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Abstract
Recently, Fan, Zhu and Zheng [Computational and Applied Mathematics, 37 (3): 3256-

3266] proposed a generalized double shift-splitting (GDSS) preconditioner induced by a new
matrix splitting method for nonsymmetric generalized saddle point problems, and gave the
corresponding theoretical analysis and numerical experiments. In this paper, based on the
generalized double shift-splitting (GDSS) preconditioner, we generalize the GDSS algorithms
and further present the modified double shift-splitting (MDSS) preconditioner for nonsym-
metric generalized saddle point problems having a nonsymmetric positive definite (1,1)-block
and a positive definite (2,2)-block. Moreover, by similar theoretical analysis, we analyze the
convergence conditions of the corresponding matrix splitting iteration methods and precon-
ditioning properties of the MDSS preconditioned saddle point matrices. In final, one example
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is provided to confirm the effectiveness.

Key words: Modified double shift-splitting, Saddle point problem, Convergence, Preconditioner,

Eigenvalue.
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1 Introduction

Consider the following 2× 2 block saddle point problems

A
(
x
y

)
≡

(
A BT

−B C

)(
x
y

)
=

(
f
g

)
= b, (1)

where A ∈ Rn,n is a positive definite matrix,B ∈ Rm,n,m ≤ n, is of full rank, BT ∈ Rn,m

is the transpose of B, C ∈ Rm,m is positive definite and f ∈ Cn, g ∈ Cm are two given
vectors. It appears in many different applications of scientific computing, such as constrained
optimization [45], the finite element method for solving the Navier-Stokes equation [27, 28,
30], and constrained least squares problems and generalized least squares problems [1, 34,
40, 41] and so on; see [9-17, 19,20,35,39,40] and references therein.

In recent years, there has been a surge of interest in the saddle point problem of the
form (1), and a large number of stationary iterative methods have been proposed. For ex-
ample, Santos et al. [34] studied preconditioned iterative methods for solving the singular
augmented system with A = I. Golub et al. [31] presented SOR-like algorithms for solving
linear systems (1). Darvishi et al. [26] studied SSOR method for solving the augmented
systems. Bai et al. [2, 3, 25, 45] presented GSOR method, parameterized Uzawa (PU)
and the inexact parameterized Uzawa (PIU) methods for solving linear systems (1). Zhang
and Lu [42] showed the generalized symmetric SOR method for augmented systems. Peng
and Li [33] studied the unsymmetric block overrelaxation-type methods for saddle point.
Bai and Golub [4, 5, 7, 8, 9, 32, 36] presented splitting iteration methods such as Hermi-
tian and skew-Hermitian splitting (HSS) iteration scheme and its preconditioned variants,
Krylov subspace methods such as preconditioned conjugate gradient (PCG), preconditioned
MINRES (PMINRES) and restrictively preconditioned conjugate gradient (RPCG) iteration
schemes, and preconditioning techniques related to Krylov subspace methods such as HSS,
block-diagonal, block-triangular and constraint preconditioners and so on.

Recently, based on a new matrix splitting method, Fan, Zhu and Zheng [29] proposed a
generalized double shift-splitting (GDSS) preconditioner induced by a new matrix splitting
method for nonsymmetric generalized saddle point problems, and gave the corresponding
theoretical analysis and numerical experiments.

For large, sparse or structure matrices, iterative methods are an attractive option. In
particular, Krylov subspace methods apply techniques that involve orthogonal projections
onto subspaces of the form

K(A, b) ≡ span
{
b,Ab,A2b, ...,An−1b, ...}.

The conjugate gradient method (CG), minimum residual method (MINRES) and gen-
eralized minimal residual method (GMRES) are common Krylov subspace methods. The
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CG method is used for symmetric, positive definite matrices, MINRES for symmetric and
possibly indefinite matrices and GMRES for unsymmetric matrices [35].

