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Abstract

This paper is concerned with the entire solution of the advective
reaction-diffusion equation with the bistable nonlinear reaction term on
funnel-shaped domains. We focus on the well-posedness and long-time
behavior of the entire solution. Because of the impact of advection, the
previous super and sub-solutions are no longer applicable, so we study
the existence of the entire solution behaving as a planar front by con-
structing appropriate super-solutions and sub-solutions. In addition,
we show the uniqueness and Lyapunov stability of the entire solution.
This is probably the first study of the advective reaction-diffusion on
funnel-shaped domains.
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1 Introduction

In this paper, we study the spatial dynamic properties of the following
equation {

ut = ∆u− a · ∇u+ f(u), (t, x) ∈ R× Ω,

ν · ∇u = 0, (t, x) ∈ R× ∂Ω.
(1.1)

Here u ∈ [0, 1] is bounded, ∆u is the diffusion term, ∇u is the advective term,
a is a constant which is called the diffusion coefficient. ν is the outward
∗Corresponding author (E-mail address: hanbangsheng@swjtu.edu.cn).
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Figure 1: The funnel-shaped domain Ω

unit normal on the boundary ∂Ω. x = (x1, y) ∈ RN , with y ∈ RN−1.
f ∈ C1,1([0, 1],R) is a bistable nonlinear reaction term satisfying

f(0) = f(θ) = f(1) = 0, f ′(0) < 0, f ′(θ) > 0, f ′(1) < 0,

f(u) < 0 in (0, θ), f(u) > 0 in (θ, 1),

∫ 1

0
f(s)ds > 0.

(1.2)

It can be extended to R by

f(s) = f ′(0)s for s < 0, f(s) = f ′(1)(s− 1) for s > 1. (1.3)

Ω ⊂ RN (N ≥ 2) is the funnel-shaped domain satisfying

Ω = {x = (x1, y) : x1 ∈ R, |y| < h(x1)} , (1.4)

where | · | signifies the Euclidean norm, h : R→ R+ is a function in C2,β(R)
(0<β<1) which satisfies

h = R in (−∞, 0], for some radius R > 0,

0 ≤ h′ ≤ tanα in R, for some angle α ∈ [0,
π

2
),

h(x1) = x1 tanα in [L cosα,+∞), for some L > R when α 6= 0,

The domain Ω is rotationally invariant concerning the x1-axis and its image
is shown in Figure 1. In addition, we suppose that there exists a pair of (c,φ)
(c > 0) satisfying 

φ′′(z) + cφ′(z) + f(φ(z)) = 0 in R,
φ(−∞) = 1, φ(+∞) = 0,

0 < φ(z) < 1 in R, φ(0) = θ.

(1.5)
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The research on the advective reaction-diffusion equation originated from
practical applications. In the practical problems, the advection term can
reflect the influence of the river [28, 29], chemotactic movement of organisms
[32], stirred reactions [11], and bird movement [10] on the research object. In
[2], Berestycki showed the influence of the advection term on the propagation
of fronts of the model

ut −∆u+Aα(y)
∂u

∂x1
= f(u)

Berestycki and Nirenberg made the pioneering work of the entire solution
of the advective reaction-diffusion equation in [1]. They are concerned with
the entire solution of the following type of equation

∆u− (c+ α(y))∂1u+ f(u) = 0

with three kinds of nonlinearity. Therefore, much work has been devoted
to studying the entire solution of the advective reaction-diffusion equation,
such as Bu and Wang [8], Indekeu and Smets [17] and Zhao et al. [33].
In addition to the general entire solution, Li et al. [19] attention to the
interaction between traveling wave solutions. They construct the new types
of entire solutions for the model

∂u(x, t)

∂t
= ∆u(x, t)− α(y)

∂u(x, t)

∂x1
+ f(u(x, t))

with monostable or ignition temperature nonlinearities, whose propagation
phenomenon is similar to that of two traveling wave solutions interacting.
Then in [22], they added relevant results on bistable reaction terms. In [23],
the existence, uniqueness, and stability of the entire solution for bistable
reaction-advection-diffusion equations in heterogeneous media were proved.
For the study of this type of entire solution, there are Liu et al. [24], Li et
al. [20], Wang and Li [27] and Ma and Wang [25].

The funnel-shaped domains were first defined in [16]. A classical reaction-
diffusion equation

ut = ∆u+ f(u)

was considered to the large time dynamics of entire solutions. Except for
the funnel-shaped domains, other high-dimensional regions are being stud-
ied. The infinite cylinders are the regions that have been studied the most
frequently, like [14, 15, 19, 20, 22, 23, 25, 30, 31, 34], they are all studying d-
ifferent equations in infinite cylinders. Similar to the infinite cylinders, there
are also the "cylinder-like" domains. In [6, 26], the "cylinder-like" domains
were considered to analyze the existence of the entire solution and conditions
of propagation or blocking phenomenon. Moreover, there are domains with
smooth compact obstacles [5, 7], multiple cylindrical branches [13, 21], mul-
tiple asymptotically cylindrical branches [12] and the domains are periodic
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[3, 4] or the succession of two semi-infinite infinite cylinders with square cross
sections [9].

