 ≤ β ≤ 2, t ∈ [1, e] (7)

supplemented with the boundary conditions (2) if and only if

u(t) =
(log t)γ−1

∆

{
k

∫ e

1

u(s)

s
ds− 1

Γ(α)

∫ e

1

(
log

e

s

)α−1h(s)

s
ds

+
m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
− k

∫ s

1

u(r)

r
dr +

1

Γ(α)

∫ s

1

(
log

s

r

)α−1h(r)

r
dr

)
ds

}
− k

∫ t

1

u(s)

s
ds+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1h(s)

s
ds, (8)

where γ = α+ 2β − αβ.

Proof. Taking the Hadamard fractional integral of order α to both sides of (7), we get

HI
α
1+(HD

α,β
1+

)u(t) + kHI
α
1+(HD

α−1,β
1+

)u(t) = HI
α
1+h(t).

By Theorem 2.6, one has

u(t)−
1∑

j=0

(
δ(2−j−1)(HI

2−γ
1+

u)
)
(1)

Γ(γ − j)
(log t)γ−j−1 + kHI

α
1+(HD

α−1,β
1+

)u(t) = HI
α
1+h(t), (9)
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where γ ∈ (1, 2]. From equation (9), by Definition 2.4, we obtain

u(t)−
(δHI

2−γ
1+

u)(1)

Γ(γ)
(log t)γ−1 −

(HI
2−γ
1+

u)(1)

Γ(γ − 1)
(log t)γ−2 + kHI

1
1+(HI

γ−1
1+ HD

γ−1
1+

)u(t) = HI
α
1+h(t).

Then, by Theorem 2.5, one has

u(t)−
(δHI

2−γ
1+

u)(1)

Γ(γ)
(log t)γ−1 −

(HI
2−γ
1+

u)(1)

Γ(γ − 1)
(log t)γ−2

+ kHI
1
1+

(
u(t)−

(HI
2−γ
1+

u)(1)

Γ(γ − 1)
(log t)γ−2

)
= HI

α
1+h(t). (10)

The equation (10) can be written as follows

u(t) = c0(log t)
γ−1 + c1

(
(log t)γ−2 + k

∫ t

1

(log s)γ−2

s
ds

)
− k

∫ t

1

u(s)

s
ds

+
1

Γ(α)

∫ t

1

h(s)

s

(
log

t

s

)α−1
ds, (11)

where c0 and c1 are arbitrary constants. Now, the first boundary condition u(1) = 0 together with
(11) yield c1 = 0. The equation (11) can be written as follows

u(t) = c0(log t)γ−1 − k

∫ t

1

u(s)

s
ds+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1h(s)

s
ds. (12)

Next, the second boundary condition of (2) together with (12) yields

c0 − k

∫ e

1

u(s)

s
ds+

1

Γ(α)

∫ e

1

(
log

e

s

)α−1h(s)

s
ds

=
m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
c0(log s)γ−1 − k

∫ s

1

u(r)

r
dr +

1

Γ(α)

∫ s

1

(
log

s

r

)α−1h(r)

r
dr

)
ds.

Rearranging the above equation, we get

c0 =
1

∆

{
k

∫ e

1

u(s)

s
ds− 1

Γ(α)

∫ e

1

(
log

e

s

)α−1h(s)

s
ds

+
m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
− k

∫ s

1

u(r)

r
dr +

1

Γ(α)

∫ s

1

(
log

s

r

)α−1h(r)

r
dr

)
ds

}
.

Substituting the value of c0 into (12), we obtain the integral equation (8). The converse follows by
direct computation. Thus, the proof is completed.

Let us introduce the Banach space X = C
(
[1, e],R

)
endowed with the norm defined by ∥u∥ :=

max
t∈[1,e]

|u(t)|. In view of Lemma 3.1, we define an operator F : X → X, by

(Fu)(t) = (log t)γ−1

∆

{
k

∫ e

1

u(s)

s
ds− 1

Γ(α)

∫ e

1

(
log

e

s

)α−1 f(s, u(s))

s
ds

+
m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
− k

∫ s

1

u(r)

r
dr +

1

Γ(α)

∫ s

1

(
log

s

r

)α−1 f(r, u(r))

r
dr

)
ds

}
− k

∫ t

1

u(s)

s
ds+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1 f(s, u(s))

s
ds. (13)
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We use the following notations in the proofs for computational convenience:

ω =
m∑
i=1

|λi|
(θi − 1)δi

Γ(δi + 1)
, M =

1

|∆|
[1 + ω + |∆|].

We need the following hypotheses in the sequel:

(H1) There exists a continuous nonnegative function ϕ : [1, e] → R+, (R+ := [0,∞)) such that

|f(t, u(t))| ≤ ϕ(t), for each (t, u(t)) ∈ [1, e]× R.

(H2) There exists a constant l > 0 such that, for all t ∈ [1, e] and ui ∈ R, i = 1, 2,

|f(t, u1)− f(t, u2)| ≤ l|u1 − u2|.

(H3) There exist a real constant N > 0 such that, for all t ∈ [1, e], u ∈ R,

|f(t, u)| ≤ N.

(H4) There exists a continuous function p : [1, e] → R+ and a continuous nondecreasing function
ψ : R+ → R+ such that

|f(t, u)| ≤ p(t)ψ(|u|), for each (t, u) ∈ [1, e]× R.

(H5) There exists a constant C > 0 such that

Γ(α+ 1)(1− kM)C

M∥p∥ψ(C)
> 1.