In this paper, based on the generalized double shift-splitting (GDSS) preconditioner
by Fan, Zhu and Zheng [29], we generalize the GDSS algorithms and further present the
modified double shift-splitting (MDSS) preconditioner for nonsymmetric generalized saddle
point problems having a nonsymmetric positive definite (1,1)-block and a positive definite
(2,2)-block. Moreover, by similar theoretical analysis, we analyze the convergence conditions
of the corresponding matrix splitting iteration methods and preconditioning properties of
the MDSS preconditioned saddle point matrices. In final, one example is provided to confirm
the effectiveness.

2 Modified double shift-splitting (MDSS) precondition-

er

Recently, for the coefficient matrix of the augmented system (1), Fan, Zhu and Zheng [29]
made the following splitting

A = 1
2
(Σ +A)− 1

2
(Σ−A)

= 1
2

(
αΛ1 + A BT

−B βΛ2 + C

)
− 1

2

(
αΛ1 − A −BT

B βΛ2 − C

)
,

(2)

where α > 0, β > 0 are two constant numbers, Σ =

(
αΛ1 0
0 βΛ2

)
, and the parameter

matrices Λ1 and Λ2 are both symmetric positive definite. Based on the iteration methods
studied in [29], we establish the modified double shift-splitting (MDSS) of the saddle point
matrix A, which is as follows:

A = 1
2
(Σ + γA)− 1

2
[Σ− (2− γ)A]

= PMDSS −RMDSS

= 1
2

(
αΛ1 + γA γBT

−γB βΛ2 + γC

)
− 1

2

(
αΛ1 − (2− γ)A −(2− γ)BT

(2− γ)B βΛ2 − (2− γ)C

)
,

(3)

where α > 0, β > 0, γ > 0 are three constant numbers, Σ =

(
αΛ1 0
0 βΛ2 − C

)
, and the pa-

rameter matrices Λ1 and Λ2 are both symmetric positive definite. By this special splitting,
the following modified double shift-splitting (MDSS) method can be defined for solving the
saddle point problem (1):

Modified double shift-splitting (MDSS) method: Given initial vectors u0 ∈ Rm+n,
and three relaxed parameters α > 0, β > 0 and γ > 0. For k = 0, 1, 2, ... until the iteration
sequence {uk} converges, compute

1

2

(
αΛ1 + γA γBT

−γB βΛ2 + γC

)
uk+1 =

1

2

(
αΛ1 − (2− γ)A −(2− γ)BT

(2− γ)B βΛ2 − (2− γ)C

)
uk +

(
f
g

)
, (4)

It is easy to see that the iteration matrix of the MDSS iteration is

ΓMDSS =

(
αΛ1 + γA γBT

−γB βΛ2 + γC

)−1(
αΛ1 − (2− γ)A −(2− γ)BT

(2− γ)B βΛ2 − (2− γ)C

)
. (5)
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If we use a Krylov subspace method such as GMRES (Generalized Minimal Residual)
method or its restarted variant to approximate the solution of this system of linear equations,
then

PMDSS =
1

2

(
αΛ1 + γA γBT

−γB βΛ2 + γC

)
, (6)

can be served as a preconditioner. We call PMDSS the MDSS preconditioner for the gener-
alized saddle point matrix A.

In every iteration of the MDSS iteration (4) or the preconditioned Krylov subspace
method, we need solve a residual equation

PMDSSz = 1
2

(
αΛ1 + γA γBT

−γB βΛ2 + γC

)
z

= 1
2

(
I BT (βΛ2 + γC)−1

0 I

)
×(

G 0
0 βΛ2 + γC

)(
I 0

−(βΛ2 + γC)−1B I

)
z

= r

(7)

needs to be solved for a given vector r at each step, where G = αΛ1+γA+BT (βΛ2+γC)−1B
is called the modified double shift-splitting (MDSS) preconditioner for the saddle point ma-
trix A and is induced by the modified double shift-splitting iteration (4). Hence, analogous
to Algorithm 1 in [29], we can derive the following algorithmic version of the MDSS iteration
method.

