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1 Introduction

The subject of perfect fractional derivatives is a long-standing topic that is still being widely

researched. Fractional calculus has grown in popularity and relevance as a result of its widespread

use in engineering sciences, economics, physics, quantum mechanics, and biology. The common

applications in several domains have inadvertently contributed to the theoretical study of fractional

derivatives. As a result, we will look at the sequential fractional derivatives listed sequentially below.

Miller and Ross introduced the concept of this derivative in [1], and it is widely recognized

as a generalized expression. Since sequential fractional derivatives and non-sequential fractional
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derivatives are closely related ([2, 3]), researchers have focused on finding solutions to sequential

fractional differential equations with various initial and boundary value conditions [4–12]. We will

discuss some of their works here.

In [6], the authors considered the existence of minimal and maximal solutions and uniqueness of

solution of the initial value problem for fractional differential equation involving Riemann-Liouville

sequential fractional derivative, using the method of upper and lower solutions and its associated

monotone iterative method.
(
D2α

0+y
)
(x) = f

(
x, y(x),Dα

0+y(x)
)
, x ∈ (0, T ],

x1−αy(x)|x=0 = y0, x
1−α(Dα

0+y)(x)|x=0 = y1,

where 0 < T < +∞ and f ∈ C([0, T ]× R× R).

Zhang and Su[10] obtained the existence and uniqueness results for a periodic boundary value

problem of nonlinear sequential fractional differential equations by the method of upper and lower

solutions, together with the monotone iterative technique. D2αx(t) = f
(
t, x(t),Dαx(t)

)
, t ∈ (0, 1], 1 < α ≤ 1,

x(0) = x(1),Dαx(0) = Dαx(1),

where f(t, x, y) is a continuous E-value function on [0, 1]×E×E, Dα is the conformable fractional

derivative of order α,and D2α = DαDα is the conformable sequential fractional derivative.

As for sequential fractional differential equations associated with boundary value conditions,

we refer the reader to a series of papers[13–29]. For example, in [14], the authors are concerned with

the existence and uniqueness of solutions for a coupled system of Caputo-type sequential fractional

differential equations supplemented with nonlocal Riemann-Liouville integral boundary conditions

via Leray-Schauder’s alternative and Banach’s contraction principle. (CDq + kCDq−1)x(t) = f
(
t, x(t), y(t)

)
, t ∈ [0, 1], 2 < q ≤ 3, k > 0,

(CDp + kCDp−1)y(t) = g
(
t, x(t), y(t)

)
, t ∈ [0, 1], 2 < p ≤ 3, k > 0,

supplemented with coupled nonlocal integral boundary conditions x(0) = 0, x′(0) = 0, x(ζ) = a
∫ η
0

(η−s)β−1

Γ(β) x(s)ds, β > 0, 0 < η < ζ < 1,

y(0) = 0, y′(0) = 0, y(z) = b
∫ θ
0

(θ−s)γ−1

Γ(γ) y(s)ds, γ > 0, 0 < θ < z < 1,

where CDq, CDp denote the Caputo fractional derivatives of order q and p respectively, f, g :

[0, 1]× R× R → R are given continuous functions, and a, b are real constants.
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Ahmad and Ntouyas[18] studied a nonlinear three-point boundary value problem of sequential

fractional differential equations of order α with 1 < α ≤ 2. CDα(D + λ)x(t) = f
(
t, x(t)

)
, 0 < t < 1,

x(0) = 0, x′(0) = 0, x(1) = βx(η), 0 < η < 1,

where CDα is the Caputo fractional derivative, D is the ordinary derivative, f : [0, 1] × R → R, λ

is a positive real number and β is a real number such that β ̸= λ+e−λ−1
λη+e−λη−1

.

Salem and Almaghamsi[29] showed the existence of a solution for the boundary value problem

by using the coincidence degree theory due to Mawhin[30]. CDα(D + λ)x(t) = g
(
t, x(t), x′(t),CDα−1x(t)

)
+ e(t), t ∈ [0, 1],

x(0) = 0, x′(0) = 0, x(1) = βx(η), 0 < η < 1,

where CDα represents the Caputo derivative of fractional order 1 < α ≤ 2, while D denotes the

first derivative, g : [0, 1] × R3 → R is a function verifying with the Carathéodory conditions,

e(t) ∈ L1[0, 1], λ ∈ R+ and β ∈ R such that β = λ+e−λ−1
λη+e−λη−1

.

Recently, much interest[31–35] has developed related to the existence of solutions for fractional

differential equations when subjected to functional boundary conditions. The valuable point is that

the boundary value conditions can generalize recent work on multi-point and integral boundary

value conditions. [33] discussed the existence of solutions for resonant functional problems involving

both left Riemann-Liouville and right Caputo-type fractional derivatives, relying on the coincidence

degree theory due to Mawhin. −CDα
1−D

β
0+
u(t) + f(t, u(t), Dβ

0+
u(t), Dβ+1

0+
u(t)) = 0, t ∈ (0, 1),

Dβ−1
0+

u(0) = 0, I2−β
0+

u(0) = 0, T1(u) = 0, T2(u) = 0,

where f ∈ C([0, 1] × R3,R), 1 < α, β ≤ 2, such that α + β > 3, T1, T2 are continuous linear

functionals with the resonance condition: T1(t
β+1)T2(t

β) = T1(t
β)T2(t

β+1).

To the best of our knowledge, the problem of sequential operators of high order with func-

tional boundary value conditions has rarely been explored, and based on this perspective and the

motivation of the above papers, we establish the existence of solutions for the following nonlinear

sequential fractional differential equation subject to functional boundary value conditions.
(C
Dα+1

0+
+

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+

)
u(t) = f

(
t, u(t), u′(t), . . . , u(n)(t)

)
, t ∈ [0, 1],

u(0) = u′(0) = · · · = u(n−1)(0) = 0, B(u) = 0.

