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A HERMITE FINITE ELEMENT METHOD
FOR THE VIBRATION PROBLEM OF THE
RAYLEIGH-BISHOP BEAM

Yi Gong'

Abstract In this paper, a Hermite finite element method is proposed for
the Rayleigh-Bishop equation which describes the vibration problem of the
Rayleigh-Bishop beam. We first present the semi-discrete Galerkin finite el-
ement form for the Rayleigh-Bishop equation. Then by means of the cubic
Hermite element, a full-discrete finite element scheme is established. Further-
more, a numerical algorithm based on the Hermite finite element method is
proposed to solve the fourth-order Rayleigh-Bishop equation. Finally, a nu-
merical example is given to illustrate the effectiveness of the proposed method.
The Hermite finite element method is potentially applied to other vibration
problems.

Keywords Rayleigh-Bishop beam, Pseudohyperbolic equation, Hermite fi-
nite element.
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1. Introduction

During the last decade, the vibration problems of the beam have attracted con-
siderable attention since its wide presence in various fields including mechanical
engineering, bridge construction, aerospace and so on [1]. The equations for the
transverse vibration of beams usually are in the form of fourth-order partial differ-
ential equations with two boundary conditions at each end, which is difficult to find
an analytical solution [2,3]. Numerical methods provide a powerful framework for
obtaining approximate solutions to the vibration problems of the beams. There are
many valuable results [4-10] about numerical methods for the vibration problems
of the viscoelastic beams.

In particular, the finite element method has been employed successfully in the
analysis of viscoelastic beams by many researchers [11-20]. In Reference [12], the
dynamic model of Euler-Bernoulli beams is studied by using the finite element
method. And an iterative solution algorithm based the two-dimensional finite ele-
ment method is proposed to obtain beam displacements. In Reference [13], a mixed
finite element method is proposed to solve three-field (displacement, strain, stress)
variational formula for beams. In Reference [14], a three-dimensional finite elemen-
t method is used to study the viscoelastic panel with axial and transverse load,
which is also applicable to viscoelastic beams. In Reference [15], an effective nu-
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merical method based on nonlocal two-noded finite elements is proposed, by which
the stress-driven solution can be obtained by using only one two-noded element. In
Reference [16], an enriched hierarchical one-dimensional finite element method is
presented, which can be used to study the rheological behavior of thick arbitrarily
laminated beams. In Reference [17], a scheme for the vibration equation of the vis-
coelastic beam is developed by using the Hermite finite element. The cubic Hermite
element can guarantee the continuity of the first derivative of the interpolation func-
tion. In Reference [18], a finite element method is proposed for the static and free
vibration analyses of sandwich beams. In the above literature [12-18], the influence
of the rotatory inertia of the cross-section is not taken into account. The beam
model considering the rotatory inertia of the cross-section is a high-order partial d-
ifferential equation with the mixed partial derivative with respect to time and space,
i.e. the Rayleigh-Bishop model [21,22], which belongs to the pseudohyperbolic e-
quation [23-27]. It has been shown [28] that the Rayleigh-Bishop model improves on
estimations made by the classical Euler-Bernoulli equation. The Rayleigh-Bishop
model makes it possible to analyse longitudinal wave propagation in beams that
are relatively thick due to the inclusion of transverse effects in the model. However,
there is little work about the finite element method for the vibration problem of the
Rayleigh-Bishop beam.

Motivated by the above observations, we present a Hermite finite element method
for the vibration problem of the Rayleigh-Bishop beam. This numerical method is
used to obtain the transverse displacement of the Rayleigh-Bishop beam with fixed
ends. Based on the cubic Hermite element, a full-discrete finite element scheme is
established, which can guarantee the continuity of the first derivative of the inter-
polation function. Finally, a numerical example is given to demonstrate the validity
of the scheme.

The main contributions of this work are summarised as follows:

(1) We formulate a full-discrete finite element scheme for the Rayleigh-Bishop e-
quation.

(2) An effective numerical algorithm based on the cubic Hermite element is devel-
oped to compute the transverse displacement of the Rayleigh-Bishop beam with
fixed ends.

The rest of the paper is organized as follows. In Section 2, some basic definitions
and the problem description are given. In Section 3, we propose a full-discrete finite
element scheme to solve the Rayleigh-Bishop equation. In Section 4, a numerical
example is given to illustrate the effectiveness of the proposed method. In Section
5, some conclusions are summarised.