(H6) Let φ : [1, e] → R+ be an increasing continuous function. There exists λφ > 0 such that

HI
α
1+φ(t) ≤ λφφ(t), t ∈ [1, e].

3.2 Existence Result via Krasnoselskii’s Fixed Point Theorem
In this subsection, we prove an existence result based on Krasnoselskii’s fixed point theorem.

Theorem 3.2. Assume that (H1) holds. Then the problem (1)-(2) has at least one solution on [1, e],
provided that kM < 1.

Proof. By assumption (H1), we can fix

R ≥ M∥ϕ∥
Γ(α+ 1)(1− kM)

,

where ∥ϕ∥ = sup
t∈[1,e]

|ϕ(t)| ,and we consider BR = {u ∈ X : ∥u∥ ≤ R}. We split the operator

F : X → X defined by (13) as F = F1 + F2, where F1 and F2 are given by

(F1u)(t) =
(log t)γ−1k

∆

{∫ e

1

u(s)

s
ds−

m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(∫ s

1

u(r)

r
dr

)
ds

}

−k
∫ t

1

u(s)

s
ds, t ∈ [1, e],

8
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and

(F2u)(t) =
(log t)γ−1

∆

{
− 1

Γ(α)

∫ e

1

(
log

e

s

)α−1 f(s, u(s))

s
ds

+
m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 f(r, u(r))

r
dr

)
ds

}
+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1 f(s, u(s))

s
ds, t ∈ [1, e].

Step I : We will show that F1u+ F2v ∈ BR, whenever u, v ∈ BR. Let u, v ∈ BR, we have

|(F1u)(t) + (F2v)(t)|

≤ 1

|∆|

{
k

∫ e

1

|u(s)|
s

ds+
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, v(s))|
s

ds

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k

∫ s

1

|u(r)|
r

dr +
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, v(r))|
r

dr

)
ds

}
+ k

∫ t

1

|u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, v(s))|
s

ds

≤ 1

|∆|

{
k∥u∥+ ∥ϕ∥

Γ(α+ 1)
+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k∥u∥ log s+ ∥ϕ∥(log s)α

Γ(α+ 1)

)
ds

}
+ k∥u∥ log t+ ∥ϕ∥(log t)α

Γ(α+ 1)

≤ 1

|∆|

{
k∥u∥+ ∥ϕ∥

Γ(α+ 1)
+

(
k∥u∥+ ∥ϕ∥

Γ(α+ 1)

)
ω

}
+ k∥u∥+ ∥ϕ∥

Γ(α+ 1)

=
1

|∆|

(
k∥u∥+ ∥ϕ∥

Γ(α+ 1)

)
[1 + ω + |∆|] =

(
k∥u∥+ ∥ϕ∥

Γ(α+ 1)

)
M

which, upon taking the norm for t ∈ [1, e], yields

∥F1u+ F2v∥ ≤ R(kM) +
M∥ϕ∥

Γ(α+ 1)
≤ R.

Hence, F1u+ F2v ∈ BR.
Step II : Next, we will show that the operator F1 is a contraction. Let u1, u2 ∈ X. Then, for any
t ∈ [1, e], we have

|(F1u2)(t)− (F1u1)(t)|

≤ k

|∆|

{∫ e

1

|u2(s)− u1(s)|
s

ds+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(∫ s

1

|u2(r)− u1(r)|
r

dr

)
ds

}

+ k

∫ t

1

|u2(s)− u1(s)|
s

ds

≤ k

|∆|

{
∥u2 − u1∥+ ∥u2 − u1∥

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1 ds

}
+ k∥u2 − u1∥

=
k

|∆|

{
∥u2 − u1∥+ ∥u2 − u1∥

m∑
i=1

|λi|
(θi − 1)δi

Γ(δi + 1)

}
+ k∥u2 − u1∥

=∥u2 − u1∥
k

|∆|
[1 + ω + |∆|] = kM∥u2 − u1∥,
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which on taking the norm for t ∈ [1, e], yields

∥F1u2 −F1u1∥ ≤ kM∥u2 − u1∥.

By kM < 1, the operator F1 is a contraction.
Step III : Finally, we will show that the operator F2 is continuous and compact. First, we show that
the operator F2 is continuous. Let {un} be a sequence such that {un} → u in X for any t ∈ [1, e].
Then, we have

|(F2un)(t)− (F2u)(t)|

≤ 1

|∆|

{
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, un(s))− f(s, u(s))|
s

ds

+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, un(r))− f(r, u(r))|
r

dr

)
ds

}
+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, un(s))− f(s, u(s))|
s

ds.

Since f is continuous, we get

∥F2un −F2u∥ → 0 as {un} → u.

Hence, the operator F2 is continuous.
Next, we will show that F2 is compact by using Arzelá-Ascoli theorem. First, F2 is uniformly

bounded since

∥F2u∥ ≤ M∥ϕ∥
Γ(α+ 1)

.

Finally, we show that F2 is equicontinuous. We define sup
(t,u)∈[1,e]×BR

|f(t, u(t))| = f̄ and take t1, t2 ∈

[1, e] which t1 < t2. Then, we have

|(F2u)(t2)− (F2u)(t1)|

≤
[
(log t2)

γ−1 − (log t1)
γ−1
]

|∆|

{
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, u(r))|
r

dr

)
ds

}
+

1

Γ(α)

[ ∫ t1

1

((
log

t2
s

)α−1
−
(
log

t1
s

)α−1
)
|f(s, u(s))|

s
ds+

∫ t2

t1

(
log

t2
s

)α−1 |f(s, u(s))|
s

ds

]
≤
[
(log t2)

γ−1 − (log t1)
γ−1
] 1

|∆|

{
f̄

Γ(α+ 1)
(1 + ω)

}
+

f̄

Γ(α+ 1)

[
(log t2)

α − (log t1)
α
]
.