(1.1)
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where CDα
0+ is the Caputo fractional derivative, n − 1 < α ≤ n, Ci+1

n is the usual notation for

the binomial coefficients, µ is a positive real number, and B : Cn[0, 1] → R is a continuous linear

functional.

A boundary value problem is said to be at resonance if the corresponding homogeneous

boundary value problem has a non-trivial solution, which means that the linear operator Lu =(C
Dα+1

0+
+

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+

)
u corresponding to (1.1) has nontrivial solutions(more details can

be found in Lemma 3.4 below). So, the resonance condition: B(Φ(t)) = 0(Φ(t) = 1− e−µt
n−1∑
i=0

(µt)i

i!

will be obtained. We will always suppose f : [0, 1]× Rn+1 → R satisfies the following conditions:

(1) f(·, u) is measurable for each fixed u ∈ Rn+1, f(t, ·) is continuous for a.e.,t ∈ [0, 1].

(2) sup{|f(t, u)| : u ∈ D0} < +∞, for any compact set D0 ∈ Rn+1.

The present study is novel in the given configuration and enriches the literature on boundary

value problems of sequential fractional differential equations, which has a high degree of generality.

It includes the following features: we analyze the functional boundary conditions and treat the

details in the paper with various innovations, like the design of the projection operator Q, in addition

to improving the order of the sequential derivatives. We can attempt to locate the resonance solution

using different approaches in the future, such as the fixed point theorem, monotonic iteration

techniques, etc., in addition to the methods described in this paper. Of course, one can also

investigate the characteristics of the solution.

This paper is structured as follows: the next part covers some introductions and fundamental

ideas related to linear operators, the coincidence degree continuation theorem, and fractional cal-

culus. In Section 3, we discusses two types of problems. Subsection 3.1, by means of the Banach

fixed point theorem, discusses the non-resonant case and yields solvability results of the problem.

Subsection 3.2 discusses the existence of solution in the resonance sense by Mawhin’s coincidence

theory’s extension theory. A numerical example is provided in section four to demonstrate our key

theorems.
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2 Preliminaries

Definition 2.1 (see [1, 36, 37]) The Riemann-Liouville fractional integrals of order α > 0 of a

function y ∈ L1(0, 1) is given by

Iαa+y(t) =
1

Γ(α)

∫ t

a
(t− s)α−1y(s)ds,

where the right side is pointwise defined on (a,+∞).

Definition 2.2 (see [1, 36, 37])The Caputo fractional derivatives of order α > 0 of a function

y ∈ ACn[a, b] is given by

CDα
a+y(t) =

1

Γ(n− α)

∫ t

a
(t− s)n−α−1y(n)(s)ds,

where n = [α] + 1, [α] denotes the integer part of number α, and the right side is pointwise defined

on (a,+∞).

Lemma 2.3 (see [1, 36, 37]) Let α > 0. If u(t) ∈ ACn[a, b] or u(t) ∈ Cn[a, b], then the fractional

differential equation cDα
a+u(t) = 0 (or cDα

b−
u(t) = 0) has solution

u(t) = c0 + c1(t− a) + c2(t− a)2 + . . .+ cn−1(t− a)n−1,

where ci =
u(i)(a)

i!
∈ R, i = 0, 1, . . . , n− 1, and n = [α] + 1.

Lemma 2.4 (see [1, 36, 37])

(1) Let α > 0; If u(t) ∈ ACn[a, b] or u(t) ∈ Cn[a, b], then one has

Iαa+
cDα

0+u(t) = u(t)− c0 − c1(t− a)− c2(t− a)2 − . . .− cn−1(t− a)n−1,

where ci =
u(i)(a)

i!
∈ R, i = 0, 1, . . . , n− 1, and n = [α] + 1;

(2) The equality cDβ
0+
Iβ
0+
y = y holds for every β > 0 and y ∈ L1[0, 1].

Definition 2.5 ([30, 38]) Let X, Z be real Banach spaces, L : domL ⊂ X → Z be a linear

operator. X is said to be the Fredholm operator of index zero provided that:

(i) ImL is a closed subset of Y ;

(ii) dim KerL = codim ImL < +∞.
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Let P : X → X, Q : Z → Z are continuous projectors such that ImP = KerL, KerQ = ImL,

X = KerL⊕KerP and Z = ImL⊕ ImQ. It follows that L|domL∩KerP : domL ∩KerP → ImL is

reversible. We denote the inverse of the mapping by KP (generalized inverse operator of L). If Ω

is an open bounded subset of X such that domL ∩ Ω ̸= ∅, the mapping N : X → Z will be called

L− compact on Ω, if QN(Ω) and KP (I −Q)N : Ω → X are continuous and compact.

Theorem 2.6 (see[30, 38] Mawhin continuation theorem ) Let L : domL ⊂ X → Z be a Fredholm

operator of index zero and N : X → Z is L-compact on Ω. Assume that the following conditions

are satisfied:

(i) Lu ̸= λNu for every (u, λ) ∈ [(domL \KerL) ∩ ∂Ω]× (0, 1);

(ii) Nu /∈ ImL for every u ∈ KerL ∩ ∂Ω;

(iii) deg(QN |KerL,Ω ∩ KerL, 0) ̸= 0, where Q : Z → Z is a continuous projection such that

ImL = KerQ.

Then the equation Lu = Nu has at least one solution in domL ∩ Ω.

Take X = Cn[0, 1] with the norm ∥u∥ = max
{
∥u∥∞, ∥u′∥∞, . . . , ∥u(n)∥∞

}
, where ∥u∥∞ =

max
t∈[0,1]

|u(t)|.

Let Y = L1[0, 1] be endowed with the norm ∥y∥1 =

∫ 1

0
|y(t)|dt. Obviously, (X, ∥ · ∥) and

(Y, ∥ · ∥1) are Banach spaces.

3 Main results

We will discuss two types of solutions to (1.1), i.e., one for the non-resonance case and the

other for the resonance case.

