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Abstract. In this paper, we study the dissipative property of the first order 3× 3 hyperbolic system with constant

coefficients. For the corresponding n× n system, when the coefficients matrices are symmetric, it has been studied

in [22] and the well-know Kawashima-Shizuta condition is obtained. When n = 3 and for asymmetric system, we

give a sufficient condition for the system to be strictly dissipative.
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1. Introduction5

In this paper, we study the dissipative property of the following first order 3× 3 strictly hyperbolic system with6

constant coefficients7

∂U

∂t
+A

∂U

∂x
+ FU = 0, (1.1)

where x ∈ R, U(x, t) = (u1, u2, u3)
⊤, A = (aij)3×3 and F = (fij)3×3 are two constant matrices. Since (1.1) is8

strictly hyperbolic, A has three distinct real eigenvalues: µ1 < µ2 < µ3.9

Consider the Cauchy problem of system (1.1) with the initial data10

U0(x) = (u1(x, 0), u2(x, 0), u3(x, 0))
⊤ ∈ L1(R) ∩ Cα(R) (1.2)

for some α ∈ R+.11

For n ∈ R+, U(x, t) = (u1, · · · , un)
⊤ ∈ Rn, A = (aij)n×n and F = (fij)n×n, (1.1) represents an n×n hyperbolic12

system. A more general case is the following quasilinear hyperbolic system13

∂U

∂t
+A(U)

∂U

∂x
+ F (U) = 0, (1.3)

where x ∈ R, U ∈ Rn, A(U) and F (U) are two smooth function matrices vanishing at the origin. Generally14

speaking, for n dimension(n-d), the dissipative conditions of (1.1) can be directly generalized to system (1.3) when15

the initial data are small. An important dissipative condition of (1.1) is the strongly dissipative condition, namely,16

the matrix P−1∇FP is strictly row or column-diagonally dominant, where P = (R1, · · · , Rn) is the n × n matrix17
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composed of the right eigenvectors Ri (i = 1, · · · , n) of matrix A, and P−1 is the inverse matrix of P . Similarly,1

if the matrix P−1(0)∇F (0)P (0) is strictly row or column-diagonally dominant, then (1.3) is strongly dissipative,2

where P (U) = (R1(U), · · · , Rn(U)) is the n× n matrix composed of the right eigenvectors Ri(U) (i = 1, · · · , n) of3

matrix A(U), and P−1(U) is the inverse matrix of P (U). Strongly dissipative condition can be further generalized4

to matrices positively diagonally similar to a strictly diagonally dominant matrix, see Section 2 below or [8, 16] for5

more details. In [3, 4, 5], strongly dissipative condition was used to study the global existence of weak solutions to6

systems of conservation laws.7

Another important dissipative condition is the well-known Kawashima-Shizuta algebraic condition (see [11]),8

which can be used to study the decay properties of solutions to hyperbolic-parabolic coupled systems. Kawashima-9

Shizuta condition has several equivalent formulations (see [17]). For some applications of Kawashima-Shizuta10

condition, see [1, 2, 4, 7, 12, 13, 19]. Recently, systems with much weaker dissipations which violate Kawashima-11

Shizuta condition have attracted a lot of attentions, see [6, 10, 19, 23, 24].12

In [14], for (1.1) in 2-d, we proposed a dissipative condition which can be regarded as a generalization of13

Kawashima-Shizuta condition to asymmetric system.14

In [21], the authors obtained the pointwise estimates of the one-dimensional thermoelastic system with second15

sound, which is hyperbolic with a damping term. The higher dimensional systems were also studied by many16

authors (see [15, 18, 19, 20]).17

However, strongly dissipative condition is somehow too strong as a dissipative condition (see [8]). Kawashima-18

Shizuta condition is weaker, but it is applicable only for system which is symmetric or symmetrizable. The main19

purpose of the present paper is to find sufficient conditions for system (1.1) to be strictly dissipative. In fact,20

for system (1.1), we will propose a new dissipative condition (see (2.9), (2.10)) which can be used for asymmetric21

system.22

The rest of the paper is organized as follows. In Section 2, we review the concepts of strongly dissipative condition23

and Kawashima-Shizuta condition and give a new dissipative condition for the first order 3× 3 hyperbolic system.24

We also explain the relations among these conditions. In Section 3, we verify that the new dissipative condition25

implies the strictly dissipative property of (1.1), even if it is not symmetric or symmetrizable. In Section 4, we26

give the pointwise estimates to the solution of Cauchy problem (1.1), (1.2). Finally, in Section 5, we discuss some27

critical cases.28

2. Dissipative conditions29

We first review the concept of strictly diagonally dominant of a matrix. A matrix B = (bij)n×n is called strictly30

row-diagonally dominant if31

bii >
∑
j ̸=i

|bij |, i = 1, · · · , n (2.1)

or strictly column-diagonally dominant if32

bii >
∑
j ̸=i

|bji|, i = 1, · · · , n. (2.2)

Denote µi (i = 1, · · · , n) as the n distinct eigenvalues of A, and Ri (i = 1, · · · , n) are the corresponding33

eigenvectors, P = (R1, · · · , Rn), and P−1 is the inverse matrix of P . For (1.1) in n-d, let Ri = (Ri1, · · · , Rin)
⊤ (i =34
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dissipative property of hyperbolic system

1, · · · , n) be right eigenvectors corresponding to the eigenvalues µi (i = 1, · · · , n) of matrix A respectively. Denote1

P = (R1, · · · , Rn), Λ = P−1AP = diag{µ1, · · · , µn}, B = P−1FP ≜ (bij)n×n. (2.3)

Definition 2.1. The n×n hyperbolic system (1.1) is called strongly dissipative if B = P−1FP is strictly diagonally2

dominant.3

If (1.1) is strongly dissipative, then (1.1) with initial data U(x, 0) = φ(x) admits a unique global C1 solution4

U = U(x, t) for t ≥ 0, which decays exponentially in time, provided that the C1 norm of φ(x) is suitably small (see5

[16]).6

Definition 2.2. Two matrices B and B̃ are called to be positively diagonally similar if there exists a diagonal7

matrix γ > 0 such that B = γB̃γ−1.8

Denote

˜̃B = (
˜̃
bij)n×n,

˜̃
bij =

 bii for i = j;

−|bij | for i ̸= j.