Algorithm 2.1. For a given vector r = [rT1 , r
T
2 ]

T , the vector z = [zT1 , z
T
2 ]

T can be com-
puted by (7) from the following steps:

Step 1: Solve (βΛ2 + γC)w = 2r2 for w;
Step 2: Compute w1 = 2r1 −BTw;
Step 3: Solve (αΛ1 + γA+BT (βΛ2 + γC)−1B)z1 = w1 for z1;
Step 4: Solve (βΛ2 + γC)v = Bz1 for v;
Step 5: Compute z2 = v + w.

Remark 2.1. On the modified double shift-splitting (MDSS) method, when A is symmetric
(or nonsymmetric) positive definite, C is positive semidefinite, and Λ1 = Λ2 = I, γ = 1 with
α = β = 0, the MDSS method reduces to the method in [6]; When γ = 1 the MDSS method
reduces to the GDSS method in [29]. So, the MDSS method is the generalization of existing
iteration algorithm.

3 Covergence of MDSS method

Now, we turn to study the convergence of the MDSS iteration for solving saddle point prob-
lems (1). It is well known that the iteration method (4) is convergent for every initial guess
if and only if ρ(Γ) < 1, where ρ(Γ) denotes the spectral radius of Γ. In [29], based on
the GDSS method, Fan, Zhu and Zheng established the spectral properties of the iteration
matrix P−1

GDSSR. In this section, we will obtain that the MDSS iteration method is uncon-
ditionally convergent.
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Lemma 3.1. Assume that A is positive definite, B has full row rank, and C is positive
definite. Let λ be an eigenvalue of the iteration matrix ΓMDSS of the MDSS iteration (5).
Then λ ̸= ±1.
Proof. Similar to the proving process of Lemma 2.1 in [29], we obviously can get the above
Lemma.

Theorem 3.2. Let A ∈ Rn,n be positive definite, B ∈ Rn,m be of row full rank matrix,
and C ∈ Rm,m be positive definite. Let α, β and γ be positive real numbers. Let ΓMDSS be
the iterative matrix defined above. Then

ρ(ΓMDSS) < 1,

i.e., the modified double shift-splitting iteration method (4) converges unconditionally to the
exact solution of the nonsymmetric generalized saddle point problems (1).
Proof. If we let the u = (x, y)T be an eigenvector corresponding to the eigenvalue λ of
ΓMDSS, then we get

RMDSSu = λPMDSSu,

which can be equivalently expanded as follows:(
αΛ1 − (2− γ)A −(2− γ)BT

(2− γ)B βΛ2 − (2− γ)C

)
u = λ

(
αΛ1 + γA γBT

−γB βΛ2 + γC

)
u. (8)

Then we have{
[αΛ1 − (2− γ)A]x− (2− γ)BTy = λ(αΛ1 + γA)x+ λγBTy,
(2− γ)Bx+ [βΛ2 − (2− γ)C]y = −λγBx+ λ(βΛ2 + γC)y.

(9)

Left-multiplying both sides of (9) by x∗ yields

αx∗Λ1x− γx∗Ax− (2− γ)(Bx)∗y = λ(αx∗Λ1x+ γx∗Ax) + λγ(Bx)∗y. (10)

The cases, Bx = 0 and Bx ̸= 0, are considered.
Suppose Bx ̸= 0. In this case, from the second formula in Eq. (9), we obtain

Bx =
β(λ− 1)Λ2y

2− γ + λγ
+ Cy. (11)

Substituting Eq. (11) into (10) yields

(1− λ)αx∗Λ1x− (1 + λ)γx∗Ax = (2− γ + λγ)(
β(λ̄− 1)

λ̄γ + 2− γ
y∗Λ2y + y∗Cy). (12)

We need to go a step further to consider the two cases according to whether the matrix C
is symmetric or not.
Case I If C is nonsymmetric. The matrix A is nonsymmetric positive definite. By letting

x∗Ax = ξ + iη, y∗Cy = µ+ iv, x∗Λ1x = s, y∗Λ2y = ϕ,

then we can obtain from Eq. (12)

αφs+ βϕφ̄ = φ
′
(ξ + iη) + µ+ iv, with φ =

1− λ

2− γ + λγ
, φ

′
=

1 + λ

2− γ + λγ
(13)
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Since α, β, γ > 0 and s, ϕ, µ > 0, from (13) we can obtain

Re(φ) =
φ

′
ξ + µ

αs+ βϕ
.