Define the operators L : domL ⊂ X → Y,N : X → Y as follows:

Lu =
(C
Dα+1

0+
+

n−1∑
i=0

Ci+1
n µi+1CDα−i

0+

)
u(t), Nu = f

(
t, u(t), u′(t), . . . , u(n)(t)

)
,

where domL = {u ∈ X :C Dα+1−i
0+

u ∈ Y, i = 0, 1, . . . , n, u(0) = u′(0) = · · · = u(n−1)(0) = 0, B(u) =

0}. So the problem (1.1) becomes Lu = Nu.
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3.1 Non-resonance case

If B(Φ(t)) ̸= 0 holds, then KerL = {0}. It is so-called non-resonance case. As to this case, the

problem (1.1) can be transformed into an operator equation.

Lemma 3.1 If B(Φ(t)) ̸= 0 holds, then the boundary value problem (1.1) has a unique solution if

and only if the following operator T : X → X has a unique fixed point, where

T (u)(t) =
1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+
f(s, u(s), u′(s), . . . , u(n)(s))ds

−
B
( 1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+
f(s, u(s), u′(s), . . . , u(n)(s))ds

)
B(Φ(t))

Φ(t).

(3.1)

Proof. If u is a solution to Tu = u, we get

(C
Dα+1

0+
+

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+

)
u(t) = f

(
t, u(t), u′(t), . . . , u(n)(t)

)
.

Considering u ∈ Cn[0, 1] and Φ(t) = 1− e−µt
n−1∑
i=0

(µt)i

i!
, we have

u(0) = u′(0) = · · · = u(n−1)(0) = 0. Based on the linearly of B and (3.1), we have

B(u) =B
( 1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+
f(s, u(s), u′(s), . . . , u(n)(s))ds

)

−
B
( 1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+
f(s, u(s), u′(s), . . . , u(n)(s))ds

)
B(Φ(t))

B(Φ(t))

= 0.

So, we have u, which is a solution to BVP(1.1). If u is a solution to BVP(1.1), then

T (u)(t) =
1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+
f(s, u(s), u′(s), . . . , u(n)(s))ds

−
B
( 1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+
f(s, u(s), u′(s), . . . , u(n)(s))ds

)
B(Φ(t))

Φ(t)

=
1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+
(CDα+1

0+
+

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+
)u(s))ds

−
B
( 1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+
(CDα+1

0+
+

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+
)u(s))ds

)
B(Φ(t))

Φ(t)

=u(t)− u(n)(0)

µn
Φ(t) +

u(n)(0)

µn
Φ(t) = u(t).



8

From the above two arguments, we get that BVP(1.1) has a unique solution in X if and only if the

operator equation Tu = u has a unique solution in X. �

By making use of lemma 3.1, we can obtain the following existence theorem for BVP(1.1) at

non-resonance.

Theorem 3.2 Let f : [0, 1]×Rn+1 → R be a Carathéodory function. Assume B(Φ(t)) ̸= 0 and the

following conditions hold:

(C1):

k∑
i=0

Ci
k|µ|

k−ie−µt

Γ(α− i+ 2)
+

B(tα+1)

Γ(α+ 2)|B(Φ(t))|
max{1 + n2kµn+k−1, 1 + n2kµk} < 1.

(C2): For almost every t ∈ [0, 1], then, ∀(u1, u2, . . . , un+1), (v1, v2, . . . , vn+1) ∈ Rn+1,

|f(t, u1, u2, . . . , un+1)− f(t, v1, v2, . . . , vn+1)| ≤ max{|u1 − v1|, |u2 − v2|, . . . , |un+1 − vn+1|}.

(C3): If each u1, u2 ∈ X satisfy |u1(t)| ≤ |u2(t)|,∀t ∈ [0, 1], then |B(u1)| ≤ |B(u2)|.

Then BVP(1.1) has a unique solution in X.

Proof. We shall prove that Tu = u has a unique solution in X. By Leibniz product rule and

derivative forms of each order of Φ(t),

T (k)(u)(t) =

k∑
i=0

Ci
k(e

−µt)(k−i)In−i
0+

(eµtIα−n+1
0+

f(t, u(t), u′(t), . . . , u(n)(t)))

−
B
( 1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)(Iα−n+1

0+
f(s, u(s), u′(s), . . . , u(n)(s))ds

)
B(Φ(t))

Φ(k)(t),

where k = 0, 1, . . . , n.

For each u, v ∈ X, by making use of (C2)− (C3) and the linearly of B, we have

|T (k)(u)(t)− T (k)(v)(t)|

=|
k∑

i=0

Ci
k(e

−µt)(k−i)In−i
0+

(eµtIα−n+1
0+

(
f(t, u(t), u′(t), . . . , u(n)(t))− f(t, v(t), v′(t), . . . , v(n)(t)))

)

−
B
(
e−µtIn0+e

µt
(
Iα−n+1
0+

(f(t, u(t), u′(t), . . . , u(n)(t))− f(t, v(t), v′(t), . . . , v(n)(t)))
))

B(Φ(t))
Φ(k)(t)|

≤
k∑

i=0

Ci
k|µ|

k−ie−µt

Γ(α− i+ 2)
∥u− v∥+ B(tα+1)|Φ(k)(t)|

Γ(α+ 2)|B(Φ(t))|
∥u− v∥

≤∥u− v∥
( k∑

i=0

Ci
k|µ|

k−ie−µt

Γ(α− i+ 2)
+

B(tα+1)

Γ(α+ 2)|B(Φ(t))|
max{1 + n2kµn+k−1, 1 + n2kµk}

)
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Since

|Φ(k)(t)| ≤

 1 + n2kµn+k−1, µ > 1,

1 + n2kµk, µ ≤ 1, k = 0, 1, 2, . . . , n.