As stated in Theorem 2.1 of Chapter 4.2 in [16], B = (bij)n×n is positively diagonally similar to a strictly row9

(or column)-diagonally dominant matrix if and only if the real parts of all the eigenvalues of ˜̃B are positive. Thus10

strongly dissipative condition (in Definition 2.1) can be generalized to the matrices which are positively diagonally11

similar to a strictly diagonally dominant matrix.12

Using the same notation in (2.3) for n = 3, by using of the transformation U = PV , V = (v1, v2, v3)
⊤, (1.1) can13

be rewritten as14

∂V

∂t
+ Λ

∂V

∂x
+BV = 0. (2.4)

Meanwhile, the initial data (1.2) are transformed into15

V (x, 0) = P−1U0(x) ≜ V0(x). (2.5)

Definition 2.3. ([22]). System (1.1) is called strictly dissipative if the real parts of all eigenvalues of matrix F+iξA16

(or equivalently B + iξΛ, see Remark 2.1 below) are positive for any ξ ∈ R \ {0}.17

In [22], the authors proved that, when A and F are both real symmetric matrices and F is nonnegative definite,18

system (1.1) is strictly dissipative if and only if19

FRi ̸= 0, i = 1, 2, 3. (2.6)

In fact, (2.6) is an equivalent form of Kawashima-Shizuta condition. The corresponding right eigenvectors to the20

eigenvalues µ1, µ2 and µ3 of matrix Λ are obviously R̃1 = (0, 0, 1)⊤, R̃2 = (0, 1, 0)⊤ and R̃3 = (1, 0, 0)⊤ respectively.21

Remark 2.1. System (1.1) is strictly dissipative if and only if system (2.4) is strictly dissipative. In fact, with the22

transformation U = PV , we have ΛR̃i = P−1APR̃i = µiR̃i (i = 1, 2, 3), then APR̃i = µiPR̃i, i.e., PR̃i = Ri. We23

also obtain BR̃i = P−1FPR̃i = P−1FRi. Hence FRi ̸= 0 (i = 1, 2, 3) if and only if BR̃i ̸= 0 (i = 1, 2, 3).24

3



Shuxin Zhang, Fangqi Chen and Zejun Wang†

For system (2.4), condition (2.6) shows when B is real symmetric and nonnegative definite, (2.4) is strictly

dissipative if and only if all the right eigenvectors R̃i (i = 1, 2, 3) of Λ are not in the kernel of B, namely,

BR̃4−i = (b1i, b2i, b3i)
⊤ ̸= 0, i = 1, 2, 3.

Hence for system (2.4), Kawashima-Shizuta condition takes the form1

b21i + b22i + b23i ̸= 0, i = 1, 2, 3. (2.7)

Recall the strictly dissipative condition of (1.1) for n = 2. Denote B = P−1FP . In [14], we have shown that the2

strictly hyperbolic system (1.1) for n = 2 is strictly dissipative if and only if B satisfies3

a > 0, d > 0; ad ≥ bc. (2.8)

According to (2.8), a quite natural dissipative condition for system (2.4) can be given as follows.4

Condition 1.5 
bii > 0, i = 1, 2, 3,

Bii ≜ bjjbkk − bjkbkj > 0, i, j, k = 1, 2, 3 and i ̸= j ̸= k ̸= i,

|B| > 0.

(2.9)

Formally, (2.9) is stronger than (2.8) since there is no equality included in (2.9). The characteristic polynomial

of B can be written as

λ̂3 − (b11 + b22 + b33)λ̂
2 + (B11 +B22 +B33)λ̂− |B| = 0.

Under condition (2.9), it can be easily verify if the eigenvalues of B are all real, then they must be nonnegative.6

Even so, however, (2.9) is far from sufficient to assure that the real parts of all the eigenvalues of B + iξΛ are7

positive for any ξ ∈ R \ {0}.8

Example 2.1. ([14]) For system (2.4) with

Λ =


1 0 0

0 2 0

0 0 3

 , B =


1 50 0

0 2 1

1 0 3

 ,

it can be easily verified that B satisfies (2.9). In [14], we have showed that there exists some ξ0 ∈ R \ {0} such that9

B + iξ0Λ has a pure imaginary root λ(ξ0) = 9ξ30−34ξ0
5(ξ20+3)

i.10

In this paper, besides condition (2.9), we propose the following additional condition.11

Condition 2.12 √
|B| <

√
b11B11 +

√
b22B22 +

√
b33B33. (2.10)

In Section 3, we will prove that (2.9) and (2.10) are sufficient to assure that (1.1) is strictly dissipative.13

The following lemma shows that conditions (2.9) and (2.10) are weaker than the strongly dissipation condition.14

Lemma 2.1. If (1.1) is strongly dissipative, then (2.9) and (2.10) hold true.15

4



dissipative property of hyperbolic system

Proof. Since (1.1) is strongly dissipative, assume that B is strictly row-diagonally dominant, there hold1

b11 > |b12|+ |b13|, b22 > |b21|+ |b23|, b33 > |b31|+ |b32|, (2.11)

which imply that bii > 0 (i = 1, 2, 3) and

b11b22 > (|b12|+ |b13|)(|b21|+ |b23|) ≥ |b12||b21| ≥ b12b21.

Similarly, we have b22b33 > b23b32 and b11b33 > b13b31, thus both (2.9)1 and (2.9)2 hold. By Gerschgorin’s disk2

theorem, the three eigenvalues of B lie in the union of the disks3

|z − bii| ≤
∑
j ̸=i

|bij |, i = 1, 2, 3.

Combining with (2.1), we obtain that the real parts of three eigenvalues λ̂i (i = 1, 2, 3) of B are all positive. Thus4

if λ̂1, λ̂2 and λ̂3 are all real numbers, then we have |B| = λ̂1λ̂2λ̂3 > 0. If λ̂1 > 0 and λ̂2 = a + bi, λ̂3 = a − bi, for5

some a > 0, b ∈ R, we have |B| = λ̂1(a
2 + b2) > 0. Thus (2.9) holds true.6

By using of (2.11), we have7

b11b22b33 > (|b12|+ |b13|)(|b21|+ |b23|)(|b31|+ |b32|) ≥ b12b23b31,

b11b22b33 > (|b12|+ |b13|)(|b21|+ |b23|)(|b31|+ |b32|) ≥ b21b13b32.

