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Abstract

This paper proves the convergence of the variational iteration method for a class of n-th

order ordinary differential equations with Lipschitz nonlinearity which can be regarded as a

generalization of oscillation equations.
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1 Introduction

The variational iteration method was first proposed by He to approximately solve some
nonlinear ordinary differential equations and nonlinear partial differential equations without
linearization or small perturbation [5–7, 9]. This method was shown by many authors to be
superior to many other analytic approximation methods, such as Adomain’s decomposition
method and perturbation methods. A key point is that a correction functional is constructed by a
general Lagrange multiplier [11], which can be identified via variational methods.

In this paper we attempt to use the variational iteration method to get an exact solution of
the following n-th order ordinary differential equationu(n)(t) + an−1(t)u

(n−1)(t) + · · ·+ a1(t)u
′(t) + F (t, u(t)) = 0, t ∈ R,

u(n−1)(0) = u
(n−1)
0 , · · · , u′(0) = u′0, u(0) = u0,

(1.1)
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where ai ∈ Cn−1(R), i = 1, 2, 3, · · · , n − 1, F : R ×R → R is continuous function that is
Lipschitz continuous with respect to the second variable, i.e., there exists constant L > 0 such
that ∣∣∣F (t, u1)− F (t, u2)∣∣∣ ≤ L|u1 − u2|, ∀ t, u1, u2 ∈ R.

The motivation for the study of the above equation originated from nonlinear oscillators. Several
authors showed the validity of variational iteration method and got approximate solutions of
oscillation equations, see for example, [8,15]. See [1,3,4,12,16,17] and the references therein for
other new developments of variational iteration methods. The oscillation equations considered in
this paper has more general form with Lipschitz nonlinear term. Our main theorem (Theorem
3.1) shows that variational iteration sequence of (1.1) converges uniformly on any finite time
interval to an exact solution.

2 Preliminary

In this section, we briefly recall the basic idea of the variational iteration method. Consider
the following general nonlinear system

L(u(t)) +N(u(t)) = g(t), (2.1)

where L is a linear operator, N is a nonlinear operator, and g is a given continuous function.

The essential technique of the variational iteration method is to construct a correction
functional for system (2.1) as follows

un+1(t) = un(t) +

∫ t

0

λ(s; t)
(
Lun(s) +Nũn(s)− g(s)

)
ds, (2.2)

where λ is a general Lagrange multiplier which can be determined by using the variational
approach, and ũn denotes a restricted variation, i.e., δũn = 0. See [2, 10, 13, 14, 18] for more
details on iteration methods.

3 Main Theorem

Theorem 3.1. For any given T > 0, any initial data v ∈ Cn([−T, T ]) satisfying the initial
condition in (1.1), the variational iteration sequence of (1.1) converges uniformly on [−T, T ] to
an exact solution.

Proof. First we derive the variational iteration sequence of (1.1). Let λ = λ(s; t) be a general
Lagrange multiplier to be determined. Then the correction functional for (1.1) is

uk+1(t) = uk(t)+

∫ t

0

λ(s; t)
(
u
(n)
k (s) + an−1(s)u

(n−1)
k (s) + · · ·+ a1(s)u

′
k(s) + F (s, uk(s))

)
ds.
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Making the above correction functional stationary, notice that δuk(0) = 0,

δuk+1(t) = δuk(t) + δ

∫ t

0

λ(s; t)
(
u
(n)
k (s) + an−1(s)(ũk)

(n−1)(s) + · · ·+ a1(s)(ũk)
′(s) + F (s, ũk(s))

)
ds

= δuk(t) +

∫ t

0

λ(s; t)(δuk)
(n)(s)ds

=
(
1 + (−1)n−1∂

n−1λ

∂sn−1
(t; t)

)
δuk(t) +

n−1∑
j=1

(−1)j−1∂
j−1λ

∂sj−1
(t; t)(δuk)

(n−j)(t)

+

∫ t

0

(−1)n∂
nλ

∂sn
(s; t)(δuk)(s)ds = 0,

where ũk denotes the restricted variation, i.e., δũk = 0.

Thus the arbitrariness of δuk yields



∂nλ

∂sn
(s; t) = 0, ∀ s ∈ [0, t],

∂j−1λ

∂sj−1
(t; t) = 0, ∀ j = 1, 2, 3, · · ·n− 1,

∂n−1λ

∂sn−1
(t; t) = (−1)n,

which can be readily solved to obtain λ(s; t) = (−1)n
(n−1)!(s − t)

n−1. So the variational iteration
sequence of (1.1) reads

uk+1(t) = uk(t)+

∫ t

0

(−1)n

(n− 1)!
(s−t)n−1

(
u
(n)
k (s)+an−1(s)u

(n−1)
k (s)+· · ·+a1(s)u′k(s)+F (s, uk(s))

)
ds.