2. Preliminaries

In this section, an one-dimensional fourth-order pseudohyperbolic equation is
presented, which describes the vibration problem of a beam with fixed ends.
Consider the following vibration problem of the Rayleigh-Bishop beam [1]

Elwzges + Pswtt - PIwmctt — Pwg, = f(l’,t), S [0, l]; te [OvT}a (21)

where w(x,t) is the transverse displacement of the beam, E is Young’s modulus, T
is the second moment of cross-sectional area, EI denotes the bending stiffness, p
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is the density of the beam, S is the cross-sectional area, pS denotes the mass per
unit length, pI is the rotatory inertia of cross-sectional area, P is the coefficient of
tension, [ is the beam length, z is the axial coordinate and f(x,t) is the smooth
function which is known.

0 [

|4 L|
|1 r|

Figure 1. Schematic of a beam with fixed ends

We investigate the vibration problem of a beam with fixed ends, which is de-
scribed by the following homogeneous boundary conditions

w(0,t) = w(l,t) =0, wyz(0,t) = wyy(I,t) =0, t € 0,77, (2.2)
The initial conditions of the system (2.1) is presented as follows
w(z,0) = (x), wi(x,0) =Y(x),z € 0,1, (2.3)
where ¢(z) and ¥ (z) are smooth functions which are known.

Remark 2.1. The dynamical model (2.1) and the boundary conditions (2.2) are
derived by using the Hamilton’s variational principle and the Rayleigh-Bishop the-
ory [17]. The influence of rotatory inertia of the cross-section is taken into account
but the shear deformation is neglected in the analysis. Compared with the Euler-
Bernoulli beam which neglects the effect of inertia on modeling, the Rayleigh-Bishop
beam makes it possible to analyse longitudinal wave propagation in beams that are
relatively thick.

3. Finite Element Approximation

In this section, we first present the semi-discrete Galerkin finite element form for
the Rayleigh-Bishop equation (2.1). Then, based on the cubic Hermite element, a
full-discrete finite element scheme is established, which can guarantee the continuity
of the first derivative of the interpolation function. Finally, a numerical algorithm
based on the Hermite finite element method is proposed to solve the euqation (2.1)
with the boundary conditions (2.2) and the initial conditions (2.3).

Let I = [0,1]. The definition of Sobolev space HZ(I) is given as follows.

Definition 3.1. The Sobolev space HZ(I) is defined by
H{(I) ={w|we H*(I), w(0,t) = w(L,t) =0, w,(0,t) = wy(L,t) =0}. (3.1)
For any v(z) € HZ(I) and the fixed ¢, multiply both sides of equation (2.1) by

v(z) and integrate over (0,1), we have

! 1
/ [EIwygre + pSwee — plwgzss — Pwyg] v(z)de = / fo(z)da. (3.2)
0 0
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By means of the boundary conditions (2.2) and the integration by parts, the
integrals in (3.2) can be written as

l !
/ ElTwgpesv(2)dr = —wepvy ’lo +/ ElTw, 0.0 (2)da = (ElTwgy, Ve (2)),
0 0
! l
/ Plwzv(2)de = plwgv |lo - / plwgsive (v)de = —(plwyir, ve(2)), (3.3)
0 0

.l rl
/ Pwgzv(x)de = Pw,v |6 — Pw,v,(x)de = —(Pwy, vy (),
Jo

JO

where (w,v) = fol wvd.
Based on (2.3), the weak formulation of (2.1) is presented as

(ETwge, vez) + (pSwit, v) + (pIwgs, vz) + (Pwg, vg) = (f(z,1),0), Yv € H,
w(z,0) = p(x),w(z,0) =Y(z), = € [0,].
(3.4)
Given a positive integer M. Let I, : 0 = z9g < 1 < -+ < zpy = [ be an
uniform partition of the interval [0,] with the step-size h = [/M, where x; = ih,
i=0,1,2,---, M. Let V}, be a subspace of H2(I) constituted by piecewise cubic
Hermite type polynomials on I,. Based on the above partition, the semi-discrete
Galerkin finite element approximation of (3.4) can be define: find w;, € V}, such

that

(Elwh,xwa Uh,:vm) + (pswh,tta Uh) + (leh,zm Uh,z) + (Pwh,xy /Uh,:c)
= (f(.f,t),vh), vvh S Vh-