Thus we obtain8

|B| = b11(b22b33 − b23b32) + b12b23b31 − b12b21b33 + b21b13b32 − b31b13b22

< b11B11 + b11b22b33 − b12b21b33 + b11b22b33 − b31b13b22

= b11B11 + b22B22 + b33B33, (2.12)

i.e.,
√

|B| <
√
b11B11 + b22B22 + b33B33. By using of inequality

√
a+ b+ c ≤

√
a +

√
b +

√
c for a, b, c ≥ 0, we

have √
|B| <

√
b11B11 +

√
b22B22 +

√
b33B33.

Thus (2.10) holds true. The case of strictly column-diagonally dominant can be similarly discussed. This completes9

the proof of Lemma 2.1. □10

Remark 2.2. (2.9) and (2.10) do not indicate strongly dissipative condition.11

For example, for system (2.4) with B =


1 1 1

ε 2 1

1 1 3

, we have bii > 0 (i = 1, 2, 3), B11 = 5, B22 = 2, B33 = 2− ε,12

and |B| = 4 − 2ε. It is easy to verify that both (2.9) and (2.10) hold when ε ∈ (−∞, 2). However, when13

ε ∈ (−∞, 0) ∪ (0, 2), we have b11 = 1 < |b21|+ |b31| = 1 + |ε|, and (2.1) does not hold.14

Lemma 2.2. If B is nonnegative definite and symmetric, then there holds15 √
|B| ≤

√
b11B11 +

√
b22B22 +

√
b33B33. (2.13)

5



Shuxin Zhang, Fangqi Chen and Zejun Wang†

Proof. Since B is nonpositive definite and symmetric, there hold bii ≥ 0, Bii ≥ 0, bij = bji (i, j = 1, 2, 3) and1

|B| ≥ 0. Then we have b211b
2
22b

2
33 ≥ b212b

2
23b

2
31 = b221b

2
13b

2
32 and2

b11b22b33 ≥ b12b23b31 = b21b32b13. (2.14)

Direct calculation gives3 (
3∑

i=1

√
biiBii

)2

=

3∑
i=1

biiBii + 2

3∑
j,k=1

j ̸=k

√
bjjBjjbkkBkk

= 2b11b22b33 − 2b12b23b31 + |B|+ 2

3∑
j,k=1

j ̸=k

√
bjjBjjbkkBkk

≥ |B|+ 2

3∑
j,k=1

j ̸=k

√
bjjBjjbkkBkk ≥ |B|, (2.15)

where in the second-to-last inequality, we have used the inequality (2.14). Thus (2.13) holds. □4

To analyze the relation between conditions (2.9), (2.10) with Kawashima-Shizuta condition; We take some critical5

cases into account.6

Lemma 2.3. Suppose that B is nonnegative definite and symmetric, if (2.4) is strictly dissipative, then either7

bii > 0, Bii = 0, i = 1, 2, 3, |B| = 0 (2.16)

or8 
bii > 0, i = 1, 2, 3,

for some fixed i,Bii ≥ 0 and Bjj > 0 for j ̸= i,

|B| ≥ 0

(2.17)

holds.9

Proof. Since B is nonpositive definite and symmetric, there hold bii ≥ 0, Bii ≥ 0, bij = bji (i, j = 1, 2, 3) and10

|B| ≥ 0. If (2.4) is strictly dissipative, to prove (2.16) or (2.17), we need to show that bii ̸= 0 (i = 1, 2, 3) and it11

is not true that B11 = B22 = 0, B33 > 0. Similarly, B11 > 0, B22 = B33 = 0 and B22 > 0, B11 = B33 = 0 are12

also impossible. In fact, if B11 = B22 = 0, B33 > 0, and B is symmetric, we get b22b33 = b223, b11b33 = b213 and13

b11b22 > b212, thus we have14

0 ≤ |B| = b11b22b33 + 2b12b13b23 − b11b
2
23 − b22b

2
13 − b33b

2
12

= 2b12b13b23 − b11b22b33 − b33b
2
12

= ±2b12b33
√
b11b22 − b11b22b33 − b33b

2
12

= = −b33(b12 ±
√

b11b22)
2 < 0,

which is obviously a contradiction.15

If b11 = 0, we obtain B22 = b11b33 − b231 ≥ 0, B33 = b11b22 − b221 ≥ 0, then b21 = b31 = 0, which contradicts with16

(2.7) for i = 1. If the case of b22 = 0 or b33 = 0 can be similarly discussed.17

6



dissipative property of hyperbolic system

When bii > 0, Bii = 0, i = 1, 2, 3, we have b11b22 = b212, b22b33 = b223 and b11b33 = b213. By direct calculation, we1

get2

0 ≤ |B| = 2b12b13b23 − 2b11b22b33 = 2(±b11b22b33 − b11b22b33) ≤ 0.

Obviously, |B| = 0.3

Thus if (2.4) is strictly dissipative, either (2.16) or (2.17) holds. □4

Remark 2.3. By multiplying both sides of (2.4) from the left by diag{m,n, p} (m,n, p ∈ R \ {0}), when bijbji > 05

(i, j = 1, 2, 3, i ̸= j), it is easy to verify that (2.4) is symmetrizable. Thus Kawashima-Shizuta condition is still6

applicable in this case. However, if one inequality of bijbji < 0 (i, j = 1, 2, 3, i ̸= j) holds, (2.4) is nonsymmetrizable7

and Kawashima-Shizuta condition fails. In this paper, we will show that (2.9) and (2.10) can still assure the8

dissipative property of (2.4) (or (1.1)) even if it is not symmetrizable.9

3. Main result10

Denote λ1(ξ), λ2(ξ) and λ3(ξ) as the three eigenvalues of matrix B+iξΛ, where B and Λ are given in (2.4). The11

following theorem shows that conditions (2.9) and (2.10) are sufficient to assure the dissipative property of system12

(1.1). Here we need not require that B is symmetric or symmetrizable.13

Theorem 3.1. If B = P−1FP satisfies (2.9) and (2.10), then system (1.1) is strictly dissipative in the sense of14