Taking t2 → t1 from the above inequality, we have |(F2u)(t2)− (F2u)(t1)| → 0. Thus, F2 is
equicontinuous. By Arzelá-Ascoli theorem, we conclude that the operator F2 is compact on BR.

Hence all the conditions of Krasnoselskii’s fixed point theorem (2.7) are satisfied, and therefore
the boundary value problem (1)-(2) has at least one solution on [1, e].

3.3 Existence Result via Schaefer Fixed Point Theorem
We will show the existence result based on Schaefer fixed point theorem.

Theorem 3.3. Assume that (H3) holds. Then, the boundary value problem (1)-(2) has at least one
solution on [1, e], provided that kM < 1.
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Proof. We divide the proof into two steps.
Step I : We show that the operator F : X → X defined by (13), is completely continuous.
Step I.1 : First we show that F is continuous. Let {un} be a sequence such that {un} → u in X.
Then, for each t ∈ [1, e], we have

|(Fun)(t)− (Fu)(t)|

≤ 1

|∆|

{∣∣∣∣k ∫ e

1

un(s)− u(s)

s
ds

∣∣∣∣+ ∣∣∣∣ 1

Γ(α)

∫ e

1

(
log

e

s

)α−1 f(s, un(s))− f(s, u(s))

s
ds

∣∣∣∣
+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(∣∣∣∣k ∫ s

1

un(r)− u(r)

r
dr

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ s

1

(
log

s

r

)α−1 f(r, un(r))− f(r, u(r))

r
dr

∣∣∣∣)ds}∣∣∣∣(log t)γ−1

∣∣∣∣
+

∣∣∣∣k ∫ t

1

un(s)− u(s)

s
ds

∣∣∣∣+ ∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 f(s, un(s))− f(s, u(s))

s
ds

∣∣∣∣
≤ 1

|∆|

{
k

∫ e

1

|un(s)− u(s)|
s

ds+
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, un(s))− f(s, u(s))|
s

ds

+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k

∫ s

1

|un(r)− u(r)|
r

dr

+
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, un(r))− f(r, u(r))|
r

dr

)
ds

}
+ k

∫ t

1

|un(s)− u(s)|
s

ds

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, un(s))− f(s, u(s))|
s

ds.

Since f is continuous, ∥Fun −Fu∥ → 0 as {un} → u. Thus, F is continuous.
Step I.2 : Now, we show that F is compact. Let u ∈ BR := {u ∈ X : ∥u∥ ≤ R}. Then, we have

|(Fu)(t)| ≤ 1

|∆|

{
k

∫ e

1

|u(s)|
s

ds+
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k

∫ s

1

|u(r)|
r

dr +
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, u(r))|
r

dr

)
ds

}
+ k

∫ t

1

|u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, u(s))|
s

ds

≤ 1

|∆|

{
k∥u∥

∫ e

1

ds

s
+

N

Γ(α)

∫ e

1

(
log

e

s

)α−1ds

s

+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k∥u∥

∫ s

1

dr

r
+

N

Γ(α)

∫ s

1

(
log

s

r

)α−1dr

r

)
ds

}
+ k∥u∥

∫ t

1

ds

s
+

N

Γ(α)

∫ t

1

(
log

t

s

)α−1ds

s

≤ 1

|∆|

{
k∥u∥+ N

Γ(α+ 1)
+

(
k∥u∥+ N

Γ(α+ 1)

) m∑
i=1

|λi|
(θi − 1)δi

Γ(δi + 1)

}
+ k∥u∥+ N

Γ(α+ 1)

=

(
k∥u∥+ N

Γ(α+ 1)

)
M,

which on taking the norm for t ∈ [1, e], yields

∥Fu∥ ≤ kMR+
NM

Γ(α+ 1)
.
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Hence F is uniformly bounded.
Finally, we show that F is equicontinuous. Let t1, t2 ∈ [1, e] with t1 < t2 and u ∈ BR. Then we

have

|(Fu)(t2)− (Fu)(t1)|

≤
[
(log t2)

γ−1 − (log t1)
γ−1
]

|∆|

{
k

∫ e

1

|u(s)|
s

ds+
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k

∫ s

1

|u(r)|
r

dr +
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, u(r))|
r

dr

)
ds

}
+ k

∫ t2

t1

|u(s)|
s

ds+
1

Γ(α)

[ ∫ t1

1

((
log

t2
s

)α−1
−
(
log

t1
s

)α−1
)
|f(s, u(s))|

s
ds

+

∫ t2

t1

(
log

t2
s

)α−1 |f(s, u(s))|
s

ds

]
≤
[
(log t2)

γ−1 − (log t1)
γ−1
]

|∆|

{
k∥u∥

∫ e

1

ds

s
+

N

Γ(α)

∫ e

1

(
log

e

s

)α−1ds

s

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k∥u∥

∫ s

1

dr

r
+

N

Γ(α)

∫ s

1

(
log

s

r

)α−1dr

r

)
ds

}
+ k∥u∥

∫ t2

t1

ds

s
+

N

Γ(α)