(3.5)

We first discuss the Hermite interpolation problem in the reference interval [0, 1].
Then, the interpolation problem in any interval [z;,z;+1] can be solved by the
coordinate transformation. The cubic basis functions in the reference interval [0, 1]
are presented as

(3.6)

Based on (3.6), basis functions in the interval [x;, ;1] can be obtained by using

the coordinate transformation # = #5*= and are presented as follows
T — T T — T, 2
ai(r) = (2 +1)( - )
T — T T — Ty 2

fula) = T (1 - T

T— Xy, — Ty

aip1(z) =(3-2 h )( h )

T — T T —Tp 2

Biv1(z) = ( A —1)( h ) -

where a;(z) and §;(z) are equal to zero outside the interval [x;_1,Z;4+1].
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Because wy, € V}, in the semi-discrete finite element approximation (3.4), it is
clear that w;, can be written as

=" [wiai(@) +w;Bi(x)], (3.8)
=0

where w; = wy, (x;,t), w, = w}, (z;,1).

We now present the main result in this paper.

Theorem 3.1. Let W = (wq, -+ ,wpr—1,Wh, "+ ,wﬁw)T. Let F be the load vec-

tor, where F = [(f,a1), -, (f,am—1), (f,B0), -, ([, BM)]T. The vector W is the
solution of the matriz differential equation

d*w

A
dt?

+ BW =F, (3.9)

where matrices A and B are known sparse matrices.

Proof. 1t is clear that a;(z) € V}, and B;(x) € Vj. Set v, = oj(x). By substitut-
ing (3.8) into the semi-discrete finite element form (3.5), we obtain

M

dQlUZ‘ d2 ' d2 ’ dZw; ’ ’
Z[ dt2 (pSozi,ozj)+ dt2 (pSBz7aJ) dtQ (p[a )+ dtg (pjﬁivaj)

—|—w1(EIoz a )—I—w(EI,Bl,a )—|—w,(Po¢ o )—|—w(Pﬁl,o¢ )]
:(f,Oéj)7j:O,1,2,"',M.

(3.10)
Set vy, = fB;(x). By substituting (3.8) into (3.5), we then obtain
M
d*w; d?w d?w; d*w
; [z (pSen B) + 5 (055,055) + (e, ) + =5t (16, 6))
+wi(Blay, B) +wi(EIB; , B}) +wi(Pay, B)) + w;(PB;, 5))]
:(fvﬁj)a j:OalaQa"' aM~
(3.11)
Let W = (wy, -+ ,War—1, W, -+ ,w?w)T. According to the boundary conditions

(2.2), it is clear that wy = 0 and wps = 0. Let F = [(f, 1), -, (f,an—1), (f, Bo),
,(f, Bu)]T be the load vector. According to (3.10) and (3.11), we have

dPW
A BW =F 3.12
— , (3.12)
where
A _ All A12 ’B _ Bll B12 : (313)
A21 A22 B21 B22

2M x2M 2M x2M
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where
pS(on,on) + pI(ay,00) -+ pSlan—1,00) + pl(ey_y,0))
An =
pS(ar, anr—1) + pI(ay, ap ) -+ pSlan—1,an—1) + pl(ahy 4,0y ) -1y (M1)
pS(B1, 1) + pI(By, 1) -+ pS(Bu,ar) + pI(By. o))
Ao =
pS(Br,ant—1) + pL(By, 1) -+ pS(Bar,ani—1) + pI(Byy, g 1) (M—1)x (M41)
pS(ar, Bo) + pl(ay, By) -+ pSlani—1,Bo) + pI(ay_y, Bo)
Ao =
pSlan, Bar—1) + pller, Bar) -+ pS(ans—1 Bar) + pLlary—1sBan) )
pS(Bo, Bo) + PI(By, By) -+ pS(Bu, Bo) + pI(Byss Bo)
Aoy = : K :
I !’ ’ L. I ! ’
pS(Bo, Brnr) + pI(By, Bas) -+ pS(Bar, Bar) + pI(Bags Bar) (M1 % (M41)
(3.14)
EI(O‘Illaalll) JFP(a/l’a/l) EI(O‘;,V[—l’alll) + P(O‘IJW—l’all)
By =
El(ay,ay_y) + Play,ayy) -+ BI(ay_y, ) + Plajy_p,apy) (M—1)x(M—1)
EI(B,,a7)+ P(B,0)) - EI(By,a)) + P(By, )
B =
EI(B/1,7OZ/]/M—1)+P(5/1705}\4—1) El(ﬂ;\}va;(/f—l) +P(ﬂ;\4aalf\/f—1) (M—=1)x(M+1)
EI(a,By) + P(a), By) -+ El(ay _1,By) + Play 1, 58)
B =
El(a/ll7ﬂ;\//[—1) JFP(O/l»ﬂ;w) El(alz\//l—pﬂz\}) JFP(O/M—DBE\/[) (M+1)x(M—1)
EI(By,80) + P(Bo, By) -+ EI(ByrBy) + P(Bag, Bo)
Boy = : - :
EI " 17 P ! ’ . EI 1 1" P i ’
(Bos Bar) + P(Bo, Bar) (Bars Bar) + P(Bar, Bar) (MH)X(MF) |
3.15