Except that infinite cylinder and periodic domains, advective reaction-
diffusion equations are less studied in other regions. Inspired by [5, 16, 18], we
consider a more general problem (1.1) in this paper. Due to the introduction
of the advection term and the particularity of the region, it leads to the
previous super and sub-solutions not being applicable. To solve this problem,
we construct new super-solutions and sub-solutions, and obtain the following
results.

Theorem 1.1. For any R > 0 and α ∈ [0,
π

2
), (1.1) exists an entire solution

u(t, x) which satisfies ut > 0 and 0 < u < 1 for each (t, x) ∈ R×Ω, and that{
u(t, x)− φ(x1 − ct− at)→ 0, a ≥ 0,

u(t, x)− φ(−x1 − ct+ at)→ 0, a < 0,
(1.6)

as t → −∞, uniformly in x ∈ Ω. Furthermore, u(t, x) is symmetric with
respect to the x1 axis for any t ∈ R, that is, u is only related to x1 and |y|.

Theorem 1.2. For any (t, x) ∈ R×Ω, the entire solution u(t, x) converges
to a classical solution u∞(x) of{

∆u∞ − a · ∇u∞ + f(u∞) = 0, in Ω,

ν · ∇u∞ = 0, on ∂Ω,
(1.7)

as t→ +∞ in C2
loc(Ω). Moreover, the u∞(x) satisfies 0 < u∞(x) ≤ 1 and

lim
x1→−∞

u∞(x) = 1, a ≥ 0,

lim
x1→+∞

u∞(x) = 1, a < 0.

Theorem 1.3. For any R > 0 and α ∈ [0,
π

2
), u(t, x) is the entire solution

satisfying (1.6) in Theorem 1.1. If there is a function U(x) ∈ C2(Ω) of the
(1.7) such that 0 < U(x) ≤ 1 and

lim
x1→−∞

U(x) = 1 a ≥ 0,

lim
x1→+∞

U(x) = 1, a < 0.

Then u(t, x) ≤ U(x) for any (t, x) ∈ R× Ω.

Theorem 1.1, Theorem 1.2 and Theorem 1.3 are related to the existence
of the entire solution of (1.1). The following theorem is about the uniqueness
and stability of the entire solution.
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Theorem 1.4. For any R > 0 and α ∈ [0,
π

2
), the entire solution u(t, x) of

(1.1) satisfying (1.6) is unique and Lyapunov stable.

This paper is organized as follows. In Section 2, we prove the existence
of the entire solution of (1.1) and then we show some theorems related to
existence, that is Theorem 1.2 and Theorem 1.3. We will see that the entire
solution of (1.1) is unique and Lyapunov stable in Section 3.

2 Existence of the Entire Solution

In this section, we prove the existence of the entire solution by using
the upper and lower solution methods. Motivated by[5] and [16], the key
to this method is to construct a suitable super-solution and sub-solution.
Therefore, in Subsection 2.1, we give the basic estimates that will be used
later. Then we construct the super and sub-solution in Subsection 2.2 and
complete the proof of Theorem 1.2 in Subsection 2.3. In Subsection 2.4 and
Subsection 2.5, we show the proof of Theorem 1.2 and 1.3.

2.1 Basic Estimates

Suppose that the function ξ(t) satisfies{
ξ′(t) = Meµ

∗(ct+ξ) for t ≤ T,
ξ(−∞) = 0,

(2.1)

where the constant M > 0, T < 0 are given later, µ∗ is the positive root of
the equation

µ2 + cµ+ f ′(0) = 0,

that is,

µ∗ =
−c+

√
c2 − 4f ′(0)

2
> 0.

From a simple calculation of (2.1), we obtain

ξ(t) =
1

µ∗
ln

1

1− c−1Meµ∗ct

and 1− c−1Meµ
∗ct > 0. In addition, we suppose that

ct+ ξ(t) ≤ 0 for t ∈ (−∞, T ],

therefore, we have

T :=
1

µ∗c
ln

c

c+M
< 0.
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The traveling wave solution φ decays exponentially and satisfies{
b1e
−µ∗z ≤ φ(z) ≤ B1e

−µ∗z, z ≥ 0,

b2e
µ∗z ≤ 1− φ(z) ≤ B2e

µ∗z, z < 0,

with µ∗ =
c+

√
c2 − 4f ′(1)

2
> 0, b1, b2, B1, B2 are positive constants, and

the φ′(z) satisfies {
b3e
−µ∗z ≤ −φ′(z) ≤ B3e

−µ∗z, z ≥ 0,

b4e
µ∗z ≤ −φ′(z) ≤ B4e

µ∗z, z < 0,

with b3, b4, B3, B4 are positive constants.
The reaction term f satisfies

|f(u+ v)− f(u)− f(v)| ≤ Luv, 0 ≤ u, v ≤ 1. (2.2)

where L is a non-negative constant.

2.2 Construction of the super-solution and sub-solution

Before we construct the super-solution and sub-solution, we first show
the definition of them. We denote that

Lw := wt −∆w + a · ∇w − f(w). (2.3)

Then we can define

Definition 2.1. (The Definition of super-solution and sub-solution)
The function w is called the super-solution of (1.1) in R× Ω, if{

Lw ≥ 0, (t, x) ∈ R× Ω,

ν · ∇w ≥ 0, (t, x) ∈ R× ∂Ω,

The function w is called the sub-solution of (1.1) in R× Ω, if{
Lw ≤ 0, (t, x) ∈ R× Ω,

ν · ∇w ≤ 0, (t, x) ∈ R× ∂Ω,

Since a ∈ R, we discuss a in two cases: a > 0 and a < 0. First in the
range a > 0. We assume that there are two functions

w+(t, x) = φ(x1 − ct− at) (2.4)

and

w−(t, x) =

{
φ(x1 − ct− at+ ξ(t))− φ(−x1 − ct− at+ ξ(t)), x1 < 0,

0, x1 ≥ 0.