Now we define an operator AT : C0([−T, T ])→ C0([−T, T ]) by

AT [u](t) :=
n−1∑
j=1

(−1)j
∫ t

0

(
(−1)n(s− t)n−1

(n− 1)!
aj(s)

)(j)

u(s)ds+

∫ t

0

(−1)n(s− t)n−1

(n− 1)!
F (s, u(s))ds.

It can be easily seen that AT is well-defined. Also defined ÃT : Cn([−T, T ])→ Cn([−T, T ]) by

ÃT [u](t) := u(t)+

∫ t

0

(−1)n(s− t)n−1

(n− 1)!

(
u(n)(s)+an−1(s)u

(n−1)(s)+· · ·+a1(s)u′(s)+F (s, u(s))
)
ds.

The classical Cauchy-Lipschitz theorem and extension theorem guarantee that the unique exact
solution ϕ(t) of (1.1) exists on [−T, T ]. It is clear that ϕ is a fixed point of ÃT , i.e., ÃT [ϕ] = ϕ.
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Therefore for any v ∈ Cn([−T, T ]) satisfying the initial condition in (1.1), we have∣∣ÃT [v](t)− ϕ(t)
∣∣ = ∣∣ÃT [v](t)− ÃT [ϕ](t)

∣∣
=

∣∣∣(v − ϕ)(t) + ∫ t

0

(−1)n(s− t)n−1

(n− 1)!

(
(v(n) − ϕ(n))(s) +

n−1∑
j=1

aj(s)(v
(j) − ϕ(j))(s)

+F (s, v(s))− F (s, ϕ(s))
)
ds
∣∣∣

=
∣∣∣ n−1∑
j=1

(−1)j
∫ t

0

(
(−1)j(s− t)n−1

(n− 1)!
aj(s)

)(j)

(v − ϕ)(s)

+

∫ t

0

(−1)n(s− t)n−1

(n− 1)!

(
F (s, v(s))− F (s, ϕ(s))

)
ds
∣∣∣

=
∣∣AT [v](t)− AT [ϕ](t)

∣∣
≤ C(n, T,M)

∣∣∣ ∫ t

0

∣∣v − ϕT

∣∣(s)ds∣∣∣ ≤ C(n, T,M)‖v − ϕ‖C0([−T,T ])|t|, ∀ t ∈ [−T, T ]

(3.1)

where C(n, T,M) is a positive constant depending on n, T,M := max{‖aj‖Cn−1([−T,T ]); 1 ≤
j ≤ n− 1} and L.

One more step iteration gives∣∣∣Ã2
T [v](t)− ϕ(t)

∣∣∣ =
∣∣∣ÃT

(
ÃT [v]

)
(t)− ÃT

(
ÃT [ϕ]

)
(t)
∣∣∣

≤ C(n, T )
∣∣∣ ∫ t

0

∣∣ÃT [v](s)− ÃT [ϕ](s)
∣∣ds∣∣∣

= C(n, T )
∣∣∣ ∫ t

0

∣∣AT [v](s)− AT [ϕ](s)
∣∣ds∣∣∣

≤ C(n, T,M)2
∣∣∣ ∫ t

0

‖v − ϕ‖C0([−T,T ])sds
∣∣∣

=
C(n, T,M)2‖v − ϕ‖C0([−T,T ])

2!
t2, ∀ t ∈ [−T, T ].

Inductively we have∣∣∣ÃN
T [v](t)− ϕ(t)

∣∣∣ ≤ C(n, T,M)N‖v − ϕ‖C0([−T,T ])

N !
tN , ∀ t ∈ [−T, T ].

Thus ∥∥∥ÃN
T [v]− ϕ

∥∥∥
0,[−T,T ]

≤
C(n, T,M)N‖v − ϕ‖C0([−T,T ])

N !
(2T )N → 0, N →∞.

The proof is complete.

Example 3.1. (Dissipative pendulum)

Consider the equation of dissipative pendulum with external forceu′′(t) + u′(t) + sin(u(t)) = 0, t ∈ R,

u(0) = A > 0, u′(0) = 0.
(3.2)
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(a) (b)

Figure 1

Here F (u) = sinu is a Lipschitz function with Lipschitz constant 1. The variational iteration
formula for this equation reads

un+1(t) = un(t) +

∫ t

0

(s− t)
(
u′′n(s) + u′n(s) + sin(un(s))

)
ds.

Rewrite (3.2) into planar system u̇ = v,

v̇ = −v − sin(u).
(3.3)

It can be easily seen that (0, 0) is a saddle point, so for A > 0 small, the orbit of (3.3) will spiral
towards the origin. For A = 0.1, initial approximation guess v(t) = A cos(t) and time interval
[0, 5]. (a) and (b) in Figure 1 show a comparison between the exact solutions versus 10-th and
15-th approximation solutions respectively. Graphically, the more we iterate, the closer, in an
uniform way, these two solutions with each other.
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