When |i —j| > 1, 2; and z; are not neighboring mesh nodes. Hence in the
interval [z;,z;+1], a; and 5, are euqal to 0. It is clear that most of the elements
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a;; in matrix A are equal to 0. Hence the stiffness matrix A is the sparse matrix.
Similarly, the matrix B is also the sparse matrix. The proof is completed. O

Remark 3.1. Once the vector W is obtained, the numerical solutions at all the
M ,

mesh nodes and the finite element solution wy, = > [w;a;(x) + w,5;(x)] are ob-
i=0

tained. Therefore, the numerical solutions of the weak formulation (3.4) can be

obtained by solving the matrix differential equation (3.9).

Remark 3.2. Compared with traditional finite element method, the Hermite finite
element method can guarantee the continuity of the first derivative of the interpola-
tion function. And the Hermite finite element method has a better approximation
for the derivatives of solution within each element. Therefore, Hermite elements
can provide higher accuracy with fewer elements than standard Lagrange elements.

Given a positive integer N. Let 0 = tg < t; < --- < ty = T be an uniform
partition of the interval [0, T'] with the step-size 7 = T'//N, where T > 0 is a constant
and t, = nt, n = 0,1,2,--- ,N. By applying the central difference scheme to
discretize d;T‘QV, the full-discrete finite element form of problem (3.4) can be define:
find wy € V}, such that

n+1 n n—1 n+1l _ n n—1
. w — 2w +w wy o — 2wy, Fwy
(BIwy L vn ) + (pS =ttt o) 4 (T g )
+ (ngle,vh,w) = (f"(x,t),v1),You € Vi.
(3.16)

The numerical algorithm based on the Hermite finite element method is devel-
oped to solve the fourth-order Rayleigh-Bishop equation (2.1).

Algorithm 1 A numerical algorithm for the Rayleigh-Bishop equation

1: Initialization: Given constants T > 0 and [ > 0. Given positive integers N
and M. Initialize matrices A = Oaprxonm, B = Oaprx2ns and the load vector
F=0op

2: Compute matrices A11,412,A21 and Ags in (3.14) and assemble them into matrix
A. Compute matrices Bi1,B12,B21 and Bas in (3.15) and assemble them into
matrix B. Compute the inner products (f, ;) and (f, ;) and assemble them
into the load vector F', where i =1,--- , M —1and j=0,---, M.

3: Let Wt = (wit ... ,wﬁf_ll,wé”ﬂ, e ,w;\Z“)T. By means of the iterative

method, W"*! is obtained by solving the following algebraic equation
(A+ BrHWntt = 22t poaw™ — AW,

The coefficient wf“ is the numerical solution of node z; at time ¢, 1.

4: Calculate the numerical solution wj by substituting wj® and uz;” into the fol-
lowing euqgation

M ’
wfp = 3 [wfai(e) + w) ()]

=0

Remark 3.3. The numerical algorithm based on the Hermite finite element method
provides piecewise functions defined on the whole problem domain as numerical
solutions, not just the numerical solutions at mesh nodes.
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4. Numerical Examples

In this section, we give one example to demonstrate the effectiveness of the
proposed method. The exact solution of this example is given. We apply Algorithm
1 proposed above to calculate the numerical solution of the example.