(2.5)
Then, we have the following
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Lemma 2.2. w+ is a super-solution of the (1.1) in R×Ω and for anyM > 0,
there exists some T1 ∈ (−∞, T ] such that w− is a generalized sub-solution of
(1.1) in (−∞, T1]× Ω.

Proof. It is obvious these conditions are satisfied when x ∈ ∂Ω. Then we
prove whether Lw+ ≥ 0 or Lw− ≤ 0 when x ∈ Ω.

First, we show the proof of the super-solution w+. According to (2.4),
we have

w+
t = (−c− a)φ′,

∇w+ = φ′,

∆w+ = φ′′.

(2.6)

Then substitute (2.6) into (2.3), and there is

Lw+ = (−c− a)φ′ − φ′′ + aφ′ − f(φ)

= 0 ≥ 0.

The proof of the super-solution is completed.
Next, we prove that w− is a generalized sub-solution of (1.1). It is obvious

when x1 ≥ 0 because of (2.5), therefore we prove that Lw− ≤ 0 in the case
x1 < 0.

We suppose that z1 := x1 − ct− at+ ξ(t), z2 := −x1 − ct− at+ ξ(t). A
straightforward computation shows that

w−t = (−c− a+ ξ′(t))(φ′(z1)− φ′(z2)),

∇w− = φ′(z1) + φ′(z2),

∆w− = φ′′(z1)− φ′′(z2).

(2.7)

Substitute (2.7) into (2.3), we have

Lw− = (−c− a+ ξ′(t))(φ′(z1)− φ′(z2))− φ′′(z1) + φ′′(z2)

+ a(φ′(z1) + φ′(z2))− f(φ(z1)− φ(z2))

= ξ′(t)φ′(z1) + (2a− ξ′(t))φ′(z2) + F (x1, t)

≤ ξ′(t)(φ′(z1)− φ′(z2)) + F (x1, t),

(2.8)

where F (x1, t) = f(φ(z1))−f(φ(z2))−f(φ(z1)−φ(z2)). Owing to the (2.2),
then

F (x1, t) ≤ Lφ(z2)(φ(z1)− φ(z2)).

Therefore, the third inequality in (2.8) is transformed into

Lw− ≤ ξ′(t)(φ′(z1)− φ′(z2)) + Lφ(z2)(φ(z1)− φ(z2)). (2.9)

In order to further verify Lw− ≤ 0, we discuss two cases ct + at − ξ(t) ≤
x1 < 0 and x1 < ct+ at− ξ(t) respectively.
Case 1. In the case ct+ at− ξ(t) ≤ x1 < 0, that is, 0 ≤ z1 < z2.
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Since the definition of φ in (1.5), one then infers that

φ(z) ≤ φ(0) = θ for z1 ≤ z ≤ z2,

which yeilds f(φ(z)) ≤ 0. Thus we have

φ′(z1)− φ′(z2) = −
∫ z2

z1

φ′′(z)dz =

∫ z2

z1

(cφ′(z) + f(φ(z)))dz

≤
∫ z2

z1

cφ′(z)dz

= c(φ(z2)− φ(z1)),

(2.10)

It follows from the previous (2.9) and the estimates of the φ(z) that

Lw− ≤ cξ′(t)(φ(z2)− φ(z1)) + Lφ(z2)(φ(z1)− φ(z2))

= (Lφ(z2)− cξ′(t))(φ(z1)− φ(z2))

≤ (LB1e
−µ∗(−x1−ct−at+ξ(t)) − cMeµ

∗(ct+ξ(t)))(φ(z1)− φ(z2))

= eµ
∗(ct+ξ(t))(φ(z1)− φ(z2))(LB1e

−µ∗(−x1−at+2ξ(t)) − cM).

Therefore we have Lw− ≤ 0 provided that T1 ∈ (−∞, T ] is chosen suffi-
ciently negative so that

LB1e
−µ∗(−x1−at+2ξ(t)) − cM ≤ 0 for −∞ < t ≤ T1. (2.11)

Case 2. In the case x1 < ct+ at− ξ(t), that is, z1 < 0 < z2.
By using estimates of φ and φ′, we have

Lw− ≤ ξ′(t)(φ′(z1)− φ′(z2)) + Lφ(z2)(φ(z1)− φ(z2))

≤Meµ
∗(ct+ξ(t))(−b4eµ∗(x1−ct−at+ξ(t)) +B3e

−µ∗(−x1−ct−at+ξ(t)))

+ LB1e
−µ∗(−x1−ct−at+ξ(t))

= eµ
∗(ct+ξ(t))[M(−b4eµ∗(x1−ct−at+ξ(t)) +B3e

−µ∗(−x1−ct−at+ξ(t)))

+ LB1e
−µ∗(−x1−at+2ξ(t))].