[ ∫ t1

1

(
log

t2
s

)α−1ds

s
−
∫ t1

1

(
log

t1
s

)α−1ds

s
+

∫ t2

t1

(
log

t2
s

)α−1ds

s

]
≤
[
(log t2)

γ−1 − (log t1)
γ−1
] 1

|∆|

{
k∥u∥+ N

Γ(α+ 1)
+

(
k∥u∥+ N

Γ(α+ 1)

) m∑
i=1

|λi|
(θi − 1)δi

Γ(δi + 1)

}
+ k∥u∥(log t2 − log t1) +

N

Γ(α+ 1)

[
(log t2)

α − (log t1)
α
]

=

[
(log t2)

γ−1 − (log t1)
γ−1
]

|∆|

{(
k∥u∥+ N

Γ(α+ 1)

)
[1 + ω]

}
+ k∥u∥(log t2 − log t1)

+
N

Γ(α+ 1)

[
(log t2)

α − (log t1)
α
]
.

Taking t2 → t1 on the above equation, we have |(Fu)(t2)− (Fu)(t1)| → 0. Thus, F is equicontinu-
ous. By Arzelá-Ascoli theorem, we get that F(Ω) is compact, that is F is compact on Ω. Therefore
F is completely continuous.
Step II : We show that the set E = {u ∈ X : u = η(Fu), 0 ≤ η ≤ 1} is bounded. Let u ∈ E , then
u = η(Fu). For any t ∈ [1, e], we have u(t) = η(Fu)(t). Then, in view of the hypothesis (H3), we
obtain

|u(t)| ≤|(Fu)(t)|

≤ 1

|∆|

{
k

∫ e

1

|u(s)|
s

ds+
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k

∫ s

1

|u(r)|
r

dr +
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, u(r))|
r

dr

)
ds

}
+ k

∫ t

1

|u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, u(s))|
s

ds

≤ 1

|∆|

{
k∥u∥

∫ e

1

ds

s
+

N

Γ(α)

∫ e

1

(
log

e

s

)α−1ds

s

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k∥u∥

∫ s

1

dr

r
+

N

Γ(α)

∫ s

1

(
log

s

r

)α−1dr

r

)
ds

}
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+ k∥u∥
∫ t

1

ds

s
+

N

Γ(α)

∫ t

1

(
log

t

s

)α−1ds

s

≤ 1

|∆|

{
k∥u∥+ N

Γ(α+ 1)
+

(
k∥u∥+ N

Γ(α+ 1)

) m∑
i=1

|λi|
(θi − 1)δi

Γ(δi + 1)

}
+ k∥u∥+ N

Γ(α+ 1)

=kM∥u∥+ N

Γ(α+ 1)
M.

Taking maximum for t ∈ [1, e], yields

∥u∥ ≤ MN

Γ(α+ 1)(1− kM)
,

which shows that the set E is bounded.
By Theorem 2.8, we get that the operator F has at least one fixed point. Therefore, the boundary

value problem (1)-(2) has at least one solution on [1, e]. This completes the proof.

3.4 Existence Result via Leray-Schauder Nonlinear Alternative.

Our final existence result is proved via Leray-Schauder nonlinear alternative.

Theorem 3.4. Assume that (H4) and (H5) hold. Then, the boundary value problem (1)-(2) has at
least one solution on [1, e], if kM < 1.

Proof. As shown in Theorem 3.3, the operator F is completely continuous.
We will prove that there exists an open set U ⊆ X with for all u ∈ ∂U, u ̸= µ(Fu) for µ ∈ (0, 1).

Let u ∈ X such that u = µ(Fu), for some 0 < µ < 1. Then, for each t ∈ [1, e], we have

|u(t)| =µ|(Fu)(t)| ≤ |(Fu)(t)|

≤ 1

|∆|

{
k

∫ e

1

|u(s)|
s

ds+
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k

∫ s

1

|u(r)|
r

dr +
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, u(r))|
r

dr

)
ds

}
+ k

∫ t

1

|u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, u(s))|
s

ds

≤ 1

|∆|

{
k∥u∥

∫ e

1

ds

s
+

∥p∥ψ(∥u∥)
Γ(α)

∫ e

1

(
log

e

s

)α−1 1

s
ds

+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k∥u∥

∫ s

1

dr

r
+

∥p∥ψ(∥u∥)
Γ(α)

∫ s

1

(
log

s

r

)α−1 1

r
dr

)
ds

}
+ k∥u∥

∫ t

1

ds

s
+

∥p∥ψ(∥u∥)
Γ(α)

∫ t

1

(
log

t

s

)α−1ds

s

≤ 1

|∆|

{
k∥u∥+ ∥p∥ψ(∥u∥)

Γ(α+ 1)
+

(
k∥u∥+ ∥p∥ψ(∥u∥)

Γ(α+ 1)

) m∑
i=1

|λi|
(θi − 1)δi

Γ(δi + 1)

}
+ k∥u∥+ ∥p∥ψ(∥u∥)

Γ(α+ 1)

=kM∥u∥+ ∥p∥ψ(∥u∥)
Γ(α+ 1)

M,

which, upon taking maximum for t ∈ [1, e], yields

∥u∥ ≤ kM∥u∥+ ∥p∥ψ(∥u∥)
Γ(α+ 1)

M or Γ(α+ 1)(1− kM)∥u∥
M∥p∥ψ(∥u∥)

≤ 1.

13



In view of (H5), there is no solution u such that ∥u∥ ̸= C. Let us set

U = {u ∈ X : ∥u∥ < C}.