Definition 2.3.15

Simple calculation shows that λ1(ξ), λ2(ξ) and λ3(ξ) satisfy16

λ3 −
3∑

i=1

(bii + µiξi)λ
2 +

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

(Bii + bii(µj + µk)ξi− µjµkξ
2)λ

−
3∑

i,j,k=1

i ̸=j ̸=k ̸=i

(Biiµiξi− biiµjµkξ
2)− |B|+ µ1µ2µ3ξ

3i = 0. (3.1)

We divide the proof of Theorem 3.1 into several lemmas.17

First we review Argument principle and a generalization of Argument principle in the complex analysis.18

Theorem 3.2. (Argument Principle, [9]) If f(z) is a meromorphic in Ω with the zeros aj and the poles bk, then

1

2πi

∫
γ

f ′(z)

f(z)
d =

∑
j

n(γ, aj)−
∑
k

n(γ, bk)z =
△γargf(z)

2π

for every cycle γ which is homologous to zeros in Ω and does not pass through any of the zeros or poles, where19

n(γ, aj) =
1

2πi

∫
γ

dz
z−aj

and n(γ, bk) =
1

2πi

∫
γ

dz
z−bk

. △γargf(z) represents the change of argf(z) after z travels around20

the positive direction of γ, which must be an integral multiple of 2π.21

As a corollary of Theorem 3.2, we have22

Lemma 3.1. Assume that

P (z) = a0z
n + a1z

n−1 + · · ·+ an
7
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is an n−th order polynomial, and P (z) has no zero on the imaginary axis, then its zeros are all in the right half1

plane Rez > 0 if and only if2

∆arg
y(−∞↗+∞)

P (iy) = −nπ.

Namely, as the point z goes from −∞ to ∞ along the imaginary axis from top to bottom, P (z) goes around the3

origin n
2 times.4

Lemma 3.2. If both (2.9) and (2.10) hold, then the real parts of three eigenvalues λ̂i (i = 1, 2, 3) of B are all5

positive.6

Proof. Simple calculation shows that λ̂1, λ̂2 and λ̂3 satisfy7

λ̂3 − (λ̂1 + λ̂2 + λ̂3)λ̂
2 + (λ̂1λ̂2 + λ̂2λ̂3 + λ̂1λ̂3)λ̂− λ̂1λ̂2λ̂3 = 0. (3.2)

Since both (2.9) and (2.10) hold, we have8 
a ≜ λ̂1 + λ̂2 + λ̂3 =

3∑
i=1

bii > 0,

b ≜ λ̂1λ̂2 + λ̂2λ̂3 + λ̂1λ̂3 =
3∑

i=1

Bii > 0,

c ≜ λ̂1λ̂2λ̂3 = |B| > 0,

(3.3)

and9

c = |B| < (
√

b11B11 +
√
b22B22 +

√
b33B33)

2 ≤ (b11 + b22 + b33)(B11 +B22 +B33) = ab. (3.4)

The second inequality in (3.4) is due to Cauchy’s inequality.10

If matrix B has a pure imaginary eigenvalue λ̂ = mi (m ̸= 0), plug it into (3.2), then we have11

m(m2 − b) = 0, am2 = c, (3.5)

which implies c = ab since m ̸= 0 and this contradicts with (3.4). Hence B has no pure imaginary root. Define

f(λ̂) = λ̂3 − aλ̂2 + bλ̂− c.

By Argument Principle, we have Reλ̂i > 0 (i = 1, 2, 3). In fact, we obtain that the slope tanθ = −(y3−by)
ay2−c of12

f(iy) = −(y3 − by)i + ay2 − c has two asymptotes and three zeros. Then if λ̂ goes from −∞ to ∞ along the13

imaginary axis, f(λ̂) goes around the origin 3
2 times. Hence ∆arg

y(−∞↗+∞)

f(iy) = −3π. By Lemma 3.1, we have14

Reλ̂i > 0 (i = 1, 2, 3). The proof of Lemma 3.2 is complete. □15

The following property is a corollary of Lemma 3.2:16

Lemma 3.3. If (2.9) holds, then the real parts of λ1(ξ), λ2(ξ) and λ3(ξ) are all positive near ξ = 0.17

Proof. Set λ = a0 + a1ξ + a2ξ
2 +O(ξ3) near ξ = 0 and substitute it into (3.1), then we can get18

a30 −
3∑

i=1

biia
2
0 +

3∑
i=1

Biia0 − |B| = 0. (3.6)

Since (2.9) holds, we have a0 ̸= 0. Obviously, (3.6) has the same form as the characteristic polynomial of B in19

(3.2). Hence, by Lemma 3.2, we obtain Rea0 > 0, then Reλi(ξ) > 0 (i = 1, 2, 3) near ξ = 0. □20

8
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Lemma 3.4. The real parts of λ1(ξ), λ2(ξ) and λ3(ξ) are all positive near ξ = ∞ if and only if bii > 0, i = 1, 2, 3.1

Proof. Let us first consider the approximate expressions of λi(ξ) (i = 1, 2, 3) near ξ = ∞. Set ξ = 1
η , then (3.1)2

becomes3

η3λ3 −
3∑

i=1

(biiη
3 + µiη

2i)λ2 +

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

(Biiη
3 + bii(µj + µk)η

2i− µjµkη)λ

−
3∑

i,j,k=1

i ̸=j ̸=k ̸=i

(Biiµiη
2i− biiµjµkη)− |B|η3 + µ1µ2µ3i = 0. (3.7)

Set λ = a0
i
η + a1 + a2ηi +O(η2) and substitute it into (3.7), then one obtains4 

3a0a
2
1 − 3a20a2 −

3∑
i=1

(2a0a1bii + a21µi − 2a0a2µi +Bii(µi − a0)) +
3∑

i,j,k=1

i ̸=j ̸=k ̸=i

(a1bii(µj + µk)− a2µjµk) = 0,

3a20a1 −
3∑

i=1

(a20bii + 2a0a1µi) +
3∑

i,j,k=1

i ̸=j ̸=k ̸=i

(a0bii(µj + µk) + a1µjµk − biiµjµk) = 0,

(a0 − µ1)(a0 − µ2)(a0 − µ3) = 0.