Considering (C1), the above inequality implies that T is a contraction. By using Banach′s

contaction principle, Tu = u has a unique solution in X. From lemma 3.1, BVP(1.1) has a unique

solution in X.

3.2 Resonance case

In this part, noting that if B(Φ(t)) = 0 holds, then KerL = {cΦ(t) : c ∈ R}. It is so-called

resonance case. To obtain our main results, we will introduce the following conditions:

(H0) The functional B : X → R is linear continuous with the norm β, that is, |B(u)| ≤ β∥u∥. In

addition, B(e−µtIn0+
(
eµtIα−n+1

0+
1
)
) ̸= 0.

(H1) There exist nonnegative functions pi(t), q(t) ∈ Y such that

|f(t, u1, u2, . . . , un+1)| ≤
n+1∑
i=1

pi(t)|ui(t)|+ q(t), ∀(t, u1, u2, . . . , un+1) ∈ [0, 1]× Rn+1,

where if µ > 1, A(eµ · nµn−1 + 1)
n∑

i=0
∥pi+1∥1 < 1; If µ ≤ 1, A(eµ · n+ 1)

n∑
i=0

∥pi+1∥1 < 1;

A :=
1

Γ(α− n+ 2)
+

n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

1

Γ(α− k + i+ 2)
Ci
kµ

i.

(H2) There exists a constant M1 > 0 such that if |u(n)(t)| > M1, for t ∈ [0, 1], then

B
(
e−µtIn0+

(
eµtIα−n+1

0+
f(t, u(t), u′(t), . . . , u(n))

))
̸= 0.

(H3) There exists a constant a > 0 such that if |c| > a, then either

cB
(
e−µtIn0+

(
eµtIα−n+1

0+
N(cΦ(t))

))
> 0, (3.2)

or

cB
(
e−µtIn0+

(
eµtIα−n+1

0+
N(cΦ(t))

))
< 0. (3.3)

Theorem 3.3 Suppose that (H0)− (H3) are satisfied, then the functional boundary value problem

(1.1) has at least one solution.
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In order to prove Theorem 3.3, we next state our main lemmas.

Lemma 3.4 Assume that (H0) holds, then L : domL ⊂ X → Z is a Fredholm operator of index

zero. Moreover,

KerL = {cΦ(t) : c ∈ R}, dim KerL = 1. (3.4)

and

ImL =
{
y ∈ Y |B

(
e−µtIn0+

((
eµtIα−n+1

0+
y(t)

))
= 0

}
. (3.5)

Proof Let y ∈ ImL, then there exists u ∈ domL such that Lu = y, that is, CDα+1
0+

(
u(t) +

n−1∑
i=0

Ci+1
n µi+1Ii+1

0+

)
u(t) = y(t) , we can write its solution as

u(t) +

n−1∑
i=0

Ci+1
n µi+1Ii+1

0+
u(t) = Iα+1

0+
y(t) +

n∑
i=0

cit
i, (3.6)

where ci =
u(i)(0)

i!
, i = 0, 1, . . . , n. Now, differentiating (3.6), we obtain

u′(t) +
n−1∑
i=0

Ci+1
n µi+1Ii0+u(t) = Iα0+y(t) +

n∑
i=1

ciit
i−1. (3.7)

Next, deriving (3.7) n− 1 times, we hold

u(n)(t) +

n−1∑
i=0

Ci+1
n µi+1u(n−1−i)(t) = Iα−n+1

0+
y(t) + cnn!, (3.8)

which can alternatively be written as

(u(t)eµt)(n) = eµt(Iα−n+1
0+

y(t) + u(n)(0)). (3.9)

Integrating n times from 0 to t, we have

u(t) = e−µt
n−1∑
i=0

dit
i

i!
+

1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)Iα−n+1

0+
y(s)ds+ u(n)(0))e−µtIn0+e

µt,(3.10)

where di are arbitrary constants. Substituting the values of u(0) = u′(0) = · · · = u(n−1)(0) = 0 in

(3.10) yields the solution

u(t) =
u(n)(0)

µn
(1− e−µt

n−1∑
0

(µt)i

i!
) +

1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)Iα−n+1

0+
y(s)ds

=
u(n)(0)

µn
Φ(t) +

1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)Iα−n+1

0+
y(s)ds. (3.11)
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Considering resonance condition B(Φ(t)) = 0, we have B
(
e−µtIn0+

((
eµtIα−n+1

0+
y(t)

))
= 0. That

is,

ImL ⊆
{
y ∈ Y |B

(
e−µtIn0+

((
eµtIα−n+1

0+
y(t)

))
= 0}.

If y ∈
{
y ∈ Y |B

(
e−µtIn0+

((
eµtIα−n+1

0+
y(t)

))
= 0}, take

u(t) =
1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)Iα−n+1

0+
y(s)ds.

By a simple calculation, we get
(C
Dα+1

0+
+

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+

)
u(t) = y(t), u(0) = u′(0) = · · · =

u(n−1)(0) = 0, and B(u) = 0. That is, y ∈ ImL, i.e.,{
y ∈ Y |B

(
e−µtIn0+

((
eµtIα−n+1

0+
y(t)

))
= 0} ⊆ ImL.

Therefore, we obtain (3.5).

If u ∈ KerL, i.e., Lu(t) =
(C
Dα+1

0+
+

n−1∑
i=0

Ci+1
n µi+1 CDα−i

0+

)
u(t) = 0, and u(0) = u′(0) = · · · =

u(n−1)(0) = 0, we have u(t) = c(1− e−µt
n−1∑
i=0

(µt)i

i! ) := cΦ(t).

Based on the boundary condition B(u) = 0, one has B(u(t)) = cB(Φ(t)) = 0. So,

KerL = {cΦ(t) : c ∈ R}, dim KerL = 1,

i.e., (3.4) holds. �

Take a projector P : X → X and an operator Q : Y → Y as follows:

Pu(t) =
u(n)(0)

µn
Φ(t), Qy =

Γ(α− n+ 2)B
(
e−µtIn0+

(
eµtIα−n+1

0+
y
))

B
(
e−µtIn

0+

(
eµtIα−n+1

0+
1
)) .