Therefore we have Lw− ≤ 0 provided that T1 ∈ (−∞, T ] is chosen suffi-
ciently negative so that

M(−b4eµ∗(x1−ct−at+ξ(t)) +B3e
−µ∗(−x1−ct−at+ξ(t))) ≤ −LB1e

−µ∗(−x1−at+2ξ(t))

(2.12)
for t ∈ (−∞, T1].

In conclusion, we show that w− is a sub-solution of (1.1) for any M > 0
when T1 ∈ (−∞, T ] satisfies (2.11) and (2.12).
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In the range a < 0, we assume that there are other two functions

w̃+(t, x) = φ(−x1 − ct+ at)

and

w̃−(t, x) =

{
0, x1 ≤ 0,

φ(−x1 − ct+ at+ ξ(t))− φ(x1 − ct+ at+ ξ(t)), x1 > 0.

Using the same method, we obtain the following lemma

Lemma 2.3. w̃+ is a super-solution of the (1.1) in R×Ω and for anyM > 0,
there exists some T̃1 ∈ (−∞, T ] such that w̃− is a generalized sub-solution of
the (1.1)in (−∞, T̃1]× Ω.

2.3 Proof of Theorem 1.1

In this subsection, we prove Theorem 1.1 by using the method of upper
and lower solutions. Since the proof process is similar in both cases a ≥ 0
and a < 0, we will take the case a ≥ 0 as an example here.

For any n ∈ N and n > −T1, let un(t, x) be the solution of the Cauchy
problem

(un)t = ∆un − a · ∇un + f(un), (t, x) ∈ [−n,+∞)× Ω,

ν · ∇un = 0, (t, x) ∈ [−n,+∞)× ∂Ω,

un(−n, x) = w−(−n, x) ∈ [0, 1), x ∈ Ω,

(2.13)

of (1.1). From the strong maximum principle and the well-posedness of
Cauchy problem (2.13), we note that

0 < un(t, x) < 1 for (t, x) ∈ [−n,+∞)× Ω. (2.14)

Because of the axial symmetry of Ω concerning x1, un(t, x) is symmetric
about the x1 axis. Since w−(t, x) is the generalized sub-solution of (1.1) in
(−∞, T1] × Ω, w+(t, x) is the super-solution of the (1.1) in R × Ω, we note
that

w−(t, x) ≤ un(t, x) ≤ w+(t, x) for (t, x) ∈ [−n, T1]× Ω. (2.15)

Then we plug in t = −n+ 1 to this inequality, we can obtain

un(−n+ 1, x) ≥ w−(−n+ 1, x) = un−1(−n+ 1, x) for x ∈ Ω.

Owing to the maximum principle, we have

un(t, x) ≥ un−1(t, x) for (t, x) ∈ [−n+ 1,+∞)× Ω,

9



which can see that the sequence un(t, x) is non-decreasing in n for n > −T1.
Putting n→ +∞, one gets that

un(t, x)→ u(t, x) in C1,2
(t,x);loc(R× Ω)

from the standard parabolic estimates and monotone bounded theorem. And
that u is the entire solution of (1.1).

On account of the axial symmetry of un, we know that u is symmetric
about the x1 axis. The comparison principle and (2.14) show that 0 ≤
u(t, x) ≤ 1 for (t, x) ∈ R× Ω. Combining u 6≡ 0 and u 6≡ 1, we have

0 < u(t, x) < 1 for (t, x) ∈ R× Ω

from the strong parabolic maximum principle. Letting n→∞, (2.15) implies

w−(t, x) ≤ u(t, x) ≤ w+(t, x) for (t, x) ∈ (−∞, T1]× Ω,

where we can know

u(t, x)− φ(x1 − ct− at)→ 0, as t→ −∞.

Finally, we show that

ut(t, x) > 0 for (t, x) ∈ R× Ω. (2.16)

We first claim that w−(t, x) is non-decreasing with respect to t when t is
sufficiently small. According to the definition of w−(t, x), we have

wt
−(t, x) =

{
(−c− a+ ξ′(t))(φ′(z1)− φ′(z2)), x1 < 0,

0, x1 ≥ 0.

Letting t → −∞, then z1 → +∞ > 0, z2 → +∞ > 0, −c − a + ξ′(t) < 0.
Combining the fourth inequality of (2.10) and the monotonicity of φ, we
obtain that

wt
−(t, x) ≥ 0,

when t is sufficiently small. For any t ∈ [−n, T1], x ∈ Ω, setting

g(t, x) = un(t, x)− w−(t, x),

which yields that

gt(t, x) = (un)t(t, x)− wt−(t, x).

If (un)t(t, x) < 0, then gt(t, x) < 0, which means that g(t, x) decreases
monotonically with respect to t. Since g(−n, x) = 0, the function g(t, x) =
un(t, x)− w−(t, x) < 0 for any t > −n, this conflicts with (2.15).
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Therefore, (un)t(t, x) ≥ 0 for (t, x) ∈ [−n,+∞)×Ω and it yields (un)t(−n, x) ≥
0 for x ∈ Ω and all sufficiently large n. Then, we get

(un)t(t, x) ≥ 0 for (t, x) ∈ [−n,+∞)× Ω

by the maximum principle. Letting n→ +∞, we have

ut(t, x) ≥ 0 for (t, x) ∈ R× Ω.

Since ut 6≡ 0, we use the strong maximum principle can obtain (2.16).