(3.8)

Choose λ = λi(ξ) (i = 1, 2, 3) in turn, we get a0 = µi and a1 = bii, i = 1, 2, 3, respectively. Thus we conclude that5

Reλi(ξ) = bii +O(ξ−1) > 0 near ξ = ∞ if and only if bii > 0, i = 1, 2, 3. □6

Lemma 3.5. Under conditions (2.9) and (2.10), one of the following three inequalities must hold:7

√
b11B11 +

√
b22B22 > |

√
b33B33 −

√
|B||; (3.9)√

b22B22 +
√

b33B33 > |
√
b11B11 −

√
|B||; (3.10)√

b11B11 +
√

b33B33 > |
√
b22B22 −

√
|B||. (3.11)

Proof. The inequalities (3.9)-(3.11) are equivalent to8

√
b33B33 −

√
b11B11 −

√
b22B22 <

√
|B| <

√
b11B11 +

√
b22B22 +

√
b33B33;√

b11B11 −
√
b22B22 −

√
b33B33 <

√
|B| <

√
b11B11 +

√
b22B22 +

√
b33B33;√

b22B22 −
√
b11B11 −

√
b33B33 <

√
|B| <

√
b11B11 +

√
b22B22 +

√
b33B33.

Due to (2.10), the right haves of the three inequalities obviously hold. Thus if neither of the inequalities (3.9)-(3.11)9

holds, we have10

√
b33B33 ≥

√
b11B11 +

√
b22B22 +

√
|B|,√

b11B11 ≥
√
b22B22 +

√
b33B33 +

√
|B|,√

b22B22 ≥
√
b11B11 +

√
b33B33 +

√
|B|.

By summing up the three inequalities, we have 0 < 3
√

|B|+
√
b11B11 +

√
b22B22 +

√
b33B33 ≤ 0, which is clearly a11

contradiction. □12

9
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Lemma 3.6. Under conditions (2.9) and (2.10), one of the following three inequalities must hold:1 √
b33B33 +

√
|B| > |

√
b11B11 −

√
b22B22|; (3.12)√

b22B22 +
√

|B| > |
√
b33B33 −

√
b11B11|; (3.13)√

b11B11 +
√

|B| > |
√
b22B22 −

√
b33B33|. (3.14)

Proof. The inequalities (3.12)-(3.14) are equivalent to2 √
b22B22 −

√
b33B33 −

√
|B| <

√
b11B11 <

√
b22B22 +

√
b33B33 +

√
|B|;√

b11B11 −
√
b22B22 −

√
|B| <

√
b33B33 <

√
b11B11 +

√
b22B22 +

√
|B|;√

b33B33 −
√
b11B11 −

√
|B| <

√
b22B22 <

√
b11B11 +

√
b33B33 +

√
|B|.

Obviously the right haves of the three inequalities are equivalent to the left haves in the three inequalities. Thus if3

neither of the inequalities (3.12)-(3.14) holds, we get the conclusion as in the proof of Lemma 3.5. □4

Lemma 3.7. If B = P−1FP satisfies (2.9) and (2.10) for ξ ∈ R \ {0}, then B + iξΛ has no pure imaginary5

eigenvalue.6

It suffices to prove that (3.1) has no pure imaginary solution. In fact, if there exists some fixed ξ such that7

λ(ξ) = a(ξ)i and a(ξ) is a real number, by substituting it to (3.1), we obtain8

3∑
i=1

(a(ξ)− µiξ)Bii =

3∏
i=1

(a(ξ)− µiξ), (3.15)

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(a(ξ)− µjξ)(a(ξ)− µkξ) = |B|. (3.16)

Denote bi = a(ξ)− µiξ, i = 1, 2, 3. (3.15) and (3.16) can be respectively written as9

b1B11 + b2B22 + b3B33 = b1b2b3, (3.17)

b2b3b11 + b1b3b22 + b1b2b33 = |B|. (3.18)

We assume that (3.9) and (3.12) in Lemmas 3.5 and 3.6 hold. Taking (3.17)×(b1b22+b2b11)+(3.18)×(b1b2−B33)10

to eliminate b3, we get11

b33b
2
1b

2
2 + b22B11b

2
1 + b11B22b

2
2 + (b11B11 + b22B22 − b33B33 − |B|)b1b2 + |B|B33 = 0. (3.19)

Define12

F (x, y) = b33x
2y2 + b22B11x

2 + b11B22y
2 + (b11B11 + b22B22 − b33B33 − |B|)xy + |B|B33. (3.20)

We will verify that F (x, y) > 0 for any x, y ∈ R, which implies that (3.19) does not hold.13

By direct calculation, we have14

Fxx(x, y) = 2(b22B11 + b33y
2) > 0,

Fyy(x, y) = 2(b11B22 + b33x
2) > 0,

Fxy(x, y) = Fyx(x, y) = b11B11 + b22B22 − b33B33 − |B|+ 4b33xy.
10
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We can verify that the sign of determinant of the Hessian HF ≜

Fxx Fxy

Fyx Fyy

 is undetermined, so we are not able1

to determine its extreme values directly. Thus we take a different approach to study the minimum value of F (x, y).2

Obviously, F (0, y) = b11B22y
2 + |B|B33 = |B|B33 > 0. Set y = kx and denote t = x2, then (3.20) becomes3

fk(t) ≜ b33k
2t2 + g(k)t+ |B|B33, (3.21)

where

g(k) = b11B22k
2 + (b11B11 + b22B22 − b33B33 − |B|)k + b22B11.