We can easily check that Q2y = Qy, and Q : Y → Y is a linear projector. For y ∈ Y , we

have y = y − Qy + Qy,Qy ∈ ImQ, y − ImQ ∈ KerQ = ImL. So, we obtain Y = ImQ + ImL.

Let y0 ∈ ImQ means that y0 = c, c ∈ R. At the same time, by y0 ∈ ImL, y0 ≡ 0. Thus,

Y = ImQ⊕ ImL, and dimKerL = codimImL < +∞. Observing that ImL is a closed subspace of

Y ; L is a Fredholm operator of index zero. �

Noting that P is a continuous projector and KerP = {u ∈ X : u(n)(0) = 0}. For u ∈ X, set

u = u− Pu+ Pu, i.e.,X = KerL+KerP . It is easy to check that

P 2u(t) = P (Pu(t)) = P (
u(n)(0)

µn
Φ(t)) =

u(n)(0)

µn
Φ(n)(0)

µn
Φ(t) =

u(n)(0)

µn
Φ(t) = Pu(t), u ∈ X,
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since Φ(n)(t) = −eµtµn
n−1∑
i=0

Ci
n(−1)n−i

n−1∑
j=i

(µt)j−i

(j−i)! , and

Φ(n)(0) = −µn
n−1∑
i=0

Ci
n(−1)n−i = −µn(

n∑
i=0

Ci
n(−1)n−i − 1) = µn.

Take u0 ∈ KerL, i.e., u0 = cΦ(t), c ∈ R. If u0 ∈ KerP , then cΦ(n)(0) = cµn = 0, which implies

that c ≡ 0. Thus, X = KerL⊕KerP . �

Lemma 3.5 The mapping Kp : ImL→ domL ∩KerP can be defined by

Kpy(t) =
1

Γ(α− n+ 1)(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)

∫ s

0
(s− τ)α−ny(τ)dτds,

is the generalized inverse operator of L.

Proof For y ∈ ImL, we have B
(
e−µtIn0+

((
eµtIα−n+1

0+
y(t)

))
= 0, i.e., B(Kpy) = 0.

From the definition of Kp, by a simple calculation,

(Kpy)
(k)(t) =

k∑
i=0

Ci
k(−µ)ie−µtIn−k+i

0+
(eµtIα−n+1

0+
y)(t), 0 ≤ k ≤ n− 1, (3.12)

(Kpy)
(n)(t) = Iα−n+1

0+
y(t)−

n−1∑
k=0

Ck
nµ

n−k(Kpy)
(k)(t). (3.13)

Obviously, (Kpy)
(k)(0) = 0 and (Kpy)

(n)(0) = 0. Therefore, Kpy ∈ domL ∩KerP, y ∈ ImL.

Now, we will prove Kp is the inverse of L|domL∩KerP .

In fact, if y ∈ ImL, by Lemma 3.4, then

(LKpy)(t) =
(C
Dα+1

0+
+

n−1∑
i=0

Ci+1
n µi+1CDα−i

0+

)
(Kpy)(t) = y(t).

If u ∈ domL ∩KerP , u(i)(0) = 0, i = 0, 1, . . . , n, from (3.11), we have

(KpLu)(t) = e−µtIn0+e
µtIα−n+1

0+
Lu

= e−µtIn0+e
µtIα−n+1

0+

n∑
i=0

Ci
nµ

iIn−α
0+

dn−i+1u

dtn−i+1

= e−µtIn0+e
µt

n∑
i=0

Ci
nµ

iI10+u
(n−i+1)(t)

= e−µtIn0+

n∑
i=0

Ci
nµ

ieµtu(n−i)(t)

= e−µtIn0+(e
µtu)(n)(t) = u(t),

so, Kp = (L|domL∩KerP )
−1.
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Lemma 3.6 Assume (H0) hold, Ω ⊂ X is an open bounded set and domL ∩ Ω ̸= ∅.Then N is

L−compact on Ω.

Proof For convenience, denote v(t) := e−µtIn0+
(
eµtIα−n+1

0+
Nu).

We will prove the QN(Ω) is continuous and bounded.

It follows (H0) that QNu = CB(v(t)), where C := Γ(α−n+2)

B

(
e−µtIn

0+

(
eµtIα−n+1

0+
1
)) .

Since Ω ⊂ X is bounded, for u ∈ Ω. By the condition (2) on the function f , there exists a

constant M > 0 such that sup |f(t, u(t), u′(t), . . . , u(n)(t))| ≤ M, t ∈ [0, 1], u ∈ Ω. From formulas

(3.12) and (3.13), we obtain

v(k)(t) =
k∑

i=0

Ci
k(−µ)ie−µtIn−k+i

0+
(eµtIα−n+1

0+
Nu)(t), 0 ≤ k ≤ n− 1, and

v(n)(t) = Iα−n+1
0+

Nu(t)−
n−1∑
i=0

Ck
nµ

n−kv(k)(t).

Then

|v(k)(t)| ≤
k∑

i=0

Ci
kµ

i|Iα−k+i+1
0+

Nu|

≤
k∑

i=0

Ci
kµ

i 1

Γ(α− k + i+ 1)

∫ t

0
(t− s)α−k+i|Nu(s)|ds

≤
k∑

i=0

MCi
kµ

i

Γ(α− k + i+ 2)

≤ M

Γ(α− k + 2)

k∑
i=0

Ci
kµ

i =
M(1 + µ)k

Γ(α− k + 2)
< +∞,

|v(n)(t)| = |Iα−n+1
0+

Nu(t)−
n−1∑
k=0

Ck
nv

(k)(t)µn−k|

≤ |Iα−n+1
0+

Nu(t)|+
n−1∑
i=0

Ck
n|v(k)(t)|µn−k

≤ M

Γ(α− n+ 2)
+

(1 + µ)n − 1

Γ(α− k + 2)
(1 + µ)kM < +∞.