2.4 Proof of Theorem 1.2

In this subsection, we study the long-time behavior of the entire solution
u(t, x) of the (1.1), that is Theorem 1.2, and show the proof of it. First, in
the case a ≥ 0, the parabolic estimates and (2.16) imply that

u(t, x)→ u∞(x) as t→ +∞ uniformly in x ∈ Ω

in C2
loc(Ω). Since u is the entire solution of (1.1), the limit u∞ satisfies{

∆u∞ − a · ∇u∞ + f(u∞) = 0, in Ω,

ν · ∇u∞ = 0, on ∂Ω.

Taking limits simultaneously on both sides of the inequality for 0 <
u(t, x) < 1, we obtain that 0 ≤ u∞(x) ≤ 1. If u∞(x) = 0, that is,
limt→+∞ u(t, x) = 0, owing to (2.16), when t < +∞, we have u < 0, but this
is impossible because

0 < u(t, x) < 1 for (t, x) ∈ R× Ω.

by Theorem 1.1. Therefore, we have

0 < u∞(x) ≤ 1 for x ∈ Ω.

Since u increases monotonically with respect to t, one then infers

w−(t, x) ≤ u(t, x) < u∞(x) ≤ 1 for (t, x) ∈ (−∞, T1]× Ω.

It follows from the inequality above that

w−(T1, x) = φ(x1 − cT1 − aT1 + ξ(T1))− φ(−x1 − cT1 − aT1 + ξ(T1))

≤ u∞(x) ≤ 1
(2.17)

when x ∈ Ω and x1 < 0. Hence, we can see that

lim
x1→−∞

u∞(x) = 1.

In the case a < 0, we can use the same method to obtain limx1→+∞ u∞(x) =
1.
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2.5 Proof of Theorem 1.3

When a ≥ 0, according to the definition of the nonlinear term f , we can
see that f(1) = 0 and f ′(1) < 0 by (1.2), f can be extended to (1,+∞) by
f(s) = f ′(1)(s − 1) for s > 1 from (1.3). Setting ς > 0 such that f ′ < 0 in
[1− ς,+∞) and C > 0 satisfying

1− ς ≤ U(x) ≤ 1 for x ∈ Ω with x1 ≤ −C. (2.18)

If there exists T1 ∈ (−∞, T ] such that for any t ≤ T1 and x ∈ Ω, we
have w−(t, x) ≤ U(x). Using the parabolic maximum principle and the
relationship between w− and un, then we can prove that u(t, x) ≤ U(x) for
any (t, x) ∈ R × Ω, which is what we ultimately want to prove. Therefore,
we then claim the following lemma.

Lemma 2.4. There exists T1 ∈ (−∞, T ] such that

w−(t, x) ≤ U(x) for t ≤ T1 and x ∈ Ω with x1 ≥ −C. (2.19)

Proof. According to (2.18), if x1 ≥ −C, then we find that U(x) ≤ 1 − ς or
U(x) ≥ 1. Owing to the assumption 0 < U(x) ≤ 1, we have 0 < U(x) ≤ 1−ς
or U(x) = 1.

When U(x) = 1, according to the definition of w−, we can see that
0 ≤ w− < 1. It is obvious that w−(t, x) ≤ U(x) for (t, x) ∈ (−∞, T1) × Ω
with x1 ≥ −C.

When 0 < U(x) ≤ 1 − ς, we use the method of proof by contradiction
to prove. If for any T ′1 ∈ (−∞, T ], there is w−(t, x) > U(x) for t ≤ T ′1
and x ∈ Ω with x1 ≥ −C. The inequality (2.17) infers that there exists
T1 ∈ (−∞, T ] such that

w−(T1, x) ≤ u∞(x) ≤ 1

for x ∈ Ω and 0 < u∞(x) ≤ 1 is the solution of (1.7) satisfying the limit
limx1→−∞ u∞(x) = 1. However, 0 < U(x) ≤ 1− ς satisfies all conditions of
u∞(x), which is a contradiction with the assumption.

Proof of Theorem 1.3. We first claim that w−(t, x) ≤ U(x) for any
t ≤ T1 and x ∈ Ω. We define that

%∗ = min
{
% ≥ 0 : w−(t, x) ≤ U(x) + %, t ≤ T1, x ∈ Ω

}
. (2.20)

Then we will prove that %∗ = 0.
If %∗ > 0, then there exists (t∗, x∗) ∈ (−∞, T1] × Ω with (x1)∗ < −C,

such that
w−(t∗, x∗) = U(x∗) + %∗. (2.21)
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Otherwise, for any (t, x) ∈ (−∞, T1]× Ω with x1 < −C, there is w−(t, x) 6=
U(x) + %∗, then we have

w−(t, x) < U(x) + %∗ (2.22)

for any (t, x) ∈ (−∞, T1]×Ω with x1 < −C by the (2.20). Owing to Lemma
2.4, we see that

w−(t, x) ≤ U(x) < U(x) + %∗ (2.23)

for any (t, x) ∈ (−∞, T1] × Ω with x1 ≥ −C. Combining (2.22) and (2.23),
we obtain

w−(t, x) < U(x) + %∗ for (t, x) ∈ (−∞, T1]× Ω.

It follows from the density that there exists %∗1 ≥ 0, such that w−(t, x) <
U(x) +%∗1 < U(x) +%∗. This is a contradiction with the definition of %∗ that
%∗ is the minimum number making w−(t, x) ≤ U(x) + %.