To finish the proof, we need only to prove fk(t) > 0 for any t ≥ 0 and k ∈ R under conditions (2.9) and (2.10).4

Obviously we have fk(0) = F (0, y) > 0. When t > 0, let us first see two simple cases.5

Case 1: When k = 0, by using of (2.9), we have f0(t) = b22B11t+ |B|B33 > 0 for any t > 0.6

Case 2: When k ̸= 0, g(k) is a quadratic function. If7

∆g ≜ (b11B11 + b22B22 − b33B33 − |B|)2 − 4b11b22B11B22 ≤ 0, (3.22)

we have g(k) ≥ 0, which implies fk(t) > 0 for t > 0.8

For the case of ∆g > 0, we have the following9

Lemma 3.8. Under conditions (2.9), (2.10) and ∆g > 0, there holds fk(t) > 0 for t > 0.10

Proof. We divided the proof into two cases.11

Case 1: b11B11+b22B22−b33B33−|B| < 0. In this case, g(k) has two real roots k1 and k2 satisfying 0 < k1 < k2.12

Thus for any k ∈ (−∞, k1]
∪
[k2,+∞), we have g(k) ≥ 0, thus fk(t) > 0 for t > 0.13

For k ∈ (k1, k2), we have g(k) < 0. Since we have assumed that (3.9) holds, by squaring it we get14

b11B11 + b22B22 − b33B33 − |B|+ 2
√
b33B33|B|+ 2

√
b11b22B11B22 > 0

or15

−
[
b11B11 + b22B22 − b33B33 − |B|+ 2

√
b33B33|B|

]
< 2
√

b11b22B11B22. (3.23)

Denote16

h1(k) = g(k) + 2k
√
b33B33|B| = b11B22k

2 + (b11B11 + b22B22 − b33B33 − |B|+ 2
√
b33B33|B|)k + b22B11. (3.24)

If b11B11 + b22B22 − b33B33 − |B|+ 2
√
b33B33|B| ≥ 0, we have h1(k) > 0 for k > 0.17

Conversely, if b11B11 + b22B22 − b33B33 − |B|+ 2
√
b33B33|B| < 0, by squaring the two sides of (3.23), we get18

∆h1
≜ (b11B11 + b22B22 − b33B33 − |B|+ 2

√
b33B33|B|)2 − 4b11b22B11B22 < 0, (3.25)

thus we get h1(k) > 0, or −g(k) < 2k
√
b33B33|B|. Since g(k) < 0 for k ∈ (k1, k2), we can further get ∆fk =19

g2(k)− 4k2b33B33|B| < 0, thus fk(t) > 0 for t > 0.20

Case 2: b11B11 + b22B22 − b33B33 − |B| ≥ 0. Similarly, in this case, g(k) has two roots k1 and k2 satisfying21

k1 < k2 < 0. Thus for k ∈ (−∞, k1]
∪
[k2,+∞), we have g(k) ≥ 0, thus fk(t) > 0 for t > 0.22

For k ∈ (k1, k2), we have g(k) < 0. Since we have assumed that (3.12) holds, by squaring it we get23

−b11B11 − b22B22 + b33B33 + |B|+ 2
√

b33B33|B|+ 2
√
b11b22B11B22 > 0

11
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or1

−
[
b11B11 + b22B22 − b33B33 − |B| − 2

√
b33B33|B|

]
> −2

√
b11b22B11B22. (3.26)

Denote2

h2(k) = g(k)− 2k
√
b33B33|B| = b11B22k

2 + (b11B11 + b22B22 − b33B33 − |B| − 2
√
b33B33|B|)k + b22B11. (3.27)

If b11B11 + b22B22 − b33B33 − |B| − 2
√
b33B33|B| ≤ 0, we have h2(k) > 0 for k < 0.3

Conversely, if b11B11 + b22B22 − b33B33 − |B| − 2
√
b33B33|B| > 0, by squaring both sides of (3.26), we get4

∆h2 ≜ (b11B11 + b22B22 − b33B33 − |B| − 2
√
b33B33|B|)2 − 4b11b22B11B22 < 0, (3.28)

thus we have h2(k) > 0, or 0 > g(k) > 2k
√
b33B33|B|. Since g(k) < 0 for k ∈ (k1, k2), we can further obtain5

∆fk = g2(k)− 4k2b33B33|B| < 0, thus fk(t) > 0 for t > 0. □6

The conclusion of Theorem 3.1 follows from Lemma 3.3, Lemma 3.4 and Lemma 3.7.7

4. Pointwise estimates on Green function8

In this section, we establish the pointwise estimates of problem (1.1)-(1.2) under conditions (2.9) and (2.10).9

Recall that λ = a0 + a1ξ + a2ξ
2 + O(ξ3) near ξ = 0 as denoted in Lemma 3.3. Denote aim (m = 0, 1) as the10

coefficient of the m-th term in the approximate expressions of λi(ξ) (i = 1, 2, 3) near ξ = 0.11

Theorem 4.1. For any given nonnegative α, assume that U0 ∈ L1(R) ∩ Cα(R) with compact support and B =12

P−1FP satisfies (2.9) and (2.10). Then for any positive integer N , the solution U(x, t) to (1.1)−(1.2) satisfies the13

following estimate for any (x, t) ∈ R× R+14

|DαU(x, t)| ≤ Mt−
α+1
2

[
BN (x, t) + e−ϵt

3∑
i=1

BN (x+ tImai1, t)

]
∥U0(x)∥L1(R), (4.1)

where BN (x, t) = (1 + x2

1+t )
−N , ϵ = 1

2min{a10, a20, a30}, M depends only on α, N and the support of U0(x).15

Theorem 4.1 describes the decay rates as well as the directions of decay of the solution. (4.1) show that the16

decay rates of the solution is t−
1
2 . Moreover, along any direction except x ̸= 0, tImai1 (i = 1, 2, 3), the solution17

decays very fast.18

The method of proving Theorem 4.1 is based on a delicate analysis for the Fourier transform of the Green function

of (1.1). In the sequel, we use f̂(ξ) to denote the Fourier transform of f(x) and f̌(ξ) to denote the inverse Fourier

transform of f(x), that is,

f̂(ξ) =
1√
2π

∫ ∞

−∞
e−ixξf(x)dx, f̌(x) =

1√
2π

∫ ∞

−∞
eixξf(ξ)dξ.