So, ∥v∥ < +∞. Then |QNu| ≤ |C|β∥v∥ < +∞, |(I − Q)Nu| < +∞, and ∥QNu∥1 < +∞,

i.e., QN(Ω) is bounded. Of course, by the above discussions, it is not difficult to verify that

Kp(I −Q)Nu : (Ω) is also bounded.

In view of (1) on the function f and the Lebesgue dominated convergence theorem, we can

easily show that that QN and Kp(I −Q)Nu : Ω → Y are continuous.
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Now, we will prove that Kp(I −Q)Nu : (Ω) is compact.

For the simplicity of the following mathematical formulas, it may be assumed that there is

a constant M ′ > 0 such that ∥(I − Q)Nu∥1 ≤ M ′. Again, using formulas (3.12) and (3.13), for

0 ≤ t1 < t2 ≤ 1, u ∈ Ω, we obtain

|Iα−n+1
0+

Nu(t2)− Iα−n+1
0+

Nu(t1)|

=
∣∣∣ 1

Γ(α− n+ 1)

∫ t2

0
(t2 − s)α−n(I −Q)Nu(s)ds− 1

Γ(α− n+ 1)

∫ t1

0
(t1 − s)α−n(I −Q)Nu(s)ds

∣∣∣
≤ M ′

Γ(α− n+ 1)

∣∣∣ ∫ t1

0

(
(t2 − s)α−n − (t1 − s)α−n

)
ds
∣∣∣+ M ′

Γ(α− n+ 1)

∣∣∣ ∫ t2

t1

(t2 − s)α−nds
∣∣∣

=
tα−n+1
2 − tα−n+1

1 + 2(t2 − t1)
α−n+1

Γ(α− n+ 2)
M ′,

|(Kp(I −Q)Nu)(k)(t2)− (Kp(I −Q)Nu)(k)(t1)|, 0 ≤ k ≤ n− 1,

=
∣∣∣ k∑
i=0

Ci
k(−µ)ie−µtIn−k+i

0+
(eµtIα−n+1

0+
(I −Q)Nu)

∣∣
t=t2

−
k∑

i=0

Ci
k(−µ)ie−µtIn−k+i

0+
(eµtIα−n+1

0+
(I −Q)Nu)

∣∣
t=t1

∣∣∣
=

k∑
i=0

Ci
kµ

i(e−µt1 − e−µt2)
∣∣∣In−k+i

0+
(eµtIα−n+1

0+
(I −Q)Nu)

∣∣
t=t2

∣∣∣
+

k∑
i=0

Ci
kµ

ie−µt1
∣∣∣In−k+i

0+
eµtIα−n+1

0+
(I −Q)Nu

∣∣
t=t2

− In−k+i
0+

eµtIα−n+1
0+

(I −Q)Nu
∣∣
t=t1

∣∣∣
≤

k∑
i=0

Ci
kµ

i|1− eµ(t2−t1)| M ′

Γ(α− k + i+ 2)
+

k∑
i=0

Ci
kµ

ie−µt1
∣∣∣ 1

Γ(n− k + i)

∫ t2

0
(t2 − s)n−k+i−1

eµsIα−n+1
0+

(I −Q)Nu(s)ds− 1

Γ(n− k + i)

∫ t1

0
(t1 − s)n−k+i−1eµsIα−n+1

0+
(I −Q)Nu(s)ds

∣∣∣
≤

k∑
i=0

Ci
kµ

i|1− eµ(t2−t1)| M ′

Γ(α− k + i+ 2)

+
(t2 − t1)

n−k+i + tn−k+i
2 − tn−k+i

1

Γ(n− k + i+ 1)

(1 + µ)kM ′

Γ(α− n+ 2)
+

(t2 − t1)
n−k+ieµ(t2−t1)

Γ(n− k + i+ 1)

(1 + µ)kM ′

Γ(α− n+ 2)
,
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and

|(Kp(I −Q)Nu)(n)(t2)− (Kp(I −Q)Nu)(n)(t1)|

= |Iα−n+1
0+

Nu(t2)− Iα−n+1
0+

Nu(t1) +

n−1∑
k=0

Ck
nµ

n−k[(Kp(I −Q)Nu)(k)(t2)− (Kp(I −Q)Nu)(k)(t1)]|

≤ |Iα−n+1
0+

Nu(t2)− Iα−n+1
0+

Nu(t1)|+
n−1∑
k=0

Ck
nµ

n−k|(Kp(I −Q)Nu)(k)(t2)− (Kp(I −Q)Nu)(k)(t1)|.

Since t, tα−n+1 and tn−k+i are uniformly continuous on [0, 1], we obtain that KP (I −Q)N(Ω)

is equi-continuous. By the Arzela-Ascoli theorem, KP (I − Q)N : (Ω) is compact. Thus, N is

L-compact.�

Lemma 3.7 The set Ω1 = {u ∈ domL \ KerL : Lu = λNu, λ ∈ [0, 1]} is bounded, if conditions

(H0)− (H2) are satisfied.

Proof For u ∈ Ω1, we have QNu = 0, i.e., B
(
e−µtIn0+

(
eµtIα−n+1

0+
f(u(t), u′(t), . . . , u(n)(t))

))
= 0.

By (H2), there exists a constant t0 ∈ [0, 1] such that |u(n)(t0)| ≤M1.

From boundary conditions u(0) = u′(0) = . . . = u(n−1)(0) = 0, we get u(i)(t) =

∫ t

0
u(i+1)(s)ds,

i = 0, 1, , . . . , n− 1, and

∥u∥∞ ≤ ∥u′∥∞ ≤ · · · ≤ ∥u(n)∥∞. (3.14)

By Lu = λNu, we hold

u(t) = cΦ(t) +
1

(n− 1)!