Since 1−ς ≤ U(x) ≤ 1 for x ∈ Ω with x1 ≤ −C, we know that 1−ς+%∗ ≤
U(x) + %∗ ≤ 1 + %∗. The assumption that f ′ < 0 in [1− ς,+∞) denotes that
f monotonically decreases in [1− ς,+∞). That is

f(U(x) + %∗) ≤ f(U(x))

for any x ∈ Ω with x1 ≤ −C, which implies U(x) + %∗ is the super-solution
of the (1.7) in x ∈ Ω with x1 ≤ −C.

Notice that w− is a generalized sub-solution of the (1.1) in (−∞, T1]×Ω
by Lemma 2.2, then from the strong parabolic maximum principle and (2.21),
we have

w−(t, x) = U(x) + %∗

for any t ≤ t∗ and x ∈ Ω with x1 ≤ −C.
When x1 → −∞, w−(t, x) = U(x) + %∗ → 1 + %∗ > 1 is a contradiction

with w−(t, x) < 1. Therefore, %∗ = 0 and it yields that

w−(t, x) ≤ U(x) (2.24)

for any t ≤ T1 and x ∈ Ω.
Then we claim that u(t, x) ≤ U(x) for all (t, x) ∈ R×Ω. Since un(−n, x) =

w−(−n, x) ∈ [0, 1) for n ∈ N with n ≥ −T1 in x ∈ Ω from (2.13), according
to (2.24), we have

un(−n, x) = w−(−n, x) ≤ U(x) for x ∈ Ω.

According to the parabolic maximum principle, we know un(t, x) ≤ U(x)
for t ≥ −n and n ∈ N with n ≥ −T1 in (t, x) ∈ [−n,+∞)×Ω. Let n→ +∞,
we obtain

u(t, x) ≤ U(x) for (t, x) ∈ R× Ω.

In the case of a < 0, we can use the similar arguments to verify u(t, x) ≤
U(x) for all (t, x) ∈ R× Ω. The proof of this theorem is complete.

13



3 Uniqueness and Stability of the Entire Solution

In this section, we begin to prove Theorem 1.4. We divide the proof into
two parts. The first part is to prove the uniqueness of the entire solution,
and the second part is to prove the stability of the entire solution.

3.1 Uniqueness of the Entire Solution

First is the uniqueness of the entire solution u(t, x). Before starting the
proof, we provide a lemma. Assuming

Gγ(t) := {x ∈ Ω : γ ≤ u(t, x) ≤ 1− γ} , γ ∈ (0,
1

2
].

By (1.6), we can know that for any γ ∈ (0, 1
2 ], there exists Tγ ∈ R and

Mγ ∈ (0,+∞), such that for any t ∈ (−∞, Tγ ], when a ≥ 0,

Gγ(t) ⊂ {x ∈ Ω : |x1 − ct− at| ≤Mγ} ⊂
{
x ∈ RN : x1 ≤ −1

}
, (3.1)

when a < 0,

Gγ(t) ⊂ {x ∈ Ω : | − x1 − ct+ at| ≤Mγ} ⊂
{
x ∈ RN : x1 ≥ 1

}
. (3.2)

Lemma 3.1. u(t, x) is the entire solution of (1.1) satisfying (1.6). Then for
any γ ∈ (0, 1

2 ], there exists δ0 > 0 such that ut(t, x) ≥ δ0 for any t ∈ (−∞, Tγ ]
and x ∈ Gγ(t).

Proof. We use the method of proof by contradiction to prove this lemma.
Suppose there exists γ0 ∈ (0, 1

2 ], for any δ > 0, there exists the sequence
tk ∈ (−∞, Tγ0 ] and xk := (xk1, xk2, · · · , xkN ) ∈ Gγ0(t), such that

ut(tk, xk)→ 0 as k → +∞.

The proof process for a ≥ 0 and a < 0 is similar, let’s take a ≥ 0 as an
example.
Case 1. If tk → t∗ ∈ (−∞, Tγ0 ] as k → +∞.

The condition xk ∈ Gγ0(t) yields that the sequence xk1 is bounded. On
the base of the monotonic bounded principle, we know that

xk1 → x∗1 as k → +∞.

Consider that
uk(t, x) := u(t, x+ xk),

then uk is defined in (t, x) ∈ (−∞, Tγ0 ] × Ω, hence (1.4) and (3.1). By
parabolic estimates, we select a subsequence and denote it again as {uk},
then we can obtain

uk(t, x)→ u∗(t, x) as k → +∞
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in C1,2
loc ((−∞, Tγ0 ]×Ω) and u∗(t, x) satisfies (1.1) for any (t, x) ∈ (−∞, Tγ0 ]×

Ω. Based on the monotonicity of u with respect to t in R and the convergence
of uk, it can be inferred that

u∗t (t
∗, 0) = 0, u∗t (t, x) ≥ 0 for (t, x) ∈ (−∞, Tγ0 ]× Ω.

Therefore, by the strong maximum principle, we know

u∗t (t, x) ≡ 0 for t ≤ t∗.

But when t→ −∞, there is a contradiction between this equation and

u∗(t, x)− φ(x1 + x∗ − ct− at)→ 0 as t→ −∞

uniformly in x ∈ Ω from (1.6).
Case 2. If tk → −∞ as k → +∞.