The operator F : U → X is completely continuous. From the choice of U , there is no u ∈ ∂U such
that u = µ(Fu), for some µ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder
Theorem 2.9, we deduce that F has a fixed point u ∈ U which is a solution of the boundary value
problem (1)-(2).

3.5 Existence and Uniqueness Result via Banach’s Fixed Point Theorem
Next, we prove an existence and uniqueness result based on Banach’s contraction principle.

Theorem 3.5. Assume that (H2) holds. Then the boundary value problem (1)-(2) has a unique
solution on [1, e], provided that

Ξ := kM +
lM

Γ(α+ 1)
< 1. (14)

Proof. We will use the Banach contraction principle to prove that F , defined by (13), has a unique
fixed point. Fixing M0 = max

t∈[1,e]
|f(t, 0)| <∞ and using the assumption (H2), we obtain

|f(t, u(t))| ≤ |f(t, u(t))− f(t, 0)|+ |f(t, 0)| ≤ l∥u∥+M0. (15)

We choose

R ≥

M0M

Γ(α+ 1)

1−
[
kM +

lM

Γ(α+ 1)

] .
We divide the proof into two steps:
Step I : First, we show that F(BR) ⊂ BR, where BR = {u ∈ X : ∥u∥ ≤ R}. Let u ∈ BR. Then,
using (15), we obtain

|(Fu)(t)| ≤ 1

|∆|

{
k

∫ e

1

|u(s)|
s

ds+
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))|
s

ds

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k

∫ s

1

|u(r)|
r

dr +
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, u(r))|
r

dr

)
ds

}
+ k

∫ t

1

|u(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, u(s))|
s

ds

≤ 1

|∆|

{
k∥u∥

∫ e

1

ds

s
+

(l∥u∥+M0)

Γ(α)

∫ e

1

(
log

e

s

)α−1ds

s

+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k∥u∥

∫ s

1

dr

r
+

(l∥u∥+M0)

Γ(α)

∫ s

1

(
log

s

r

)α−1dr

r

)
ds

}
+ k∥u∥

∫ t

1

ds

s
+

(l∥u∥+N)

Γ(α)

∫ t

1

(
log

t

s

)α−1ds

s

≤ 1

|∆|

{
k∥u∥+ (lR+M0)

Γ(α+ 1)
+

(
k∥u∥+ (lR+M0)

Γ(α+ 1)

) m∑
i=1

|λi|
(θi − 1)δi

Γ(δi + 1)

}
+ k∥u∥+ (lR+M0)

Γ(α+ 1)

=

(
k∥u∥+ (lR+M0)

Γ(α+ 1)

)
1

|∆|
[1 + ω + |∆|] = kM∥u∥+ (lR+M0)

Γ(α+ 1)
M,
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which, upon taking the norm for t ∈ [1, e], yields

∥F(u)∥ ≤ kM∥u∥+ (lR+M0)

Γ(α+ 1)
M.

Hence
∥F(u)∥ ≤ R

[
kM +

lM

Γ(α+ 1)

]
+

M0M

Γ(α+ 1)
≤ R.

Thus ∥Fu∥ ≤ R, that is, Fu ∈ BR. Hence F(BR) ⊂ BR.
Step II : We show that the operator F is a contraction. Let u, v ∈ X. Then, for any t ∈ [1, e], we
have

|(Fu)(t)− (Fv)(t)|

≤ 1

|∆|

{
k

∫ e

1

|u(s)− v(s)|
s

ds+
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, u(s))− f(s, v(s))|
s

ds

+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k

∫ s

1

|u(r)− v(r)|
r

dr +
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, u(r))− f(r, v(r))|
r

dr

)
ds

}
+ k

∫ t

1

|u(s)− v(s)|
s

ds+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, u(s))− f(s, v(s))|
s

ds

≤ 1

|∆|

{
k∥u− v∥+ l∥u− v∥

Γ(α+ 1)
+

m∑
i=1

|λi|
1

Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k∥u− v∥ log s+ l∥u− v∥

Γ(α+ 1)
(log s)α

)
ds

}
+ k∥u− v∥ log t+ l∥u− v∥

Γ(α+ 1)
(log t)α

≤ 1

|∆|

{
k∥u− v∥+ l∥u− v∥

Γ(α+ 1)
+

(
k∥u− v∥+ l∥u− v∥

Γ(α+ 1)

) m∑
i=1

|λi|
(θi − 1)δi

Γ(δi + 1)

}
+ k∥u− v∥+ l∥u− v∥

Γ(α+ 1)

=

(
kM +

lM

Γ(α+ 1)

)
∥u− v∥,

which, upon taking the norm for t ∈ [1, e], yields

∥Fu−Fv∥ ≤ Ξ∥u− v∥. (16)

In view of (14), the operator F is a contraction mapping. Therefore by Theorem 2.10, operator F
has a unique fixed point. Therefore the boundary value problem (1)-(2) has a unique solution on
[1, e].

4 Ulam Stability Results
Lastly, we study the Ulam-Hyers and Ulam-Hyers-Rassias stability of the Hilfer-Hadamard

fractional differential equation (1) with boundary condition (2).

Theorem 4.1. If assumption (H2) and condition (14) are satisfied, then the boundary value problem
(1)-(2) is Ulam-Hyers stable, and hence generalized Ulam-Hyers stable.