Example 4.1. Let the variables E, I,P, p, S, l and P in problem (2.1) be equal
to 1. Consider the following initial-boundary value problem:

Warzzr + Wit — Wegtt — Wax = 0, T € (07 ]-)7t S (07 1]a
w(z,0) = sin(rz),w(z,0) =0, = € [0,1], (4.1)
w(0,t) = w(1,t) = 0, wz(0,1) = wer(1,8) =0, t € [0,1].

The exact solution is w(z,t) = sin(nx) cos(rt).

Exact solution

1
08 g5 ga =

t

Figure 2. The exact solution with h = 0.01 and 7 = 0.0001.

Numerical solution Error

(a) (b)

1
102

1

I = —.
and T To1

Figure 3. The numerical solution and the error of the fully discrete scheme with h =

The exact solution to the problem (4.1) is shown in Figure 2. To demonstrate
the effectiveness of the proposed numerical method, we use Algorithm 1 to solve
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the problem (4.1). The numerical solution of the problem (4.1) is shown in Figure
3(a). Let e(x,t) be the error between the exact solutions and numerical solutions.
The error e(z,t) of the fully discrete scheme with A = ﬁ and 7 = ﬁ is shown in
Figure 3(b). In Table 1, We present the L?-error at different time steps and space
steps. The results show that the space convergence order of the proposed scheme is

higher than the convergence order in time.

Table 1. Example 4.1: Errors of numerical solutions.

h T L2-error

0.1 0.01  6.7371e-04
0.1  0.001 2.6447e-05
0.1  0.0001 2.0000e-05
0.01 0.1 0.0486

0.01 0.01  5.9182e-04
0.01 0.001 6.1075e-06
0.01 0.0001 6.9603e-08

Remark 4.1. When h = 0.1 and 7 = 0.01, the L2-error is 6.7371e — 04. When
h =0.01 and 7 = 0.1, the L2-error is 0.0486. It is clear that the space convergence
order of the proposed scheme is higher than the convergence order in time.

Example 4.2. Let the bending stiffness EI = 1.00N - m?2, the rotatory inertia of
cross-sectional area pI = 4.00kg - m, the mass per unit length pS = 4.00kg/m, the
coefficient of tension P = 1.00N and ! = 1.00m in problem (2.1). Consider the
following initial-boundary value problem:

Wagrr + 4Wi — dWaptr — W = 0, x € (0,1),¢ € (0, 1],
w(z,0) = sin(27x), wy(z,0) =0, = € [0, 1], (4.2)
w(0,t) = w(1,t) = 0, w,(0,t) = wy,(1,¢) =0, t €[0,1].

The exact solution is w(zx,t) = sin(27x) cos(nt).

We present the exact solution for problem (4.2) in Figure 4. To assess the
effectiveness of our proposed numerical method, we employ Algorithm 1 to solve
the problem (4.2). The resulting numerical solution is visualized in Figure 5(a).
Figure 5(b) illustrates the error e(z,t) of the fully discrete scheme for a specific
case with h = ﬁ and 7 = ﬁ. A more detail information of the error is provided
in Table 2 which presents the L2-error at different time steps and space steps. The
results show that the space convergence order of the proposed scheme is higher than

the convergence order in time.
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Exact solution

Figure 4. The exact solution with A = 0.01 and 7 = 0.0001.

Numerical solution Error

e(xt)

(b)

Figure 5. The numerical solution and the error of the fully discrete scheme with h = %2- and T = %;.
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5.

Table 2. Example 4.2: Errors of numerical solutions.

h T L?-error

0.1 0.01 1.0000e-03
0.1  0.001 3.0313e-04
0.1  0.0001 2.7943e-04
0.01 0.1 0.0506

0.01  0.01  5.9403e-04
0.01 0.001 6.3647e-06
0.01 0.0001 1.1125e-07

Conclusion

In this paper, we present a Hermite finite element method for the vibration prob-

lem of the Rayleigh-Bishop beam. Based on the Galerkin variational method, the
semi-discrete finite element form for the Rayleigh-Bishop equation is established.
Then by means of the cubic Hermite element, a full-discrete finite element scheme
is presented, which can guarantee the continuity of the first derivative of the inter-
polation function. Then, a numerical algorithm , Algorithm 1, is developed to solve
the fourth-order Rayleigh-Bishop equation. Finally, the effectiveness of Algorithm
1 is verified by a numerical example. The proposed method is potentially applied
to other vibration problems.
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