Similarly, we consider that

uk(t, x) := u(t+ tk, x+ xk).

Then, we can also find a subsequence uk(t, x)→ u∗(t, x) when k → +∞ and
u∗(t, x) satisfies u∗t (0, 0) = 0. Whence

u∗t (t, x) ≡ 0 for t ≤ 0.

This is impossible because there exists a γ1 ∈ [−Mγ0 ,Mγ0 ] such that

u∗(t, x) = φ(x1 − ct− at+ γ1).

The proof of this lemma is complete.

Now, we prove the uniqueness of u(t, x). Assuming there exists another
entire solution v of (1.1), take κ ∈ (0, 1

4) as small as possible, such that

f ′(s) ≤ −ε for s ∈ (−∞, 2κ] ∪ [1− 2κ,+∞) (3.3)

for ε > 0. Then for ε ∈ (0, κ), there is tε < 0, such that

‖v(t, x)− u(t, x)‖L∞(Ω) < ε for (t, x) ∈ (−∞, tε]× Ω. (3.4)

Suppose t0 ∈ (−∞, tε), we define that

W+(t, x) = u(t+ σε(1− e−ε(t−t0)), x) + εe−ε(t−t0),

W−(t, x) = u(t− σε(1− e−ε(t−t0)), x)− εe−ε(t−t0),
(3.5)

where the σ > 0 will be provided later. By (3.4), we obtain

W−(t0, x) ≤ v(t0, x) ≤W+(t0, x) for x ∈ Ω.
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We then claim that W+(t, x) and W−(t, x) are the generalized super-
solution and sub-solution of (1.1) in [t0, tε]× Ω.

First is the super-solution. From a calculation of the (3.5), we can see

W+
t = (1 + σεεe−ε(t−t0))ut − εεe−ε(t−t0),

∇W+ = ∇u,
∆W+ = ∆u.

It follows from the equations above that

LW+ = (1 + σεεe−ε(t−t0))ut − εεe−ε(t−t0) −∆u+ a∇u− f(W+)

= σεεe−ε(t−t0)ut − εεe−ε(t−t0) + f(u)− f(u+ εe−ε(t−t0))

= σεεe−ε(t−t0)ut − εεe−ε(t−t0) − εe−ε(t−t0)f ′(u+ ϑεe−ε(t−t0))

= εe−ε(t−t0)[σεut − ε− f ′(u+ ϑεe−ε(t−t0))],

(3.6)

where
ϑ = ϑ(t, x) ∈ (0, 1),

u = u(t+ σε(1− e−ε(t−t0)), x),

ut = ut(t+ σε(1− e−ε(t−t0)), x).

Case 1. If x ∈ Gκ(t+ σε(1− e−ε(t−t0))), there are κ ≤ u ≤ 1− κ and

κ+ ϑεe−ε(t−t0) ≤ u+ ϑεe−ε(t−t0) ≤ 1− κ+ ϑεe−ε(t−t0).

Since κ > 0, 0 < ϑ < 1 and 0 < ε < κ, one then infers κ + ϑεe−ε(t−t0) > 0.
Because of 0 < ϑ < 1 and ε > 0, we have

0 < ϑεe−ε(t−t0) < εe−ε(t−t0) < ε < κ, (3.7)

which infers that 1− κ+ ϑεe−ε(t−t0) < 1. Hence, we can get

0 < u+ ϑεe−ε(t−t0) < 1.

Applying the lemma 3.1 to the fourth equation of (3.6), we know

LW+ ≥ εe−ε(t−t0)(σεδ0 − ε− max
0≤s≤1

f ′(s))

≥ εσεδ0e
−ε(t−t0)

by (3.3). Therefore, LW+ ≥ 0 when σ is sufficiently large.
Case 2. If x /∈ Gκ(t+σε(1−e−ε(t−t0))), there are u < κ or u > 1−κ. Then
with 0 < u < 1 and (3.7), one sees that u+ϑεe−ε(t−t0) ∈ [0, 2κ]∪[1−κ, 1+κ],
which yields that

f ′(u+ ϑεe−ε(t−t0)) ≤ −ε.
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Since ut > 0, σ > 0 and ε > 0, we know

LW+ = εe−ε(t−t0)[σεut − ε− f ′(u+ ϑεe−ε(t−t0))]

≥ εe−ε(t−t0)[−ε− f ′(u+ ϑεe−ε(t−t0))]

≥ 0.

In summary, when σ is sufficiently large, LW+ ≥ 0 for t ∈ [t0, tε], x ∈ Ω.
Similarly, we can prove LW− ≤ 0. Hence, we have

W+(t, x) ≤ v(t, x) ≤W−(t, x) for (t, x) ∈ [t0, tε]× Ω,

where t0 ∈ (−∞, tε). Substituting (3.5) into the above equation and letting
t0 → −∞, then

u(t− σε, x) ≤ v(t, x) ≤ u(t+ σε, x) for (t, x) ∈ (−∞, tε]× Ω.

Applying the comparison principle, the above inequalities hold in (t, x) ∈
R×Ω. Letting ε→ 0, we have v(t, x) ≡ u(t, x), which proves the uniqueness
of the entire solution of (1.1).