Proof. Let ϵ > 0 and v be a solution of the inequality (3) with the boundary (6). Then by Remark
2.16, there exists a function g ∈ C1([1, e],R) such that |g(t)| ≤ ϵ, t ∈ [1, e], and

(HD
α,β
1+ + kHD

α−1,β
1+ )v(t) = f(t, v(t)) + g(t), t ∈ [1, e],

v(1) = 0, v(e) =
m∑
i=1

λiI
δiv(θi) =

m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1v(s)ds, θi ∈ (1, e).

(17)
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By Lemma 3.1, the solution of (17) can be written as

v(t) =
(log t)γ−1

∆

{
k

∫ e

1

v(s)

s
ds− 1

Γ(α)

∫ e

1

(
log

e

s

)α−1 f(s, v(s)) + g(s)

s
ds

+
m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
− k

∫ s

1

v(r)

r
dr

+
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 f(r, v(r)) + g(r)

r
dr

)
ds

}
− k

∫ t

1

v(s)

s
ds

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 f(s, v(s)) + g(s)

s
ds,

which can be rearranged as

v(t)− (log t)γ−1

∆

{
k

∫ e

1

v(s)

s
ds− 1

Γ(α)

∫ e

1

(
log

e

s

)α−1 f(s, v(s))

s
ds

+

m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
− k

∫ s

1

v(r)

r
dr

+
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 f(r, v(r))

r
dr

)
ds

}
+ k

∫ t

1

v(s)

s
ds

− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 f(s, v(s))

s
ds

=
(log t)γ−1

∆

{
− 1

Γ(α)

∫ e

1

(
log

e

s

)α−1 g(s)

s
ds

+
m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 g(r)

r
dr

)
ds

}
+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s)

s
ds.

Using |g(t)| ≤ ϵ, we obtain∣∣∣∣∣v(t)− 1

∆

{
k

∫ e

1

v(s)

s
ds− 1

Γ(α)

∫ e

1

(
log

e

s

)α−1 f(s, v(s))

s
ds+

m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
− k

∫ s

1

v(r)

r
dr +

1

Γ(α)

∫ s

1

(
log

s

r

)α−1 f(r, v(r))

r
dr

)
ds

}
(log t)γ−1 + k

∫ t

1

v(s)

s
ds

− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 f(s, v(s))

s
ds

∣∣∣∣∣
≤ 1

|∆|

{
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |g(s)|
s

ds

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |g(r)|
r

dr

)
ds

}
(log t)γ−1

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |g(s)|
s

ds

≤ϵ

(
1

|∆|

{
1

Γ(α)

∫ e

1

(
log

e

s

)α−1ds

s

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
1

Γ(α)

∫ s

1

(
log

s

r

)α−1dr

r

)
ds

}
(log t)γ−1
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+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1ds

s

)

=ϵ

(
1

|∆|

{
1

Γ(α+ 1)
+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1 (log s)α

Γ(α+ 1)
ds

}
(log t)γ−1 +

(log t)α

Γ(α+ 1)

)

≤ϵ

(
1

|∆|

{
1

Γ(α+ 1)
+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1 1

Γ(α+ 1)
ds

}
+

1

Γ(α+ 1)

)

=
ϵ

Γ(α+ 1)

(
1

|∆|

{
1 +

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1ds

}
+ 1

)

=
ϵ

Γ(α+ 1)

(
1

|∆|
[1 + ω + |∆|]

)
=

Mϵ

Γ(α+ 1)
.

By virtue of Theorem 3.5, we denote by u the unique solution of the problem (1)-(2). Notice that
we take the left boundary, u(1) = v(1) = 0, and the right boundary u(e) is arbitrary, satisfying
u(e) =

∑m
i=1 λiI

δiu(θi). Then, we have u(t) = (Fu)(t), where F defined by (13). From above
inequality, it follows

|v(t)− u(t)| = |v(t)− (Fu)(t)|

≤ Mϵ

Γ(α+ 1)
+

1

|∆|

{
k

∫ e

1

|v(s)− u(s)|
s

ds+
1

Γ(α)

∫ e

1

(
log

e

s

)α−1 |f(s, v(s))− f(s, u(s))|
s

ds

+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k

∫ s

1

|v(r)− u(r)|
r

dr

+
1

Γ(α)

∫ s

1

(
log

s

r

)α−1 |f(r, v(r))− f(r, u(r))|
r

dr

)
ds

}
(log t)γ−1 + k

∫ t

1

|v(s)− u(s)|
s

ds

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1 |f(s, v(s))− f(s, u(s))|
s

ds.

It follows by assumption (H2) that

∥v − u∥ ≤ Mϵ

Γ(α+ 1)
+ ∥v − u∥

[
1

|∆|

{
k

∫ e

1

ds

s
+

l

Γ(α)

∫ e

1

(
log

e

s

)α−1ds

s

+
m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k

∫ s

1

dr

r
+

l

Γ(α)

∫ s

1

(
log

s

r

)α−1dr

r

)
ds

}
(log t)γ−1

+ k

∫ t

1

ds

s
+

l

Γ(α)

∫ t

1

(
log

t

s

)α−1ds

s

]

≤ Mϵ

Γ(α+ 1)
+ ∥v − u∥

[
1

|∆|

{
k +

l

Γ(α+ 1)

+

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
k log s+

l(log s)α

Γ(α+ 1)

)
ds

}
(log t)γ−1 + k log t+

l(log t)α

Γ(α+ 1)

]

≤ Mϵ

Γ(α+ 1)
+ ∥v − u∥

(
k +

l

Γ(α+ 1)

)(
1

|∆|

{
1 +

m∑
i=1

|λi|
Γ(δi)

∫ θi

1
(θi − s)δi−1ds

}
+ 1

)

=
Mϵ

Γ(α+ 1)
+ ∥v − u∥

(
k +

l

Γ(α+ 1)

)
M.