So, we have

|λ| =
∣∣∣∣1− φ

1 + φ

∣∣∣∣ =
√

(1−Re(φ))2 + Im(φ)2

(1 +Re(φ))2 + Im(φ)2
< 1,

where the real part and the imaginary part of a complex number z are denoted as Re(z) and
Im(z), respectively.
Case II If C is symmetric. Using the same notation as in Case I, then it is not hard to find
that

x∗Ax = ξ + iη, y∗Cy = µ, y∗Λ2y = ϕ,

then we can obtain from Eq. (12)

αφs+ βϕφ̄ = φ
′
(ξ + iη) + µ, with φ =

1− λ

2− γ + λγ
, φ

′
=

1 + λ

2− γ + λγ
(14)

Since α, β, γ > 0 and s, ϕ, µ > 0, from (14) we can obtain

Re(φ) =
φ

′
ξ + µ

αs+ βϕ
.

Then we have

|λ| =
∣∣∣∣1− φ

1 + φ

∣∣∣∣ =
√

(1−Re(φ))2 + Im(φ)2

(1 +Re(φ))2 + Im(φ)2
< 1,

If Bx = 0, then Eq. (10) implies

|λ| =
∣∣∣∣αx∗Λ1x− γx∗Ax

αx∗Λ1x+ γx∗Ax

∣∣∣∣ < 1.

Remark 3.1. On the one hand, the MDSS method is the generalization of the GDSS
method. On the other hand, when the appropriate parameters are selected, the MDSS
method will have better convergence than the GDSS method.

4 Numerical examples

In this section, we give numerical experiments to demonstrate the conclusions drawn above.
The numerical experiments were done by using MATLAB 7.1 and the matrix of the numerical
experiments were generated based on a two-dimensional time-harmonic Maxwell equations
in mixed form, respectively. In all our runs we used as a zero initial guess and stopped the
iteration when the relative residual had been reduced by at least six orders of magnitude
(i.e, when ∥b−Axk∥2 ≤ 10−6∥b∥2).

Example 1. In this section, to further assess the effectiveness of the new preconditioned
matrix P−1

MDSSA combined with Krylov subspace methods, we present a sample of numerical

6



examples which are based on a two-dimensional time-harmonic Maxwell equations in mixed
form in a square domain (−1 ≤ x ≤ 1,−1 ≤ y ≤ 1). For the simplicity, we take the generic
source: f = 1 and a finite element subdivision such as Figure 2 based on uniform grids of
triangle elements. Three mesh sizes are considered: h =

√
2
8
,
√
2

12
,
√
2

18
, and Figure 1 shows a

uniform mesh with h =
√
2
4
, The solutions of the preconditioned systems in each iteration are

computed exactly. Information on the sparsity of relevant matrices on the different meshes
is given in Table 1, where nz(A) denote the nonzero elements of matrix A.

Figure 1: A uniform mesh with h =
√
2
4

Since the new preconditioners have two parameters, in numerical experiments we will
test different values. Numerical experiments show the spectrum of the MDSS preconditioned
matrix P−1

MDSSA and the GDSS preconditioned matrix P−1
GDSSA when choosing different

parameters, which coincides with theoretical analysis.
In Figures 2, 4 and 6 we display the eigenvalues of the iteration matrix P−1

MDSSR in

the case of h =
√
2
8
, h =

√
2

12
and h =

√
2

18
for different parameters. In Figures 3, 5 and 7

we display the eigenvalues of the iteration matrix P−1
GDSSR in the case of h =

√
2
8
,h =

√
2

12

and h =
√
2

18
for different parameters. In Tables 2 ∼ 4 we show iteration counts about

preconditioned matrices P−1
MDSSA and P−1

GDSSA, when choosing different parameters and
applying to BICGSTAB and GMRES Krylov subspace iterative methods on three meshes,
where ItBICGSTAB(P−1

MDSSA) and ResBICGSTAB(P−1
MDSSA) are the iteration numbers and rela-

tive residual of the preconditioned matrices P−1
MDSSA when applying to BICGSTAB Krylov

subspace iterative methods, respectively. ItGMRES(P−1
MDSSA) and ResGMRES(P−1

MDSSA) are the

iteration numbers and relative residual of the preconditioned matrices P−1
MDSSA when ap-

plying to GMRES Krylov subspace iterative methods, respectively. ItBICGSTAB(P−1
GDSSA),

ResBICGSTAB(P−1
GDSSA), ItGMRES(P−1

GDSSA), ResGMRES(P−1
GDSSA) are similar definitions.