∫ t

0
(t− s)n−1e−µ(t−s)Iα−n+1

0+
λf(u(s), u′(s), . . . , u(n)(s))ds,

furthermore,

u(n)(t) = cΦ(n)(t) + Iα−n+1
0+

λNu(t)−
n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

Ci
k(−µ)ie−µtIn−k+i

0+
(eµtIα−n+1

0+
λNu)(t).

Let vλ(t) := e−µtIn0+
(
eµtIα−n+1

0+
λNu), then u(n)(t) = cΦ(n)(t) + v

(n)
λ (t).

In view of (3.12), (3.13) and |u(n)(t0)| ≤M1,

|v(n)(t)| = |Iα−n+1
0+

λNu(t)−
n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

Ci
k(−µ)ie−µtIn−k+i

0+
(eµtIα−n+1

0+
λNu)(t)|

≤ ∥Nu∥1
Γ(α− n+ 2)

+
n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

Ci
kµ

i ∥Nu∥1
Γ(α− k + i+ 2)

= A∥Nu∥1.
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And |c| ≤ |v(n)(t0)|+ |u(n)(t0)|
Φ(n)(t0)

≤ A∥Nu∥1 +M

(2n − 1)µne−µ
, where

A :=
1

Γ(α− n+ 2)
+

n−1∑
k=0

Ck
nµ

n−k
k∑

i=0
Ci
kµ

i 1

Γ(α− k + i+ 2)
,

since |Φ(n)(t0)| = e−µt0µn
n−1∑
i=0

Ci
n

n−1∑
j=i

(µt0)j−i

(j−i)! ≥ e−µµn
n−1∑
i=0

Ci
n = (2n − 1)µne−µ.

Therefore, |u(n)(t)| ≤ |c||Φ(n)(t)|+ |v(n)(t)| ≤ (A∥Nu∥1 +M1)e
µ
n−1∑
k=0

µk +A∥Nu∥1,

since

|Φ(n)(t)| =
∣∣∣− eµtµn

n−1∑
i=0

Ci
n(−1)n−i

n−1∑
j=i

(µt)j−i

(j − i)!

∣∣∣
≤ µn

n−1∑
i=0

Ci
n

n−1∑
j=i

(µt0)
j−i

(j − i)!

≤ µn
n−1∑
i=0

Ci
n

n−1∑
k=0

µk = (2n − 1)µn
n−1∑
k=0

µk.

From (H1) and (3.14), we know that ∥Nu∥1 =
∫ 1
0 |Nu(s)|ds ≤

n∑
i=0

∥pi+1∥1∥u(n)∥∞ + ∥q∥1.

At the same time, if µ > 1, then
n−1∑
k=0

µk ≤ nµn−1, and |u(n)(t)| ≤ (eµ · nµn−1 + 1)A∥Nu∥1 +

nµn−1eµM1, so, ∥u(n)∥ ≤ A(eµ · nµn−1 + 1)∥q∥1 + eµM1 · nµn−1

1−A(eµ · nµn−1 + 1)
n∑

i=0
∥pi+1∥1

.

Similarly, if µ ≤ 1, then
n−1∑
k=0

µk ≤ n, and ∥u(n)∥ ≤ A(eµ · n+ 1)∥q∥1 + eµM1 · n

1−A(eµ · n+ 1)
n∑

i=0
∥pi+1∥1

.

These, together with condition (H1), mean that Ω1 is bounded in X.

Lemma 3.8 The set Ω2 = {u ∈ KerL : Nu ∈ ImL} is bounded if (H3) hold.

Proof: Let uc ∈ Ω2, then uc(t) ≡ cΦ(t), c ∈ R and QNuc(t) = 0. By (H3), we have |c| ≤ a. Since

|Φ(t)| =
∣∣1− e−µt

n−1∑
i=0

(µt)i

i!

∣∣ ≤
 1 + nµn−1, µ > 1,

1 + n, µ ≤ 1,

|Φ(k)(t)| =
∣∣− e−µtµk

k∑
i=0

Ci
k(−1)k−i

n−1∑
j=i

(µt)j−i

(j − i)!

∣∣ ≤
 n2kµn+k−1, µ > 1,

n2kµk, µ ≤ 1, k = 1, 2, . . . , n− 1,

|Φ(n)(t)| =
∣∣− e−µtµn

n−1∑
i=0

Ci
n(−1)n−i

n−1∑
j=i

(µt)j−i

(j − i)!

∣∣ ≤
 n(2n − 1)µ2n−1, µ > 1,

n(2n − 1)µn, µ ≤ 1,
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Taking into account the finiteness of fixed variables n and µ, we hold that ∥uc∥ < +∞, i.e.,Ω2

is bounded.

Lemma 3.9 The set Ω3 = {u ∈ KerL : ρλJu + (1 − λ)QNu = 0, λ ∈ [0, 1]} is bounded if

conditions (H3) is satisfied, where J : KerL → ImQ is a homeomorphism with J(cΦ(t)) =
c

B
(
e−µtIn

0+

(
eµtIα−n+1

0+
1
)) , c ∈ R, where

ρ =

 1, if (3.2) holds;

−1, if (3.3) holds.
(3.15)

Proof: Suppose that u′ ∈ Ω3, we have u
′(t) = cΦ(t), c ∈ R and λJu′+ρ(1−λ)QNu′ = 0. If λ = 0,

we have QNu′ = 0. By (H5), one has |c| ≤ a, which follows from the proof of boundedness of Ω2

that ∥u′∥ < +∞. If λ = 1, then c = 0, i.e., u′ = 0. If λ ∈ (0, 1), taking |c| > a, we have

ρλc+ (1− λ)B
(
e−µtIn0+

(
eµtIα−n+1

0+
N(cΦ(t))

))
= 0.

Hence,

ρλc2 = −(1− λ)cB
(
e−µtIn0+

(
eµtIα−n+1

0+
N(cΦ(t))

))
.