Therefore,
∥v − u∥ ≤ cf ϵ, where cf =

M

(1− Ξ)Γ(α+ 1)
> 0.
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Hence the problem (1)-(2) is Ulam-Hyers stable. Moreover, it is generalized Ulam-Hyers stable as
∥v − u∥ ≤ θf (ϵ), with θf (ϵ) = cϵ, θf (0) = 0.

Theorem 4.2. Assume that assumption (H2) and condition (14) hold, and that there exists a
function φ satisfying assumption (H6). Then the problem (1)-(2) is Ulam-Hyers-Rassias stable, and
hence generalized Ulam-Hyers-Rassias with respect to φ.

Proof. Let ϵ > 0 and v satisfies the differential inequality (5) with the boundary condition (6). By
integration of (5) and using (H6), for any t ∈ [1, e] one has∣∣∣∣∣v(t)− c0(log t)

γ−1 − c1

(
(log t)γ−2 + k

∫ t

1

(log s)γ−2

s
ds

)
+ k

∫ t

1

v(s)

s
ds

− 1

Γ(α)

∫ t

1

f(s, v(s))

s

(
log

t

s

)α−1
ds

∣∣∣∣∣ ≤ ϵHI
α
1+φ(t) ≤ ϵλφφ(t),

for all c0 =
(δHI2−γ

1+
v)(1)

Γ(γ) , c1 =
(HI2−γ

1+
v)(1)

Γ(γ−1) ∈ R. By virtue of the proof of Lemma 3.1, we will choose
c0 and c1 such that v in the above inequality satisfies the boundary condition (6), as follows

c0 =
1

∆

{
k

∫ e

1

v(s)

s
ds− 1

Γ(α)

∫ e

1

(
log

e

s

)α−1 f(s, v(s))

s
ds

+

m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
− k

∫ s

1

v(r)

r
dr +

1

Γ(α)

∫ s

1

(
log

s

r

)α−1 f(r, v(r))

r
dr

)
ds

}
and set c1 = 0. Then we have the inequality∣∣∣∣∣v(t)− (log t)γ−1

∆

{
k

∫ e

1

v(s)

s
ds− 1

Γ(α)

∫ e

1

(
log

e

s

)α−1 f(s, v(s))

s
ds

+
m∑
i=1

λi
Γ(δi)

∫ θi

1
(θi − s)δi−1

(
− k

∫ s

1

v(r)

r
dr +

1

Γ(α)

∫ s

1

(
log

s

r

)α−1 f(r, v(r))

r
dr

)
ds

}

+ k

∫ t

1

v(s)

s
ds− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 f(s, v(s))

s
ds

∣∣∣∣∣ ≤ ϵλφφ(t), t ∈ [1, e].

Now, by virtue of Theorem 3.5, we let u be the unique solution of the problem (1)-(2). That is
defined as u(t) = (Fu)(t), where F is defined by (13). From above inequality, the same method as
in the proof of Theorem 4.1, it follows that

|v(t)− u(t)| = |v(t)− (Fu)(t)| ≤ ϵλφφ(t) + ∥v − u∥
(
k +

l

Γ(α+ 1)

)
M.

Therefore,
∥v − u∥ ≤ cf,φϵφ(t), where cf,φ =

λφ
1− Ξ

> 0.

Hence, the problem (1)-(2) is Ulam-Hyers-Rassias stable with respect to φ. Moreover, it is gener-
alized Ulam-Hyers-Rassias stable with respect to φ, if we take ϵ = 1 then ∥v − u∥ ≤ cf,φφ(t). This
completes the proof.

5 Examples
In this section, we give four examples to illustrate our main results.
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Example 5.1. Consider the following boundary value problem
(
H
D

3
2
, 1
6

1+ +
1

5
HD

1
2
, 1
6

1+ )u(t) = et sinu(t), t ∈ [1, e],

u(1) = 0, u(e) = 4I
5
2u

(
3

2

)
+

1

4
I

3
2u(2).

(18)

Here α =
3

2
, β =

1

6
, k =

1

5
, λ1 = 4, λ2 =

1

4
, δ1 =

5

2
, δ2 =

3

2
, γ =

19

12
, θ1 =

3

2
, and θ2 = 2. For

each u ∈ R, we have |f(t, u)| ≤ et, and thus (H1) is satisfied. Using the given data, we find that
ω = 0.4008, ∆ = 0.6854, M = 3.0438, and

kM =
k

|∆|
[1 + ω + |∆|] ≈ 0.6088 < 1.

Hence, all the conditions of Theorem 3.2 are satisfied. Therefore, the boundary value problem (18)
has at least one solution on [1, e].

Example 5.2. Consider the following boundary value problem
(
H
D

2, 1
4

1+ +
1

3
HD

1, 1
4

1+ )u(t) =
sinu(t)

(log t+ 10)
+

1

(t+ 1)3
, t ∈ [1, e],

u(1) = 0, u(e) = − 1

20
I

3
2u(2) +

1

6
I

7
4u

(
9

5

)
− 4I

5
3u

(
4

3

)
.