3.2 Stability of the Entire Solution

This subsection is devoted to proving the stability of the entire solution.
We are concerned with the Lyapunov stability of the entire solution u(t, x)
satisfying (1.6) of (1.1). Considering the Cauchy problem of (1.1)

ut = ∆u− a · ∇u+ f(u), (t, x) ∈ (0,+∞)× Ω,

ν · ∇u = 0, (t, x) ∈ (0,+∞)× ∂Ω,

u(0, x;u0) = u0(x), x ∈ Ω.

(3.8)

Set u(t, x;u0) be the classical solution of (3.8), u(t, x) be the entire solution
of (1.1). Therefore, we have the following definition

Definition 3.2. (The Definition of Lyapunov Stability)
The entire solution u(t, x) is Lyapunov stability, if for any δ∗ > 0, there
exists a constant ε∗ > 0, such that

‖u(t, x;u0)− u(t, x)‖L∞((0,+∞)×Ω) ≤ δ∗

when ‖u0(x)− u(0, x)‖L∞(Ω) ≤ ε∗.

Then we assume that there are two functions

U+(t, x) = u(t+ σ1ε∗(1− e−ε1t), x) + ε∗e
−ε1t,

U−(t, x) = u(t− σ1ε∗(1− e−ε1t), x)− ε∗e−ε1t,
(3.9)

where the constant ε1 > 0, and the constant σ1 > 0 will be provided later.
According to the method of proving the super-solution and sub-solution

W±, when σ1 is sufficiently large, we can obtain the following lemma
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Lemma 3.3. For any ε∗ ∈ (0, κ] with 0 < κ < 1
4 given in (3.3), U+(t, x)

and U−(t, x) are respectively a super-solution and a sub-solution of (1.1) for
(t, x) ∈ [0,+∞)× Ω.

Now, we prove the Lyapunov stability of u(t, x). According to Definition
3.2, we set that for any δ∗ > 0, there exists a constant ε∗ > 0, such that

‖u0(x)− u(0, x)‖L∞(Ω) ≤ ε∗.

Then we need to verify ‖u(t, x;u0)− u(t, x)‖L∞((0,+∞)×Ω) ≤ δ∗.
By the Lemma 3.3, U± are the super-solution and sub-solution of (1.1)

which imply

U−(0, x) = u(0, x)− ε∗ ≤ u0(x) ≤ u(0, x) + ε∗ = U+(0, x)

for x ∈ Ω and

ν · ∇U− = ν · ∇u = ν · ∇U+ = 0 for x ∈ ∂Ω.

Owing to the comparison principle, we have

U−(t, x) ≤ u(t, x;u0) ≤ U+(t, x) for (t, x) ∈ [0,+∞)× Ω. (3.10)

With the definitions of U+(t, x) and U−(t, x), for all x ∈ Ω and t ≥ 0, the
(3.10) yields

u(t, x;u0) ≤ U+(t, x) ≤ u(t+ σ1ε∗(1− e−ε1t), x) + ε∗,

u(t, x;u0) ≥ U−(t, x) ≥ u(t− σ1ε∗(1− e−ε1t), x)− ε∗,
(3.11)

Since 0 < 1− e−ε1t < 1 for t > 0 and ut(t, x) > 0 for any x ∈ Ω and t ∈ R,
using the Lagrange middle-value theorem implies

u(t− σ1ε∗(1− e−ε1t), x)− ε∗ ≥ u(t− σ1ε∗, x)− ε∗
= u(t, x)− σ1ε∗ut(t− σ1ε∗e

−ε1t, x)− ε∗
≥ u(t, x)− σ1ε∗ sup

(t,x)∈R×Ω

ut(t, x)− ε∗

for (t, x) ∈ (0,+∞)× Ω. Therefore, from (3.11), we know

u(t, x;u0) ≥ u(t, x)− σ1ε∗ sup
(t,x)∈R×Ω

ut(t, x)− ε∗. (3.12)

Similarly, we can obtain the following inequality

u(t+ σ1ε∗(1− e−ε1t), x) + ε∗ ≤ u(t+ σ1ε∗, x) + ε∗

= u(t, x) + σ1ε∗ut(t+ σ1ε∗(1− e−ε1t), x) + ε∗

≤ u(t, x) + σ1ε∗ sup
(t,x)∈R×Ω

ut(t, x) + ε∗
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for (t, x) ∈ (0,+∞)× Ω. Then from (3.11) again, we can get that

u(t, x;u0) ≤ u(t, x) + σ1ε∗ sup
(t,x)∈R×Ω

ut(t, x) + ε∗. (3.13)

Combining (3.12) and (3.13), for any δ∗ > 0 and (t, x) ∈ (0,+∞) × Ω,
it is obvious that |u(t, x;u0)− u(t, x)| ≤ (1 + σ1 sup(t,x)∈R×Ω ut(t, x))ε∗ ≤ δ∗

with ε∗ ≤ min

{
κ, δ∗

1+σ1 sup(t,x)∈R×Ω ut(t,x)

}
.

To sum up, for any δ∗ > 0, there exists a constant ε∗ > 0, such that

‖u(t, x;u0)− u(t, x)‖L∞((0,+∞)×Ω) ≤ δ∗

when ‖u0(x)− u(0, x)‖L∞(Ω) ≤ ε∗.
Combining the Subsection 3.1 and 3.2, the proof of Theorem 1.4 is com-

plete.
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