According to the condition (H3), we can easily get the contradiction. So Ω3 is bounded.

Proof of Theorem 3.3 Let Ω be a bounded open subset of X such that {0} ∪
3∪

j=1
Ωj ⊂ Ω.

By Lemma 3.6, we know that N is L-compact on Ω. According to the Lemma 3.7 and Lemma 3.8,

we have :

(i) Lu ̸= λNu, for every
(
u, λ

)
∈ [(domL \KerL) ∩ ∂Ω]× (0, 1);

(ii) Nu /∈ ImL, for every u ∈ KerL ∩ ∂Ω;

At last, we will prove that (iii) of Theorem 2.6 is satisfied.

Let H(u, λ) = ρλJu+(1−λ)QNu. Noting that Lemma 3.9 and Ω3 ⊂ Ω, we have H(u, λ) ̸= 0

for every u ∈ ∂Ω ∩KerL. Thus, by the homotopic property of degree, we know that

deg(QN |KerL,Ω ∩KerL, 0) = deg
(
H(·, 0),Ω ∩KerL, 0

)
= deg

(
H(·, 1),Ω ∩KerL, 0

)
= deg

(
± J,Ω ∩KerL, 0

)
̸= 0.

The assumption (iii) of Theorem 2.6 is verified and the proof is completed.

Then by the Theorem 2.6, the functional boundary value problem (1.1) has at least one solution

in X. The proof of the Theorem 3.3 is also completed.
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4 Example

Now, we illustrate Theorem 3.3 by the following example. Consider the functional boundary

value problem  (CD
3
2

0+
+ 2CD

1
2

0+
)u(t) = f(t, u(t), u′(t)), t ∈ [0, 1],

u(0) = 0, B(u) = 2e2u(1)− (e2 − 1)u′(0) = 0,

where α = 1
2 ,µ = 2,Φ(t) = 1− e−2t, and f(t, u(t), u′(t)) = t− 1 + 1

50 sinu(t) +
1
50u

′(t).

Then the functional problem is at resonance with B(Φ(t)) = 2e2(1− e−2)− 2(e2 − 1) = 0. In

this case, KerL = {c(1− e−2t)|c ∈ R}, |B(u)| ≤ (3e2 + 1)∥u∥,

B(e−2tI10+(e
2tI

1
2

0+
1)) =

2

Γ(32)

∫ 1

0
t
1
2 e2tdt =

4√
π

∫ 1

0
t
1
2 e2tdt ≈ 4√

π
· 2.5123 ̸= 0.

p1(t) =
1
50 , p2(t) =

1
50 , q(t) = 1. It is easy to check that

A :=
1

Γ(α− n+ 2)
+

n−1∑
k=0

Ck
nµ

n−k
k∑

i=0

1

Γ(α− k + i+ 2)
Ci
kµ

i =
14

3
√
π
,

moreover, A(eµ · nµn−1 + 1)
n∑

i=0
∥pi+1∥1 = A(e2 + 1) 2

50 ≈ 0.8835 < 1.Conditions (H0) and (H1) are

satisfied.

TakeM1 = 52. If u′(t) > 52, then f(t, u(t), u′(t)) > −1− 1
50 +

M1
50 = 1

50 > 0, and if u′(t) < −52,

then f(t, u(t), u′(t)) < 1
50 − M1

50 = −51
50 < 0. Hence, if |u′(t)| > M = 52, then

B(e−2tI10+(e
2tI

1
2

0+
f(t, u(t), u′(t)))) =

2

Γ(12)

∫ 1

0
e2t

∫ t

0
(t− s)−

1
2 f(s, u(s), u′(s))dsdt ̸= 0.

Thus (H2) is satisfied.

Finally, take u ∈ KerL and u(t) = cΦ(t) = c(1− e−2t), one choose |c| > a = 189,

cB
(
e−2tI10+(e

2tI
1
2

0+
N
(
c(Φ(t))

)
)
)

=
2c

Γ(12)

∫ 1

0
e2t

∫ t

0
(t− s)−

1
2 f(s, cΦ(s), cΦ′(s))dsdt

=
2

Γ(12)

∫ 1

0
e2t

∫ t

0
(t− s)−

1
2 cf(s, cΦ(s), cΦ′(s))dsdt > 0,

since cf(s, cΦ(s), cΦ′(s)) = c(s− 1+ 1
50 sin(c(1− e−2s)) + 2c

50e
−2t) > −|c| − |c|

50 +
2c2

50e2
> 0, |c| > 189,

then condition (H3) is satisfied. It follows from Theorem 3.3 that there must be at least one solution

in X.
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5 Conclusion

This work examines a category of higher-order sequential operator problems with functional

boundary conditions. First, it is reasonable to regard sequential operators as a generic statement.

Second, we examine non-resonance and resonance issues for sequential operators of order n − 1 <

α ≤ n. These considerations are specific improvements and complements of non-resonant boundary

value problems (BVPs) of lower order or resonance problems, as found, for example, in the literature

[25, 29]. In [29], the authors studied a nonlinear three-point boundary value problem of sequential

fractional differential equations of order α with 1 < α ≤ 2 at the resonance case, but we explore the

resonant BVPs(1.1) that firstly can be lifted from the order 1 < α ≤ 2 of the fractional operator to

n− 1 < α ≤ n, and secondly the boundary condition B(u) = 0 can contain the original conditions

x(1) = βx(η). These mean that some similar results can be expanded.

In [25], the authors studied the existence of solutions to the nonlinear sequential fractional

differential equation at resonance with the order 0 < α ≤ 1. Again, we generalize both in terms of

the order of the operators and in terms of the boundary conditions. So, we study the resonance

problem for the order n − 1 < α ≤ n sequential operators with functional boundary conditions,

which gives a better generalization based on the above problems in terms of the choice of sequential

operators, the order of the differential operators, and the boundary value conditions.
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