(19)

Here α = 2, β =
1

4
, k =

1

3
, λ1 = − 1

20
, λ2 =

1

6
, λ3 = −4, δ1 =

3

2
, δ2 =

7

4
, δ3 =

5

3
, γ =

9

4
,

θ1 = 2, θ2 =
9

5
, and θ3 = 4

3 . For each u ∈ R, we have

|f(t, u)| ≤
∣∣∣∣ 1

(log t+ 10)

∣∣∣∣+ ∣∣∣∣ 1

(t+ 1)3

∣∣∣∣ ≤ 1

10
+

1

8
=

9

40
,

thus (H3) is satisfied. Using the given data, we find that ω = 0.5338, ∆ = 1.0272, M = 2.4931, and

kM =
k

|∆|
[1 + ω + |∆|] ≈ 0.83103 < 1.

Hence, all the conditions of Theorem 3.3 are satisfied. Therefore, the boundary value problem (19)
has at least one solution on [1, e].

Example 5.3. Consider the following boundary value problem
(
H
D

3
2
, 1
4

1+ + 1
5HD

1
2
, 1
4

1+ )u(t) = [u(t)]2 cos t, t ∈ [1, e],

u(1) = 0, u(e) =
1

20
I

10
7 u(2) +

1

6
I

9
2u

(
9

5

)
,

(20)

Here α =
3

2
, β =

1

4
, k =

1

5
, λ1 =

1

20
, λ2 =

1

6
, δ1 =

10

7
, δ2 =

9

2
, γ =

13

8
, θ1 = 2, and θ2 = 9

5 .

For each u ∈ R, there exists a constant function p(t) = 1 and continuous nondecreasing function
ψ(x) = x2, for all x ∈ R+ such that |f(t, u)| ≤ p(t)ψ(|u|) = |u|2, and then (H4) is satisfied. Using
the given data, we find that ω = 0.0388, ∆ = 0.9822, M = 2.0576, and

kM =
k

|∆|
[1 + ω + |∆|] ≈ 0.41152 < 1.
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There exists a constant C = 0.3801 such that

Γ(α+ 1)(1− kM)C

M∥p∥ψ(C)
=

Γ(α+ 1)(1− kM)C

MC2
≈ 1.0003 > 1.

Hence, (H5) is satisfied. We set U = {u ∈ X : ∥u∥ < 0.3801}. Therefore, all the conditions of
Theorem 3.4 are satisfied. Thus, the boundary value problem (20) has at least one solution on [1, e].

Example 5.4. Consider the following boundary value problem
(
H
D

4
3
, 1
2

1+ +
1

10H
D

1
3
, 1
2

1+ )u(t) =
u(t)√

99 + t2(5 + u(t))
+

1

10 + t3
, t ∈ [1, e],

u(1) = 0, u(e) = −10I
7
2u

(
5

3

)
+

13

5
I

5
2u(2),

(21)

Here α =
4

3
, β =

1

2
, k =

1

10
, λ1 = −10, λ2 =

13

5
, δ1 =

7

2
, δ2 =

5

2
, γ =

5

3
, θ1 =

5

3
, and θ2 = 2.

Notice (H2) is satisfied with l = 1

50
, because

|f(t, u1)− f(t, u2)| =
∣∣∣∣ u1(t)√

99 + t2(5 + u1(t))
− u2(t)√

99 + t2(5 + u2(t))

∣∣∣∣
≤ 1

10

∣∣∣∣ u1(t)

(5 + u1(t))
− u2(t)

(5 + u2(t))

∣∣∣∣ ≤ 1

50
|u1 − u2|.

Using the given data, we find that ω = 0.9903, ∆ = 0.7675, M = 3.5933, and

Ξ :=

[
kM +

lM

Γ(α+ 1)

]
≈ 0.4197 < 1.

Hence, all the conditions of Theorem 3.5 are satisfied. Therefore, the boundary value problem (21)
has a unique solution on [1, e]. Moreover, the problem (21) is Ulam-Hyers stable and generalized
Ulam-Hyers stable according to Theorem 4.1. In addition, by virtue of Theorem 4.2, if there exists a
function φ : [1, e] → R+ satisfying the assumption (H6), then the problem (21) is Ulam-Hyers-Rassias
stable, and generalized Ulam-Hyers-Rassias stable on [1, e] with respect to φ.

6 Conclusion
This paper presents existence and uniqueness results for Hilfer-Hadamard sequential fractional

differential equations (1) with multi-point Riemann-Liouville fractional integral boundary conditions
(2). Firstly, by considering a linear variant of the given problem, we converted the nonlinear problem
into a fixed point problem. Once the fixed point operator was established, the existence results were
derived using the Krasnoselskii’s fixed point theorem, the Schaefer fixed point theorem, and the
Leray-Schauder nonlinear alternative. The Banach contraction principle was then applied to achieve
the existence and uniqueness result.

Moreover, the stability of the problem in the sense of Ulam-Hyers and Ulam-Hyers-Rassias were
determined. We found that if the problem has a unique solution according to the assumptions of
Theorem 3.5, it is also Ulam-Hyers stable and generalized Ulam-Hyers stable on [1, e]. Furthermore,
by adding one more condition as (H6), we obtained Ulam-Hyers-Rassias and generalized Ulam-Hyers-
Rassias stability results. Additionally, we provide examples that illustrate the obtained results.

In summary, we established results regarding existence, uniqueness, and stability for the Hilfer-
Hadamard sequential fractional differential equations with multi-point fractional integral boundary
conditions, thereby extending their applicability to a wider range of mathematical models.
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