Remark 4.1. Figures 2 ∼ 7 show that the distribution of eigenvalues of the iteration matrix
confirm our above theoretical analysis.
Remark 4.2. From Tables 2, 3 and 4, it is very easy to see that the preconditioner PMDSS

and PGDSS will improve the convergence of BICGSTAB and GMRES iteration efficient-
ly when they are applied to the preconditioned BICGSTAB and GMRES to solove two-
dimensional time-harmonic Maxwell equations by choosing different parameters.

7



−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−8

−6

−4

−2

0

2

4

6

8
x 10

−4

Real

Im
a

g
in

a
ry

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Real

Im
a

g
in

a
ry

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Real

Im
a

g
in

a
ry

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8
x 10

−5

Real

Im
a

g
in

a
ry

Figure 2: The eigenvalue distribution for the MDSS iteration matrix Γ = P−1
MDSSRMDSS when

α = 0.3, β = 0.4, γ = 1.4(the first), α = 0.4, β = 0.8, γ = 1.1(the second),α = 0.6, β = 0.4, γ =

1.6(the third) and α = 0.8, β = 0.2, γ = 1.3(the fourth), respectively. Here, h =
√
2
8 .
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Figure 3: The eigenvalue distribution for the GDSS iteration matrix Γ = P−1
GDSSRGDSS when

α = 0.3, β = 0.4(the first), α = 0.4, β = 0.8(the second),α = 0.6, β = 0.4(the third) and α =

0.8, β = 0.2(the fourth), respectively. Here, h =
√
2
8 .
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Figure 4: The eigenvalue distribution for the MDSS iteration matrix Γ = P−1
MDSSRMDSS when

α = 0.3, β = 0.4, γ = 1.4(the first), α = 0.4, β = 0.8, γ = 1.1(the second),α = 0.6, β = 0.4, γ =

1.6(the third) and α = 0.8, β = 0.2, γ = 1.3(the fourth), respectively. Here, h =
√
2

12 .
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Figure 5: The eigenvalue distribution for the GDSS iteration matrix Γ = P−1
GDSSRGDSS when

α = 0.3, β = 0.4(the first), α = 0.4, β = 0.8(the second),α = 0.6, β = 0.4(the third) and α =

0.8, β = 0.2(the fourth), respectively. Here, h =
√
2

12 .
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Table 1: datasheet for different grids
Grid m n nz(A) nz(B) nz(W ) order of A
8× 8 176 49 820 462 217 225
16× 16 736 225 3556 2190 1065 961
32× 32 3008 961 14788 9486 4681 3969
64× 64 12160 3969 60292 39438 19593 16129
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Figure 6: The eigenvalue distribution for the MDSS iteration matrix Γ = P−1
MDSSRMDSS when

α = 0.3, β = 0.4, γ = 1.4(the first), α = 0.4, β = 0.8, γ = 1.1(the second),α = 0.6, β = 0.4, γ =

1.6(the third) and α = 0.8, β = 0.2, γ = 1.3(the fourth), respectively. Here, h =
√
2

18 .

5 Conclusion

In this paper, based on generalized double shift-splitting (GDSS) preconditioner by Fan, Zhu
and Zheng [29], we establish the modified double shift-splitting (MDSS) preconditioner for
nonsymmetric generalized saddle point problems. Furthermore, we theoretically verify the
convergence conditions of the corresponding matrix splitting iteration methods and precon-
ditioning properties of the MDSS preconditioned saddle point matrices. Finally, numerical
examples show the spectrum of the new preconditioned matrix for the different parameters.
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