Here the notation “i” denotes the imaginary unit satisfying i2 = −1.19

Consider system (1.1) with initial data20

U0(x) = (u1(x, 0), u2(x, 0), u3(x, 0))
⊤ = δ(x)I, (4.2)

12
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where I is the identity matrix and δ(x) is the Dirac function. The solution to (1.1) and (4.2), denoted as G(x, t), is1

called the Green function of Cauchy problem (1.1) and (1.2). Taking Fourier transform with respect to x to (1.1)2

and (4.2), we get3

∂Ĝ

∂t
(ξ, t) = −(F + iξA)Ĝ(ξ, t), Ĝ(ξ, 0) = I. (4.3)

Since P−1(F + iξA)P = B + iξΛ, λi(ξ) (i = 1, 2, 3) are also the eigenvalues of F + iξA.4

As is well known, the decay of the solution is mainly related to the properties of Ĝ(ξ, t) near ξ = 0 in the5

frequency space. By studying the decay property for the Fourier transform of the Green function, we can obtain6

the pointwise estimates (4.1). Exactly, we find three directions out of which the solution decays of any polynomial7

order, which shows the hyperbolic property of the problem. The proof of Theorem 4.1 is similar to Theorem 3.1 of8

Section 3 in [14], so we will not state it here for brevity.9

5. Critical Cases10

Critical case implies that at least one “<” in (2.9) and (2.10) is replaced by “=”. According to Lemma 3.4,11

bii > 0 (i = 1, 2, 3) if and only if Reλi(ξ) > 0 (i = 1, 2, 3) near ξ = ∞, hence bii = 0 (i = 1, 2, 3) are not critical12

cases. First, let us give some examples to explain the complexity of the critical situation of conditions (2.9) and13

(2.10).14

Example 5.1. Consider system (2.4) with

Λ =


0 0 0

0 1 0

0 0 3

 , B =


1 m 3

1 2 2

1 3 3

 .

If m = 1, we have B11 = B22 = 0. When ξ = 1
3 , the characteristic polynomial of B + iξΛ is

(λ− i)

(
λ2 −

(
i

3
+ 6

)
λ− 5i

3
+ 1

)
= 0,

which has a pure imaginary roots λ = i.15

If m = 3
2 , we have B11 = B22 = 0 and

√
|B| =

3∑
i=1

√
biiBii =

√
3
2 . When ξ =

√
3
6 , we can similarly verify that16

λ =
√
3
2 i is an eigenvalue of B + iξΛ.17

Remark 5.1. Example 5.1 shows that when B is asymmetric, conditions18

bii > 0, Bii > 0, Bjj = Bkk = 0, i, j, k = 1, 2, 3, i ̸= j ̸= k ̸= i, |B| ≥ 0 (5.1)

and (2.13) do not imply that the characteristic polynomial of B+ iξΛ has no pure imaginary solution. Hence (2.13)19

and (5.1) do not imply that the real parts of λ1(ξ), λ2(ξ) and λ3(ξ) are all positive for any ξ ∈ R \ {0}.20

Example 5.2. Consider system (2.4) with

Λ =


3 0 0

0 1 0

0 0 2

 , B =


1 48 0

0 2 1

1 0 3

 .

13
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By direct calculation, we have
√
|B| =

3∑
i=1

√
biiBii = 3

√
6. The characteristic polynomial of B + iξΛ is1

λ3 − 6λ2 + (11 + 2ξi + ξ2)λ− (4ξi + 2ξ2)− 54 = 0. (5.2)

We can verify that when ξ =
√
3 (or −

√
3), λ = 2

√
3i (or − 2

√
3i) is one of its roots.2

Set λ = a0 + a1ξ + a2ξ
2 +O(ξ3) near ξ = 0 and substitute it into (3.1), then we have3 

a3
0 −

3∑
i=1

biia
2
0 +

3∑
i=1

Biia0 − |B| = 0,

3a2
0a1 −

3∑
i=1

(a2
0µii + 2a0a1bii − a1Bii +Biiµii) + a0

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(µj + µk)i = 0,

3(a0a
2
1 + a2

0a2)−
3∑

i=1

((2a0a2 + a2
1)bii + 2a0a1µii− a2Bii) +

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

(a1bii(µj + µk)i + (bii − a0)µjµk) = 0,

a3
1 + 6a0a1a2 −

3∑
i=1

(2a1a2bii + (a2
1 + 2a0a2)µii) +

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

(a2bii(µj + µk)i− a1µjµk) + µ1µ2µ3i = 0.

(5.3)

Example 5.3. Consider system (2.4) with

Λ =


−22 0 0

0 0 0

0 0 5

 , B =


1 1 0

0 1 −1

5 4 1

 .

By direct calculation, we have |B| = 0. Plugging it into (5.3)1 yields a0 = 0 or a0 = 3±
√
19i

2 . When a0 ̸= 0, we have4

Rea0 = 3
2 > 0. When a0 = 0, by using of (5.3)2,3, we have a1 = −15i, a2 = − 55

7 < 0. Thus λ = − 55
7 ξ2−15ξi+O(ξ3)5

near ξ = 0, the principal part is − 55
7 ξ2, which is not strictly dissipative.6

Nevertheless, we have7

Proposition 5.1. (i) If B = P−1FP satisfies8

bii > 0, i = 1, 2, 3, (5.4)
9

for some fixed i, Bii = 0 and Bjj > 0 for j ̸= i, (5.5)
10

0 <
√

|B| ≤
√
b11B11 +

√
b22B22 +

√
b33B33, (5.6)

then (1.1) is strictly dissipative.11

(ii) If B = P−1FP satisfies (5.4) and12

Bii = 0, i = 1, 2, 3, |B| = 0, (5.7)

then (1.1) is strictly dissipative.13

Proof. Since bii > 0 (i = 1, 2, 3), Lemma 3.4 implies that Reλi(ξ) > 0 (i = 1, 2, 3) near ξ = ∞.14

(i) If B satisfies (5.5) and (5.6), we assume B11 = 0, B22 > 0 and B33 > 0 since other cases can be similarly15

discussed. Then we have
3∑

i=1

bii > 0,
3∑

i=1

Bii > 0 and |B| > 0. By Lemma 3.3, (5.5) indicates that the real parts of16

λ1(ξ), λ2(ξ) and λ3(ξ) are all positive near ξ = 0.17

14
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In addition, we can show that B + iξΛ has no pure imaginary eigenvalue for ξ ∈ R \ {0} by similar discussion as

in the proof of Lemma 3.7. Denote fk(t), g(k), h1 and h2 as in Lemma 3.7. Since B11 = 0, we have

fk(t) = b33k
2t2 + g(k)t+ |B|B33, h1 = g(k) + 2k

√
b33B33|B|, h2 = g(k)− 2k

√
b33B33|B|,

where g(k) = b11B22k
2 + (b22B22 − b33B33 − |B|)k. Since B satisfies (5.5) and (5.6), we have the same conclusions1

as Lemma 3.5 and Lemma 3.6. We still assume that (3.9) and (3.12) hold, which can be written as2 √
b22B22 ≥ |

√
b33B33 −

√
|B||, (5.8)√

b33B33 +
√
|B| ≥

√
b22B22. (5.9)

Case 1: When k = 0, we have f0(t) = |B|B33 > 0 for any t > 0.3

Case 2: When k ̸= 0, we have ∆g ≜ (b22B22 − b33B33 − |B|)2 ≥ 0.4

(1) If ∆g = 0, we have fk(t) > 0 for any t > 0.5

(2) If ∆g > 0 and b22B22 − b33B33 − |B| < 0, g(k) has two real roots 0 = k1 < k2. Thus for any k ∈6

(−∞, 0]
∪
[k2,+∞), we have g(k) ≥ 0, and then fk(t) > 0 for t > 0. For k ∈ (0, k2), we have g(k) < 0. By using of7

(5.8), we can get8

b22B22 − b33B33 − |B|+ 2
√

b33B33|B| ≥ 0,

then we have h1(k) > 0 for k > 0. We can further get △fk = g2(k)− 4k2b33B33|B| < 0, thus fk(t) > 0 for t > 0.9

If ∆g > 0 and b22B22 − b33B33 − |B| > 0, g(k) has two roots k1 < k2 = 0. Thus for k ∈ (−∞, k1]
∪
[0,+∞), we10

have g(k) ≥ 0, and then fk(t) > 0 for t > 0. For k ∈ (k1, 0), we have g(k) < 0. (5.9) can be written as11

−b22B22 + b33B33 + |B|+ 2
√
b33B33|B| ≥ 0,

then we have h2(k) > 0 for k < 0. We can further get △fk = g2(k)− 4k2b33B33|B| < 0, thus fk(t) > 0 for t > 0.12

To sum up, we obtain that the real parts of λ1(ξ), λ2(ξ) and λ3(ξ) are all positive for any ξ ∈ R \ {0}.13

(ii) If B satisfies (5.4) and (5.7), we show that B + iξΛ has no pure imaginary solution for any ξ ∈ R \ {0}. In14

fact, plugging (5.7) into (3.15) and (3.16), we obtain15 
3∏

i=1

(a(ξ)− µiξ) = 0,

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(a(ξ)− µjξ)(a(ξ)− µkξ) = 0.
(5.10)

By using of (5.10)1 and µi ̸= µj (i ̸= j), we obtain that for any fixed ξ, only one of the three equalities a(ξ)−µiξ =16

0 (i = 1, 2, 3) holds. Suppose that a(ξ)− µ1ξ = 0 and a(ξ)− µ2ξ ̸= 0, a(ξ)− µ3ξ ̸= 0, by using of (5.10)2, we have17

(a(ξ)− µ2ξ)(a(ξ)− µ3ξ)b11 = 0, which is impossible since b11 > 0.18

Next we claim that Reλi(ξ) > 0 (i = 1, 2, 3) near ξ = 0. Denote α = µ3 − µ2 ̸= 0, β = µ2 − µ1 ̸= 0. Note that19

α ̸= −β since µ1 ̸= µ3. Plugging (5.7) into (5.3)1 yields a20(a0−
3∑

i=1

bii) = 0. When a0 ̸= 0, we have a0 =
3∑

i=1

bii > 0.20

When a0 = 0, plug it and (5.7) into (5.3)2,3,4, then we have21 

3∑
i=1

biia
2
1 −

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(µj + µk)a1i−
3∑

i,j,k=1

i ̸=j≠k ̸=i

biiµjµk = 0,

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(2a1i + (µj + µk))a2 + (a1i + µ1)(a1i + µ2)(a1i + µ3) = 0.

(5.11)
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It is easy to check that (5.11)1 has two roots1

a1 =

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(µj + µk)±
√

∆(α, β)

2
3∑

i=1

bii

i, (5.12)

where ∆(α, β) = (b11+ b22)
2α2+2(b222+ b22b33+ b11b22− b11b33)αβ+(b22+ b33)

2β2 is a quadratic form with respect

to α and β. Denote r = b11 + b22 + b33, the matrix of ∆(α, β) can be written as

D =

 (b11 + b22)
2 b22r − b11b33

b22r − b11b33 (b22 + b33)
2

 ,

which is obviously positive definite. Hence, (5.12) implies that a1 is a pure imaginary number. Plugging (5.12) into2

(5.11)2 yields3

±
√
∆(α, β)a2 =

1

8r3

(
(b11 + b22)α− (b22 + b33)β ±

√
∆(α, β)

)
·
(
(b11 + b22)α+ (b22 + b33)β + 2b11β ±

√
∆(α, β)

)
·
(
(b11 + b22)α+ (b22 + b33)β + 2b33α∓

√
∆(α, β)

)
. (5.13)

Denote x = α
β (x ̸= 0,−1), then ∆(α, β) becomes4

∆(x) = β2

(
(b11 + b22)

2x2 + 2(b22r − b11b33)x+ (b22 + b33)
2

)
. (5.14)

We consider the case of β > 0 since β < 0 can be similarly discussed. By using of (5.14), (5.13) becomes5

Q±(x) ≜ ±8r3
√
∆(x)a2 = 2β2[q1(x)± q2(x)], (5.15)

where6

q1(x) = b33(b11 + b22)
2x3 + b33((b11 + 2b22)r − 3b11b33)x

2

−b11((b22 + 2b33)r − 3b11b33)x− b11(b22 + b33)
2, (5.16)

q2(x) =

(
b33(b11 + b22)x

2 + 2b11b33x+ b11(b22 + b33)

)√
∆(x). (5.17)

By direct calculations, we have b211b
2
33 − b11b33(b11 + b22)(b22 + b33) = −b11b22b33r < 0. It is easy to verify that7

q2(x) > 0 for any x ∈ R.8

By some tedious but direct calculations, we have9

q21(x)− q22(x) = −4b11b22b33rx
2(x2 − x+ 1) < 0. (5.18)

Then we have −q2(x) < q1(x) < q2(x). By observing of (5.15), we have Q+(x) > 0 and Q−(x) < 0.10

To sum up, we have a2 > 0. Thus we have Reλi(ξ) > 0 (i = 1, 2, 3) near ξ = 0. This completes the proof of11

Proposition 5.1. □12
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